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What’s the problem?

• Peak overlap 
obscures structure 
factors 

• Phase problem:
– measure F(hkl)
– find  φ(hkl)

• Powder diffraction 
gets stuck on the 
first step!

• Exact overlaps
– cubic 511/333 

• Inexact overlap
– increase resolution
– deconvolute the 

peaks
• Need data at 

“atomic resolution” 
for direct methods



Overlap is ‘scale invariant’
• There are more peaks 

overlapping at higher 
angles

• The units used for 
wavelength and cell 
parameters do not 
change the geometric 
problem

• The number of peaks 
we can measure is 
independent of the 
size of the cell

• Chemistry is not scale 
invariant – atoms are 
always the same size

• Larger structures are 
more difficult!!!



Texture 
methods…

• Use preferred 
orientation to make 
the powder “more 
like” a single crystal

• Measure diffraction 
patterns as a 
function of 
orientation

Wessels T, Baerlocher C, McCusker LB, Creyghton EJ, 
J.A.C.S. 121:6242 (1999) 

Wessels T, Baerlocher C, McCusker LB
Science, 284: 477 (1999)



Anisotropic thermal expansion

• 1963
• 34 atoms in unit cell 

(I2/m)



Revival/Reinvention of the method:

• J. Mat. Chem., 7 569 (1997).

• Used sychrotron radiation to get 
high resolution data

• Modern computing methods to 
treat data (pattern fitting!)



Powder Methods + Proteins?
• Samples easier to 

produce… but,
– Large unit cells
– Severe peak overlap
– Many degrees of 

freedom in the 
structure

Myoglobin from horse skeletal muscle (Aldrich) 
recrystallised in 80% sat. (NH4)2SO4



Improving the data quality…
• Exploit anisotropic 

thermal expansion to 
alleviate peak overlap

• Lower temperatures 
for better data quality 
(B factor & radiation 
damage)

• Experiments carried 
out on BM16 (ESRF)

295 K

255 K



Discrete phase transitions found...
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Combined fit for 
the 3 phases
• Multipattern fit with 

the same intensities 
for each

• Cell parameters and 
peak shape different 
for each pattern 
(indexed with 
DICVOL)

• Details later about 
pattern 
decompositions

2θ (°), λ=0.850456Å



Refinement Results
• Cell is very close to 

orthorhombic (a vs. 
[101])

• Mainly expansion along 
b axis

• Peaks are ~2 times 
instrumental width 
(γX~0.006°)

• Highlighted (-211),(111) 
monoclinic peaks to 
show distortion is 
resolved

T/K 290K 255K 240K
a/Å 64.23 64.60 64.44
b/Å 28.89 29.96 30.94
c/Å 35.87 35.34 35.20
b/° 107.2 105.7 106.0

V/Å**3 63592 65815 67457
[101]/Å 63.66 64.68 64.35

gX/° 0.0149 0.0150 0.0133

(-211),(111) monoclinic = 

(311),(-311) orthorhombic

290K

255K

240K



Cell volume versus 
temperature
• ∆V/V phase I>II is 3.5%
• ∆V/V phase II>III is 2.7%
• cf. Change in density for 

liquid water to hexagonal 
ice is ~10%

• Freezing at high pressure 
improves crystal quality [*]

• Appears to show negative 
thermal expansion in both 
II and III.

* Thomanek et al, Acta Cryst. A29 263 (1973)



MICE map 
(C. Gilmore, University of Glasgow)
• Supplied 

integrated 
intensities to the 
program

• Fixed origin 
definition

• Eventually realised 
the sample is 
contrast matched

• Heme group can be 
located (!!)



Methods for pattern decomposition
• Lebail extraction

– Iterative procedure. Produces one set of peak intensities 
which fit the powder pattern. Computationally cheap, 
sometimes unstable, no information about other plausible 
solutions.

• Pawley refinement
– Fits the intensities as least squares variables. Soft and hard 

restraints improve very poor stability. Computationally 
expensive, but provides full information about covariance (few 
programs and these were limited to several hundred peaks)

• Materials studio
– Fits structure factors, F=sqrt(I), to avoid negative peaks. 

