THE CRYSTALLOGRAPHIC COMPUTING SYSTEM

Václav Petříček & Michal Dušek

Institute of Physics Academy of Sciences of the Czech Republic

Praha, December 2000

Last update: 06/12/00

Contents

CONTENTS	3
1 BASIC FEATURES	8
1.1 INSTALLATION AND USER SUPPORT	9
1.2 EXECUTING JANA98	21
1.3 BASIC PARTS OF JANA98	29
1.4 THE BASIC WINDOW AND COMMON TOOLS	
2 PRELIMINARY WORK	54
2.1 PROGRAM DATRED	
2.2 Program <i>PRELIM</i>	67
3 STRUCTURE SOLUTION AND REFINEMENT	92
3.1 Structure parameters	93
3.2 Program <i>EDITM40</i>	153
3.3 PROGRAM <i>REFINE</i>	219
3.4 PROGRAM FOURIER	
3.5 Advanced Topics	
4 STRUCTURE INTERPRETATION	290
4.1 Program <i>CONTOUR</i>	
4.2 Program <i>DIST</i>	
4.3 Program <i>GRAPHT</i>	
REFERENCES	
LIST OF FIGURES	
LIST OF TABLES	
CONTENTS (detailed)	

About This Manual

The first part of this manual describes the installation of the program and shows how to use *JANA98* and its basic common tools. In the next part programs used for data processing and setting the basic crystal information are explained. The third part about structure solution and refinement can be understood a heart of the manual. It describes in details structure parameters, programs for their changing and refinement and Fourier program for calculation of electron density maps. An underlying theory is given for each structure parameter. The last part is dedicated to the structure interpretation based on distances and angles, electron density maps and modulation parameters.

This version of the manual is the definitive description of *JANA98*. The successor of *JANA98* is the program *JANA2000* and we recommend using it instead of *JANA98*. However, most information given here is still valid for *JANA2000*. New manual for *JANA2000* is expected during year 2001.

The manual is available in the ftp server ftp.fzu.cz in the PDF format. The authors welcome any remark concerning both this manual and the functionality of *JANA98/2000*.

Next Chapter: Preliminary Work, page 53.

Basic Features

JANA98 is a system for solving and refinement of regular, modulated and composite structures from single crystal diffraction data. It is compatible with previous version *JANA96* but its functionality is extended.

Basic features:

JANA98 covers the basic tasks of structure analysis from data reduction to the solution of the phase problem, refinement of the structure model and presentation of results. Two parts of the system - direct methods and plotting program - are not yet available. The three dimensional and higher dimensional crystals are treated uniquely in one system. In addition to regular structure parameters (occupancy, atomic position and anisotropic temperature parameters) the system allows description of atomic displacements by ADP (anharmonic displacement parameters).

Advanced features:

Both regular and modulation parameters can be refined within the rigid body approximation. Molecules can have a local symmetry different of the site symmetry. Special modulation functions (*crenel functions* for occupancy and *sawtooth functions* for position) can be used for refinement of non-harmonic modulations. They can also be used together with harmonic functions using the orthogonalized modulation waves. *JANA98* can plot higher dimensional electron density maps and joined probability density functions. Commensurate structures can be solved in the superspace. *JANA98* supports work with complicated twins and partially overlapped structures.

Platforms:

JANA98 runs with SunOS (Solaris), Irix, HPUX, AIX, LINUX, DEC UNIX and Windows9x MSDOS emulation. For UNIX platforms it is distributed as a source code and needs FORTRAN and C compiler. The package is freely available from anonymous ftp server ftp://ftp.fzu.cz/pub/cryst.

The authors welcome any remark, suggestion or question about this program.

1.1 Installation and user support

JANA98 is portable to all basic UNIX platforms: SunOS, Irix, HPUX, AIX, LINUX and DEC UNIX. For UNIX platforms it is distributed as a source code and requires FORTRAN77 or FORTRAN90, C compiler and X11 library. The PC version is a compiled program for MSDOS or Windows9x MSDOS emulation. It does not work¹ with WindowsNT MSDOS emulation. VMS, OS2 and Macintosh are not supported. The 32 bit version for Windows95/98 is under development.

JANA98 is freely available from anonymous <u>ftp://ftp.fzu.cz/pub/cryst</u>. The jana98 directory contains the following files:

README.TXT	this downloading and installation notes
jana98.tar.Z	the UNIX version compressed by compress
jana98.tar.gz	the UNIX version compressed by gzip
janainst.exe	the self extracting installation file for DOS version
jana98Pack.exe	the self extracting installation file for UNIX version
manual	the directory containing this manual

Any file can also be copied through the JANA98 homepage

<u>http://www-xray.fzu.cz/jana/jana.html</u>. The following commands are for people using command line ftp:

ftp ftp.fzu.cz	Connects to ftp.fzu.cz		
cd pub/cryst/jana98	Changes remote directory to jana98		
binary	Sets binary transfer		
get jana98.tar.Z	Copies the compressed archive (for UNIX workstation in this		
	example) to the current directory		
quit	Exits ftp		

An example of ftp commands:

¹ *JANA98* under WindowsNT has an unpredictable graphical behaviour. The calculation (for instance refinement) usually runs well. Some users of WindowsNT reported they have been using *JANA98* without any difficulty.