Uses conjugate gradients for non-linear optimisation.
• Others (nowadays TOPAS at least)

(I) couldn’t deal with the protein data!



What is least squares fitting?
• Apologies to those who already know…
• Minimise the sum of the squared 

differences between model and data.
• Conventionally:

• Minimum is at dχ2/dx = 0
• Linear model => solve for x in one 

step. 
• Non-linear models can be 

approximated by a Taylor expansion 
and treated as linear (provided x is 
close to a)

f(x) ≈ f(a) + f’(a)(x-a) + …
• For n parameters this means solving 

matrix equations with either an n × n 
matrix or an n × m matrix.
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Intensity extractions
• Used (modified) 

PRODD computer 
program

• Does something like a 
Pawley fit to multiple 
patterns with 
different cell 
parameters

• Preserves correlation 
information

Least squares matrix

sparse!

Intensities
cell, peakshape, 

background



Algorithm:
Singular means we can’t solve for x

… so we modify the problem!

Some jiggery pokery to get at x

Is x a solution to the original problem?

If not then solve for the residual and 
use that to get a better x. 

Problem: Ax = b (A is singular)

(A + λ I)x = b (Modify A)

(LT L) x = b (Slow step)

Solve: LT y = b and then   L x = y

Truncate x to positive intensities

Use x to compute b’ = (b – A x)

if b’ is not zero then: 

solve: LT y = b’ and then   L x’ = y

Update x = x + x’, truncate, iterate

See: George and Liu, “Computer Solution of Sparse Positive Definite Systems”
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Choosing a unique solution
• Overlapped peaks can be 

partitioned arbitrarily
• Origin of singular matrix 
• Tendency to fit noise
• Select a unique solution 

by minimising

• Relative weighting 
remains as a tunable 
parameter 

• Equipartitions intensity
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Why??
• These matrices are 

“easy” to form
• Allows the 

intensity 
information to be 
used without 
referring to the 
pattern(s)

• Incorporates peak 
overlap

∑

∑

−
=

==

−−=

ij ii

jcjo

ii
ij

ij
jcjoijicio

II

diagonalA

IIAII

2

2
,,2

2

,,,,
2

)(

1

)()(

σ
χ

σ

χ

• Reduces to single 
crystal case when 
there is no peak 
overlap

• example
– DASH performance



Number of good peaks?
• Attempt to estimate 

the real information 
content in the data, 
with approximations 
(fixed background etc)

• Single crystal data 
would be a ~flat line 
with tail off for I~σI

• There are no 
“isolated” peaks

• This estimate ignores 
the measurement 
precision

Eigenvalue index (to d = 3.15Å)

1+λ
λ 3 patterns ~670

Phase I only ~440

W. I. F David, (1999) J.Appl.Cryst 32, 654;  D. S. Sivia (2000) J.Appl.Cryst 33, 1295. 



Eigenvalues/Eigenvectors
• Two exactly 

overlapping peaks, I1
and I2

• Eigenvectors would 
be
– sum: I1+I2

– diff: I1-I2

• With lots of peaks, 
we get uncorrelated
linear combinations

• 1/eigenvalues of 
matrix are esds on the 
eigenvectors
– 1/0 is undefined, which 

is the problem with 
inverting the matrix!

• Exact overlap
– sum: a large number
– difference: zero

• Inexact overlap
– difference: small 

number



Going further?
• If all of the non 

linear parameters 
are optimised the 
matrix faithfully 
represents the data

• Just a linear 
transformation

• Can exploit the 
eigenvalues and 
eigenvectors 
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• Any further 
processing is 
independent of the 
raw data

• Faithfully represents 
errors

• “Non diagonal weight 
matrix”



Applications for that matrix?
• Generating other 

sets of intensities 
which fit the 
pattern

• Optimising some 
“other functions” 
of intensities
– entropy
– Wilson type 

statistics
– etc!