1.1.2 Installation of JANA98 on UNIX workstations

Automatic installation from jana98Pack.exe

The automatic installation can be executed by the command source jana98Pack.exe

from csh or tcsh shell. If you are running other shell (sh,bash, ksh etc.) you should use the following commands:

csh starts csh source jana98Pack.exe starts automatic installation exit exits csh

The installation procedure creates the directory jana98 and extracts all files to this directory. This is a difference from installation of the DOS version where the user must create a directory and execute here the installation file.

Note for multiple installations:

The file jana98Pack.exe is changed during installation so that it contains the full path to the csh interpreter. It cannot be easily edited as a part of the file is binary. Please make a backup copy of jana98Pack.exe before making multiple installations of *JANA98* on computers with different path to csh.

Manual installation from jana98.tar.gz or jana98.tar.Z

Here are *step by step instructions* for manual installation. It is necessary when the compilation requires special settings in the Makefile that are not included in the automatic installation file.

gunzip jana98.tar	Replaces compressed file jana98.tar.gz with the uncompressed jana98.tar. Jana98.tar.Z should be uncompressed by "uncompress"		
tar xf jana98.tar	Creates directory jana98. Extracts all files from the archive jana98.tar to the directory jana98. The files of the same name will be overwritten without any warning. The tar creates the following directory structure: Jana98 -> source -> fg -> test		
	The directory jana98 contains Makefile – the description file for the compilation tool <i>make</i> . The directory source and fg contains source files. The testing examples are in the directory test.		
cd jana98	Changes directory to jana98.		
edit Makefile	Makefile must be edited before the compilation. Find editable section corresponding to your computer and remove "#" from the first column.		
make	Executes commands from the Makefile. Builds the libraries and compiles all programs of the package.		
make clean_up	Removes object files, libraries and temporary files. This command is optional.		
cd test	Changes directory to testing examples		
/jana98 testa	Runs the testing example 1		

The environmental variable JANADIR

The installed program can be used without setting of JANADIR¹ assuming that this variable is undefined and that the compiled program stays in the directory where it has been created. by make. JANADIR is necessary when the compiled program is moved after the compilation.

Copying installed JANA98 to a different directory

Compiled *JANA98* cannot be simply moved to other destination as it needs access to several files from the installation directory. This is the way how to move the compiled program:

- 1. Copy the whole directory jana98 to a new destination
- 2. Add the following line to your .cshrc file: setenv JANADIR new_destination_of_compiled_jana98_file

Troubleshooting

• The installation was not successful

If you used the automatic installation try the manual one instead. If it also fails here is a list of several possible reasons:

- 1. The cc, f77 or f90 compiler is not installed on your workstation or is not accessible. This can be confirmed by the command like: which f77 or whereis f77
- 2. You are using f90 compiler. Try f77 instead (i.e. disable the section for f90 in your Makefile and enable that one for f77)
- 3. Your compiler cannot find X11 include files or X11 library. The information about the path to X11 include files is in the Makefile after -I option (look for lines starting "INCLUDE = -I ...". The information about the path to X11 library is written in Makefile in the LINKLIBS macro (look for lines starting "LINKLIBS = ...".
- 4. If it does not help please send a message to <u>dusek@fzu.cz</u>.
- The installation was successful but the program did not work correctly

Common source of difficulties **after** installation is wrong definition of JANADIR variable. It often contains a path to a different version of Jana (JANA96 etc.).

¹ This is difference of the DOS version where setting of JANADIR is mandatory.

The initialisation file jana98.ini

The initialisation file jana98.ini contains user settings and can be created interactively by Tools->Preferences. This is the hierarchy how *JANA98* searches for jana98.ini:

- 1. The directory written to JANAPATH (if this variable exists)
- 2. The user home directory
- 3. The starting directory¹

The last initialisation file has the highest priority. This means that the same option included in all processed initialisation files is taken from the last one. This feature is useful if a multi-user environment. The initialisation file in JANAPATH can contain options set by the administrator and each user can redefine these options in own configuration files.

The initialisation file for UNIX version of *JANA98* can be configured separately for various display addresses. For instance there can be setting in the initialisation file making the program running in the full screen mode on a small display and in the reduced window mode on a large display. This may cause difficulties when using the secure shell - see page 22.

¹ In *JANA98* the directory can be changed by File manager. Thus the starting directory is not necessarily the current directory.

1.1.3 Installation of JANA98 on a PC with Windows9x/NT or DOS

The PC version is distributed as self-extracting installation file janainst.exe containing the compiled program jana98.exe and all other necessary files. It does not contain the source code. The program is compiled by LF90 (LAHEY FORTRAN 90) version 4.00. The graphic interface is based on INTERACTER 4.10 graphic library. The JANA98 source code for LF90 can be obtained on the request to petricek@fzu.cz. The installation procedure creates also the initialisation file jana98.ini with basic setting of display, colours etc. The file can be interactively changed by user with Tools->Preferences. In rare cases the program does not work properly with mouse and needs another configuration. In such cases please contact petricek@fzu.cz.

1.	Create new directory for <i>JANA98.</i> ("janadir"). The recommended name is c:\jana98.		
2.	Copy the installation file janainst.exe into "janadir"		
3.	Run janainst.exe.		
4.	Add the following line into your autoexec.bat : SET JANADIR="janadir"		
5.	Add "janadir" into the path command in your autoexec.bat.		
6.	Restart the computer		
7.	Change directory to "janadir"\test		
8.	Run the testing examples: jana98 testa		
	jana98 testb		
	jana98 testc		
	jana98 testm		
	Important note for users of Windows95/98: The program is NOT		
	Windows application. It runs in protected memory mode of MSDOS		
	in full screen mode. The launch of the program on older PC's can		
	take between 1-2 minutes. See the following paragraph for more information.		

Step by step instructions

According to our experience 16 MB of operating memory is minimal, 32 MB sufficient and 64 MB optimal for running *JANA98*.

Program properties for Windows95/98

In many cases *JANA98* runs well immediately after installation and restarting the computer. Sometimes it is necessary to set properties for *JANA98* DOS environment. The window with "Jana98 properties" can be opened from a menu appearing after clicking the right mouse button on the file jana98.exe in the windows explorer or in the "My computer" window.

The following pictures show two tabs important for running of JANA98.

Figure 1 The protected memory setting for Windows95

1.1.4 Adjustable parameters

The number of atoms, molecules etc. in *JANA98* is limited. Users of UNIX version can control some of these limits by the corresponding parameter statement in the source code. After changing the limits the program must be recompiled. For DOS version an adapted compiled program can be supplied by request.

The following table lists the adjustable parameters of *JANA98*. All parameters are defined in the file params.cmn.

Table 1The adjustable parameters of JANA98

name	initial value	purpose
MXA	200	maximal number of atoms
MXM	5	maximal number of molecules
MXP	15	maximal number of the positions of single molecule
MXW	16	maximal number of modulation waves
MXREF	150000	maximal number of the reflections for the refinement
MXE	500	maximal number of equations in the m50
MXEP	10	maximal number of the parameters in single equation
MXPARRF	1000	maximal number of the refined parameters

1.1.5 Location of files

The directory structure

The following figures show the directory structure of *JANA98* for PC and UNIX version. The tree is relative to *JANADIR* (see page 11). The filenames shown in the figures are necessary for running of *JANA98*.

Figure 3 The Directory Structure of PC Installation

Temporary files

JANA98 uses two types of temporary files.

- The first type has names like name.l?? and *.pcx, where name is name of the structure, * and ? are wildcards. They are saved in the directory containing the used structure. Their names are not unique so that two sessions of *JANA98* cannot run in the same directory.
- The second type has names like cmd*.tmp. In the case of DOS version they are saved in the tmp directory, which is read from jana98.ini. The default tmp directory is set to C:\ and it can be modified by tools—properties. The UNIX version searches for directories /scratch, /var/tmp ,/tmp and \$(HOME) (in this order) and saves the temporary files to the first accessible one.

1.1.6 User Support

WWW Page of JANA98

The home page of *JANA98* is accessible in the address <u>http://www-xray.fzu.cz/jana/jana.html</u>.

The page contains the latest information about the changes of *JANA98*, list of known bugs and available patches, link for download and a registration form.

Figure 5 The JANA98 WWW Home Page

Registered Users

The WWW home page contains also the form for registering of users. Although *JANA98* is a free software, which is fully functional without registering, the registered users take advantage of detailed e-mail messages about upgrades. For the authors this is valuable feedback information.

I want to register as a new user
© I want to change my data
C I want to cancel my registration
- That to callor my repraction
*Name: (Always required.)
Address
· · · · · · · · · · · · · · · · · · ·
*E-mail (Required for new registrations or for changing of a registration.)
) *OUTE and (Demained for show the second stress of a section of the second stress)
"Old E-mail: (Required for changing or cancelling of a registration.)
Information level:
Inform me about new versions and new patches of JANA98
Inform me also about basic development of JANA2000
C + Inform me also about all new updates of beta version of JANA2000 This field should only be
checked by people using beta version.
Submit Reset

Figure 6 The registration form for JANA98

1.1.7 Results of testing refinements

After the system has been successfully installed the user should run refinements of the testing examples to see if it is working properly. The resulting R values should be close to the ones listed here.

Figure 7 Refinement results for the testing example testa

Figure 8 Refinement results for the testing example testb

Figure 10 Refinement results for the testing example testm

1.2 Executing JANA98

The PC version of *JANA98* runs as a MSDOS application in the full screen mode. It is started from the DOS command line or by clicking the *JANA98* executable or an appropriate shortcut.

The UNIX version is started from the command line.

Simultaneous run of several *JANA98* sessions is possible, but *it is strongly recommended to start each session in a special directory*. Running two sessions of *JANA98* in one directory could cause a conflict when using the temporary files.

1.2.1 The command line syntax

The command line for the PC version

The syntax for starting JANA98 from the MSDOS command line is

jana98 [name]

The command line for the UNIX version

The syntax for starting JANA98 from the UNIX command line is

jana98 [name] [options] [&]

The parameter name is a reference title of the structure, which is used in all the filenames of the job. The "&" at the end of the command is used to start the program on the background.

The options start by a dash followed by a keyword and a value (if required).