• Refinement 
separated from 
pattern fitting
– view as a “funny 

system of 
constraints”

– Intensities are 
variables with 
constraints on them 
defined by the 
structure



A “small molecule” application:
• 9-ethylbicyclo[3.3.1]

nona-9-ol  
• C11H19OH
• Small globular organic 

molecule
• Part of a wider study

– M Brunelli, PhD thesis
• Turns out to behave 

anomalously



BM16 powder data



• Indexed as orthorhombic from BM16:
a=21.080 Å, b=23.074 Å, c=16.426 Å
(cell volume = 7990 Å3)

• Space group Pbca
• Z = 32; Z´ = 4; 48 atoms in asymmetric 

unit (384 in unit cell!)
• Large cell + No phase transitions or 

disordered phases

Why is it anomalous?



Ideal candidate

• Diffracts beyond 1Å
• Direct methods should work given 

good enough data
• Various attempts to solve the 

structure had failed
• Just need to collect sufficiently good 

data



Improvements to ESRF 
powder diffraction beamline

• Moved the 
diffractometer from 
a bending magnet 
source (BM16) to 
undulator (ID31)

• Large increase in flux
• Multiple datasets can 

be collected in a 
reasonable time Opened to users 26 June 2002





First user experiment on ID31
• Flexible user group!
• One day of beamtime
• First attempt with 2 

data sets and feeding 
intensities to Shelxs
direct methods was 
unsuccessful.

• Further data sets at 
140 K,  160 K and 180 K 
were collected. Initial structure was not 

interpretable with 2 datasets



Extracts of the diffraction patterns at the 
different temperatures

80 K

120 K

140 K

160 K

180 K



3 molecules identified from 
initial Shelxs direct methods 
solution when all 5 patterns 
were used.

Complications not needed?



Thermal factors….
• No correction for 

thermal motion in the 
original intensity 
extraction

• The program was later 
fixed to include an 
overall isotropic 
thermal factor

• Improvement on SX  
R-factor was:
– R1 ~ 48% -> 41%

1

2

3

4

All four molecules appear on the 
initial E map!



• Structure 
completed by 
fourier recycling 
against extracted 
intensities
– xp (Bruker shelxtl)

• No need to 
repartition the 
overlaps!!! 
– “single crystal”     

R-factor was poor

Structure completion



Packing is sensible

• No bad 
contacts 
identified

• H-bonded 
tetramers

• Van-der-
Waals 
interactions 
between 
tetramers



• Stereochemical
restraints 
(GSAS)

• One ethyl group 
apparently 
disordered

• Rwp=5.3%, 

• RF2 = 7.5%

• χ2 =16.5

Final Rietveld fit at 140K



Why success with 5 but not 2 
temperatures?

• Counting for longer 
improves the statistics 
(total ≈12 hours).

• Variation of the cell 
parameters bought in 
significantly more 
information in later 
patterns

• Radiation damage 
might have helped by 
making the expansion 
more anisotropic?



How many peaks were present?
• Eigenvalue spectra from 

the normal matrix of 
the Pawley fit for  80 K, 
80 and 120 K and all 5
patterns.

• Difficult to assign a 
single number

• D.S.Sivia, J. Appl. Cryst.
(2000). 33, 1295-1301

Using data to 0.95 Å

a possible 2400 peaks exist up to 1.2 Å

a possible 4100 peaks exist up to 1.0 Å



Shelxs “peak counting”
• List file gives intensity statistics based on 

hkl file (esds are from Lebail’s algorithm 
when preparing hkl file)

• Half of the theoretically possible reflections 
in 1.1-1.2Å range are needed for direct 
methods to work (Sheldrick’s rule)



Outlook
• Suitable data for ATE can be collected on 

a reasonable timescale at ESRF’s new 
powder diffraction beamline

• Samples which diffract “sufficiently well” 
should be tractable
– sharp peaks
– peaks at high angles (~atomic resolution)
– low enough symmetry for anisotropic expansion

• Even difficult structures can be solved 
easily with good enough data (Single 
Crystals !!!)

• Simple data processing



Outlook…
• Structure solution was 

“unsophisticated”
• Overlap information was extracted, 

but was not used
• Perhaps EXPO (Bari group) can be 

adapted to treat multiple datasets?
• Improved algorithms (past+future) 

should solve more difficult structures 
with improved data quality
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