 Table 2
 The command line options available in UNIX version of JANA98

option	description
-iconic	JANA98 starts as an icon instead of normal window
-scale <i>number</i>	the height of JANA98 window will be number percents of the
	height of the display

1.2.2 The window size in UNIX version

If the option -scale is not used, the program chooses the window size based on the display size. With a small display the window is set to full screen, with the diagonal greater then 15 inches the window uses 65% of the display height. Some installations of the X11 library return bad information about the display size. The returned size is usually less than the real one. This problem can be solved by the -scale option. Another possibility is Preferences (see page 47).

The window of *JANA98* can be also resized by the mouse but only if the program stays in the basic window. Otherwise it is automatically backed to the original size.

1.2.3 Using UNIX version of JANA98 with ssh

In some laboratories connection to an X-server is preferably done through the secure shell (ssh). The X11 graphics coming from the X-server to a user's display is encrypted and this may considerably slow down all graphic operations (like selection from a program menu, moving of a process indicator etc.)¹.

Whether the graphics is encrypted can be recognised from the DISPLAY environmental variable. For a non encrypted connection DISPLAY takes a simple form like bigstar.ulima.com:0. With encrypted connection the display address is changed by ssh to a form like bigstar.ulima.com:11.0 (the number is not necessarily 11). If we set DISPLAY back to the original address (i.e. bigstar.ulima.com:0) the X11 graphics stops to be encrypted. An elegant way is to create an alias like²

alias jana98 (setenv DISPLAY jana98 bigstar.ulima.com:0; jana98 \!*)&

which starts JANA98 without encryption but leaves the parent window in the encrypted mode.

¹ We found this problem with PC connected to an X-server through teraterm with ssh and using eXceed or Xwin32 like an X11 emulator.

² This example is written in csh shell.

1.2.4 File name conventions

Each filename used by *JANA98* consists of the name of the structure and two or three character extension. In this manual the files are referenced only by their extensions.

Table 3	Basic file	extensions	in JANA98
---------	------------	------------	-----------

group	extension
input/output files	m+number (m40,m50 etc.)
listing	first three characters of the program name (ref,fouetc.)
configuration	ini
CIF	cif, smr
scratch files	I+number (181,182 etc.)
	tmp
	pcx
graphic output	ps,hgl,pcx

Example:		
Name of the structure:	testa	
Refinement reflection file:	testa.m91	(m91 in this manual)
Basic crystal information file:	testa.m50	(m50 in this manual)
Refinement parameter file:	testa.m40	(m40 in this manual)
Refinement listing:	testa.ref	

1.2.5 Elements of JANA98 graphics interface

JANA98 provides the following basic communication tools:

- Pull down menu
- Form
- Dialogue box
- Message box
- Special tools

All of them can be controlled by the mouse and from the keyboard. The special tools (for instance the File manager, the Select Atoms form etc.) will be described elsewhere.

Pull down menu

The pull down menu is used to select and start the desired action from the list.

Figure 11 An Example of the Pull Down Menu

Form

Form is used for gathering information necessary for some action. It contains the following objects: text boxes check boxes, selection boxes and buttons.

Figure 12 An Example of the Form

Text box

The text boxes are used for entering a text from the keyboard. Unlike standard windows programs the text cannot be cut or pasted.

Figure 13 Example of the Text Box

Dialogue box

The Yes/No buttons can be selected by mouse, TAB key or by arrows.

Figure 14 Example of a dialogue box

Do you real:	ly want to	quit	JANA98?
Ye	25	No	
	Ok		

1.2.6 Atom names in JANA98

Each atom of the structure model has a name listed in the refinement parameter file m40. The length of the name is limited to 8 characters, but *the recommended length is 5 characters* as in some cases *JANA98* appends another characters to the end of the atom name. The names are *case insensitive*.

Wildcards

In the text boxes of some forms and also in the restric, equation and fixed commands of *REFINE* (see page 245) and the center command of *FOURIER* (see page 273) groups of atoms can be defined using the wild cards. The wildcards have usual meaning:

- Sn* denotes all names starting with string "sn".
- S? denotes all names starting with "s" and containing two characters .
- ?a* denotes names having the letter "a" in the second position.

Molecular positions

If some atom is a part of a molecule, a character denoting the molecular position is appended to the name. For instance, atom As of a model molecule has name Asa in the 1st position, Asb in the 2nd one etc. See page 140 and 171 for more information about molecules).

These extended names can be used for definition of a general plane (page 299), in the DIST select control command (page 312) etc They cannot be used in the refinement restriction commands (see page 245) because they are not present in the m40 file.

The internal symmetry codes

Some tools of *JANA98* accept the internal symmetry codes denoting symmetry position of the atom. The internal symmetry code is separated from the basic name by "#" character.

Syntax: sn cm tili2i3 (typed without spaces)

- \underline{sn} specifies the $|n|^{\text{th}}$ symmetry operator from the m50 file. If n is negative, the operation is combined with the center of symmetry¹.
- <u>cm</u> specifies that the m^{th} centring vector will be added to the result of the symmetry transformation s_n (The centring vectors are listed in the basic crystal information part of any *JANA98* listing)
- <u>tili2i3</u> specifies the additional cell translation defined by three integers i1, i2 and i3.

¹ if it exists in the structure - otherwise an error message occurs

Examples :

Si3#s-3c2t1,-1,0 Na1#s2 Cr4#t1,0,-1

An atom name together with an internal symmetry code can exceed the length of 8 characters because it is never present in the m40 file. The internal symmetry codes can be used for the definition of the general section plane and are also present in the *DIST* listing m61.

1.3 Basic parts of JANA98

1.3.1 List of programs

The following table shows basic programs of JANA98.

Table 4	The basic programs of JANA98: purpose, input and output files.
	(The input files in the square brackets are not necessary for the program.)

name	input/output files
reference	purpose
DATRED	Input: diffractometer output file or [m94, -m95]
(Page 55)	Output: m94, m95
	M50 control keywords: none
	DATRED (the Data Reduction Program) reads the diffractometer output file,
	calculates LP and absorption corrections and creates the basic reflection file
	m95. If m95 already exists, <i>DATRED</i> can either be used to modify the absorption
	correction or make transformation of cell parameters etc. or to import another
	diffractometer output file. DATRED also creates or updates the header file of
	m95, m94, containing information about orientation matrix, cell parameters and
	their transformations etc. M95 and m94 MUS1 be used together.
(Page 67)	Input: m94,m95 or a reflection file from other system(SHELX etc.), [m50]
(i age or)	Output: m50,m91,[m94,m95],pre
	MOU CONTROL Reywords: none
	PRELIM prepares interactively the basic crystal information file m50 and then
	the envited information and offers its additing. The molt is created from date
	included in the basic reflection file most and in the header file of most most have
	averaging reflections according the symmetry and by deleting the systematically
	absent reflections. <i>PRELIM</i> also contains a tool for reading reflection files of
	other systems, for instance SHELX. It doesn't convert them directly to m91 but
	it creates m95 and m94 instead that can be used for creation of m91 or can be
	further processed by DATRED. PRELIM can combine data sets of several
	measurements.
REFINE	Input: m50,m91,[m40]
(Page 219)	Output: m40,m80,ref
	M50 control keywords: the section between the keywords refine and end
	REFINE reads parameters from the refinement parameter file m40 and refines
	them according to the commands in $m50$ and the refinement keys in $m40$. It
	<i>REFINE</i> saves the results of the refinement to m40 after each refinement cycle.
	During the last refinement cycle it creates the Fourier reflection file m80. If the
	input file m40 doesn't exist or if it doesn't contain any atoms, REFINE
	automatically prepares m80 file for the calculation of the Patterson map.

Table 4 (continued)

EDITM40	Input: m50,[m40],[m48],[m45]
(Page 153)	Output: m40
	M50 control keywords: none
	EDITM40 creates or edits the refinement parameter file m40. It can be used for
	adding or deleting atoms, creating molecules, setting of structure parameters,
	their initial values and refinement keys, etc. In addition two special input files
	${\rm m}48$ and ${\rm m}45$ can be used in $\emph{EDITM40},$ the former for adding of Fourier
	maxima to m40, the latter for importing of a model molecule.
DIST	Input: m40,m50 ,[m47],[m48]
(Page 311)	Output: dis, m61
	M50 control keywords: the section between the keywords dist and end
	DIST calculates distances, angles, torsion angles and best planes for a structure
	model defined in m40. It can also work with coordinates of Fourier maxima and
	minima stored by FOURIER in the m47 and m48 file. For modulated structures
	DIST calculates distances and angles as a function of the t coordinate. The
	results are written to the FORTRAN listing \mathtt{dis} in the newspaper columns form
	and to the file m61 containing a complementary information.
FOURIER	Input: m40,m50,m80
(Page 265)	Output: m81,m47,m48,fou
	M50 control keywords: the section between the keywords fourier and end
	FOURIER calculates multidimensional electron density maps and stores them in
	the Fourier map file $m81$. It creates files $m47$ and $m48$ with a list of Fourier
	minima and maxima, respectively. In case of modulated structures $m\!48$ also
	contains positional modulation amplitudes calculated from the maps.
	Note: The Fourier reflection file m80 has to be created by REFINE before
	running FOURIER except the case when the Patterson map is needed. REFINE
	creates m80 automatically during the last cycle so that a refinement interrupted
	by Break button does not yield m80. must not be interrupted by Break button.
	Zero refinement cycles is sufficient for creation of m80.
CONTOUR	Input: [m40],m50,[m81]
(Page 291)	Output: [files for SciAn]
	M50 control keywords: none
	CONTOUR interprets multidimensional electron density maps calculated by
	FOURIER and stored in the msl file. It makes contours plots of sections through
	alectron/probability density plats based on a set of refined parameters including
	Gram-Charlier expansion terms up to 6th order. It can also generate input files
	for the program SciAn for 3d visualisation of electron/probability density. Error
	maps based on the refined parameters and the covariance matrix from the
	refinement can be calculated by applying the Monte Carlo method.
GRAPHT	Input: m40,m50
(Page 331)	Output: none
	M50 control keywords: none
	GRAPHT plots various quantities as a function of the $ au$ coordinate.

1.3.2 List of files

JANA98 uses <u>basic</u>, derived and temporary files. The basic files (m95, m94, m50, m40 and m91¹) contain all necessary information about the crystal data and structure model. The derived files contain information, which can be reconstructed from the basic files. The temporary files are used internally by the program and are deleted before exit.

name	purpose
reference	
m95	Name: Basic reflection file
(Page	Created by: DATRED or PRELIM
58)	Input for: DATRED or PRELIM
	The basic reflection file m95 contains diffractometer data in a common format.In
	an ideal case it contains all measured reflections corrected only for LP factor.
	Every time the user changes symmetry of the structure model, transforms cell
	parameters or needs to recalculate the absorption correction JANA98 uses data
	from this file. Then the new refinement reflection file m91 can be created. M95 is
	usually created by DATRED from the diffractometer output file. It can also be
	created by <i>PRELIM</i> by importing the reflection files of various formats (SHELX,
	JANA94, M94/M95 etc.) but in this case its usage may be limited (for instance,
	because the imported file may contain only symmetrically independent
	reflections).
	M95 is used together with m94.
m94	Name: Header file of m95
	Created by: DATRED or PRELIM
	Input for: DATRED or PRELIM
	The Header file of m95, m94 contains information about orientation matrix, cell
	parameters, possible user transformations etc.
m50	Name: Basic crystal information file
(Page	Created by: PRELIM
77)	Input for: all programs of JANA98 except DATRED
	The first part of the basic crystal information file m50 contains cell parameters,
	symmetry information, atomic form factors etc. The basic information is
	common for all programs of JANA98 and is separated from another part by the
	keyword end. The second part of m50 contains keywords specific for basic
	programs of JANA98. A section for a particular program starts with the name of
	the program and ends with the keyword end.
	Note: changing the basic crystal information part of m50 "by hand" is a bad
	practice. The recommended tool is program PRELIM. The second section can
	be edited in a text editor or - more conveniently - by the Set Commands tool of
	JANA98.

Table 5The basic files of JANA98

¹ m91 can be created from m95 and m50 but it is nevertheless called basic for its close relation to the structure model. With m40, m50 and m91 the user can immediately start refinement.

Table 6The derived files of JANA98

m40	Name: Refinement parameter file
(Page 93)	Created by: EDITM40 or REFINE
	Input for: all programs of <i>JANA98</i> except <i>DATRED</i> and <i>PRELIM</i>
	The refinement parameter file m40 contains parameters of a structure model
	and corresponding refinement keys. M40 can be created or edited by <i>EDITM40</i> .
	The refinement program uses m40 as an input/output file, i.e. it is read as an
	input of the refinement and it is then updated after each refinement cycle. The
	backup copy of m_{40} is named s_{40} and is created automatically when <i>REFINE</i> .
	is started.
	Note: m40 is the most complex file of <i>JANA98</i> . <i>EDITM40</i> contains a set of tools for
	changing parameters in m40 but it is not editor of m40. Some changes has to be
	done in a text editor. Therefore the user should understand the structure of
	m40.
m91	Name: Refinement reflection file
(Page 87)	Created by: PRELIM
	The file $mo1$ contains reflections for the refinement. It is created by <i>DRELIM</i>
	from m95 using information in m50
m93	Name: FoEc table
	Created by: REFINE
	The table of observed and calculated structure factors is created by <i>REFINE</i> if
	the refinement control command fofc in m50 is set to 1.
m80	Name: Fourier reflection file
	Created by: REFINE
	Input for: FOURIER
	The Fourier reflection file contains reflections for calculation of Fourier or
	Patterson maps. It is created in the last cycle of <i>REFINE</i> . If m40 used by
	REFINE does not contain any atoms, REFINE prepares m80 for the Patterson
	calculation.
m/1 Q	Note. 1180 IS a billary file
(Page	Created by: FOURIER
282)	Input for: <i>EDITM40</i>
	The Fourier maxima file m48 contains an ordered list of Fourier maxima together
	with the positional modulation amplitudes calculated from the maps. EDITM40
	can be used for adding the maxima as new atoms to the m40 file.
m47	Name: Fourier minima file
(Page	Created by: FOURIER
282)	Input for: <i>EDITM40</i>
	The Fourier minima file $m47$ contains an ordered list of Fourier minima. The file
	has the same format as m48 except modulation parameters.

m45	Name: Model molecule file
(Page	Created by: user
177)	Input for: <i>EDITM40</i>
	The model molecule file m45 contains coordinates of a model molecule. It can
	be used for creation of a new molecule by <i>EDITM40</i> .
m81	Name: Fourier map file
	Created by: FOURIER
	Input for: CONTOUR
	The Fourier map file contains a set of Fourier maps represented by two-
	dimensional nets of numerical values of electron density. The CONTOUR
	program interprets m81.
	Note: m81 is a binary file
m61	Name: Long listing of <i>DIST</i>
(Page 330)	Created by: DIST
	The m61 contains the results of DIST in a one column form together with
	symmetry codes used for the calculation of a distance or an angle.
pre	Listing of <i>PRELIM</i>
(Page	
88)	
rof	Listing of PEENIE
(Page	
260)	
fou	Listing of FOURIER
(Page	
283)	
dis (Dage	Listing of DISI
(Page 318)	
,	

Table 7The derived files of JANA98

1.3.3 Basic steps with JANA98

This part describes the basic common steps with *JANA98*. More information about the programs mentioned here is available in Table 4, the input and output files are explained in Table 5.

• Preparing the basic reflection file m95 and m94

There are two ways how to create m95 and m94. If the output file from the data collection is available m95 and m94 are created by *DATRED* by processing this file. In this case m95 and m94 contains complete information about the data set. Another way is the import of a reflection file created by other system by *PRELIM*. The usage of m95 and m94 created by *PRELIM* is limited as they may not contain full information.

• Preparing the basic crystal information file m50 and the refinement reflection file m91

Both m50 and m91 are created by *PRELIM*. M50 is prepared interactively by supplying information requested by *PRELIM*. Then the user can create m91 from m95 through "Creation of refinement reflection file".

• Preparing the refinement parameter file m40

The initial m40 can be prepared by two ways:

- 1. By solving the phase problem by the heavy atom method. *FOURIER* calculates the Patterson synthesis based on m80 prepared by running zero refinement cycles with m40 without atoms. If m40 already contains atoms *FOURIER* uses ordinary m80 and the type of map is chosen through the SetCommands tool The Patterson map can be interpreted using *CONTOUR* and the listing of *FOURIER*. The initial structure model can be added to m40 by *EDITM40*.
- 2. By starting from the structure model solved by other systems. *JANA98* contains tools for reading SHELX and CIF files. Both are accessible in the Tools menu in the basic window of *JANA98*.

• Refining the structure

Once m91, m50 and m40 are prepared the user can refine the structure by *REFINE*. The SetCommands tool can set the parameters of the refinement. The refined model is saved in m40 and new input file for Fourier calculation is available in m80.

• Calculating Fourier and Patterson maps

The Fourier and Patterson maps are calculated by *FOURIER*. The SetCommands tool controls the type of the map and other characteristics. The input file for *FOURIER* is the file m80 created by *REFINE*. The Fourier maxima and (for modulated structures) modulation parameters found in the map are saved in m48, which can be directly used as an input for *EDITM40*.

• Interpretation of the Fourier maps by the CONTOUR program

CONTOUR interprets the maps stored by FOURIER in m81.

• Calculation of the distances and angles

DIST calculates distances and angles from the parameters written by *REFINE* to m40. It also works with the Fourier maxima stored by *FOURIER* in m48.

The following three examples illustrate relation between DATRED and PRELIM.

• Changing the symmetry

The user can change the symmetry information in m50 through the Symmetry form of *PRELIM*. This change has no influence to m40 and m91, which must be updated by the user. New m91 is created from m95 by Creation of the refinement reflection file. The necessary change of m40 depends on the new symmetry.

• Changing the absorption correction

The absorption correction can be changed by *DATRED*. The necessary condition is that m95 contains desired information, i.e. that it has been created directly from the diffractometer file. *DATRED* calculates the new correction and creates the new *basic* reflection file m95. Then the user can create new m91 by *PRELIM*.

• Merging reflections of several measurements

JANA98 can work simultaneously with data from several measurements of the same crystal. The necessary condition is that the data are of the same type - X-ray and neutron data cannot be mixed. First the user processes each data set by *DATRED* using different job names for each run. *DATRED* creates the basic reflection files like name1.m95, name2.m95 ... and corresponding files m94. Then the user starts *JANA98* again with the definitive job name and joins all m95's by the "Import of reflections" tool of *PRELIM* into one single m95. The last step is creation of new m91 by *PRELIM*. Each data set can have its own scale in m91. If there are some common reflections in all sets the sets can be rescaled to a common scale.

¹ The diffractometer output is not used if m95 already exists.

² See p. 72 for more information about supported formats.

 $^{^{3}}$ *PRELIM* creates or changes m94 and creates or extends m95 if it imports data from other system or already existing file.

⁴ If the m40 is missing or if it doesn't contain atoms, *REFINE* prepares the m80 file for the Patterson synthesis.

⁵ The mB1 is not necessary if *CONTOUR* is used for plotting of probability density functions.
1.4 The basic window and common tools

Figure 16 The basic window of JANA98

Starting of *JANA98* is explained in page 21. After loading of *JANA98* the user see the basic window with a menu bar, a status bar, icons and buttons. The *icons* are used for starting the basic programs of *JANA98* or for the modification of their control commands. The *menu bar* is used for the actions, which are not included in the basic programs. The *buttons* on the right are all disabled and reserved for basic programs. The status line shows the name of the current structure.

Table 8	Control	of the	JANA98	basic	window
	001111 01	<i>of the</i>	0/11/1/0	ousic	winaow

	6	ĺ	ð
	Left click Activates a pull down menu Starts actions from the pull down menus Selects an icon	4	Enter Starts the item selected in a pull down menu or a program associated with a selected icon
\triangleright	Left double-click on a icon Starts a program associated with the icon		Esc Not useful (The basic window can be closed only by File->exit)
	Right click on a icon Starts editing of the control commands of a program associated with the icon		Arrows Changes the focus between icons if one of them has been already selected. Selects items of an activated pull down
۶	Click out of the pull down menu	\triangleright	menu Alt-Key
\triangleright	Closes the pull down menu Mouse movement		Activates the pull down menu denoted by underlined letter
	Selects an item of the active pull down menu Changes focus between the pull down menus if one of them is already activated	AAA	Ctrl-Key Starts a program containing the underlined letter in the name of its icon. Key Starts an item of the pull down menu containing the underlined letter Tab
_			Not useful

1.4.1 The SetCommands Tool

This tool is used for editing user commands of basic programs of *JANA98*. The user commands are saved in m50, their syntax is explained page 77 and also in the chapters describing the basic programs.

SetCommands can be started by clicking the corresponding icon in the basic window of *JANA98*. In this case it offers a list of programs for which the tool is available. It can be also started directly for the relevant program by clicking the right mouse button on the program icon.

The SetCommands works for *REFINE*, *FOURIER* and *DIST*. First it sets the default options of the program, then it reads possible user commands from m50 and finally it opens the graphics interface for editing of the commands. After quitting and user confirmation it writes the commands back to m50, but only the ones different of the default values.

1.4.2 The File Menu

The Unix shell item of the File menu is used for executing of a Unix shell command. Typically it starts the xterm window but the action is configurable via user preferences (see page 46). In the DOS version the item is called Skip to DOS and starts a DOS window or a DOS command line.

The Change directory/structure item starts the File manager of *JANA98*, which is described in the next page.

Figure 17 The File Menu

The file manager

The file manager is used for selecting or changing the current job name. The left window is used for selecting the directory, the right one lists the files. If some files are recognised as belonging to one job name they are grouped together and given a flag STR or DAT. This feature occurs when the file manager is started in the group mode.

The user can choose an existing job name or type a name of a new job in the textbox on the right. In both cases after quitting the File manager *JANA98* skips to the selected directory and uses it as the new working directory.

Figure 18 The file manager working in the group mode

Note: A structure name selected in the right panel by a single click but not sent to the textbox by a double-click is ignored.

The Edit Menu

Editing of file starts the file manager without the group mode, i.e. showing all files in a selected directory.

The item Editing of m40/m50/m91 file opens a file directly in the text editor. The default text editor is edit.com for the case of DOS and vi for Unix. In both cases the editor command can be set by the user in preferences.

The item View of Refine/Fourier/Dist activates the listing viewer, which is described in the next paragraph.

Figure 19 The Edit Menu

Edit/View	<u>Run T</u> ools
Editing of	f <u>i</u> le
Editing of	m40 file
Editing of	m50 file
Editing of	m <u>9</u> 1 file
View of <u>R</u> e	fine
View of <u>F</u> o	urier
View of <u>D</u> i	st

The Listing Viewer

The listing viewer shows the listing of *REFINE*, *FOURIER* or *DIST*. The advantage over using an ordinary text editor is that the listing is properly formatted showing 1 page in one screen. This is especially useful for *DIST* that prints the distances in the newspaper column format.

In the user preferences the listing viewer can be replaced by a text editor defined by the user.

Backward Forward First Last go to Find Kex	trin Print Esc
Tefinement program structure :	page = 1 06:36:20 22-Nov-0
The following lines were read as a control data : =>cycles 6 iext 1 itypex 2 idistr 2 repeat 10 badref 10 unstab 3 snlmn 0.08<= =>radius 0.025<= =>!fixed xyz *<=	
=>!fixed u *<= =>!fixed rhoiso<=	
=>!fixed x[f1]<= =>!fixed y[f1]<= =>!fixed x[f2]<=	
=>!fixed y[f2](= =>!fixed y[f3](= =>!fixed y[f3](=	
=>!fixed z[f4]<=	
=>!fixed x[f5]<= =>!fixed z[f5]<= =>!fixed x[f6]<= =>!fixed x[f6]<=	
- /:IIXed 2[t0]:- ->!fixed all k [*] <= ->!fixed z[as]<- ->!fixed v[f]!<=	
->:fixed a[f1]-= =>!fixed a[f2](= =>!fixed a[f3](= =>!fixed a[f4](=	
<pre>>>fixed z[t5]:= >>fixed z[t5]:= >>fixed z[t6]:= >>fixed v[t]:=</pre>	
=>!fixed y[f2]<= =>!fixed xyz fl<= =>skipflag 2<=	
= >end<=	
Centrosymmetric space group : Phab	
Cell parameters : 9.3910 11.3360 28.1730 90.00 90.00 90.00 volume	e: 2999.2
List of centring vectors :	
0.000000 0.000000 0.000000	
Symmetry operators :	
x y z 1/2-x 1/2+y 1/2+z x 1/2+y 1/2-z 1/2-x y -z	
f' f" Atomic scattering tables - in steps 0.0	35
pg 1/2 ln 1/55 clm 1/127	

Figure 20 The listing viewer

1.4.3 The Run Menu

The Run menu is used for starting the basic programs of JANA98.

Figure 21 The Run Menu

File	Edit	Run	Too	ls
		DatR	ed	Ctrl+A
		Prel	im	Ctrl+P
		Edit	M40	Ctrl+E
		Refi	ne	Clrl+R
		Four	ier	Ctrl+F
		\underline{Cont}	our	Ctrl+C
		Dist		Ctrl+D
		Grap	ht	Ctrl+G

1.4.4 The Tools Menu

The Tools menu contains various jobs not made by basic programs.

Figure 22 The Tools Menu

Tools	
Recover G <u>e</u> nerat	[•] m <u>4</u> 0 file e subgroup structure
Transfe	r files from SHELX
Make <u>C</u> I	F file
Read CI	F file
Prefere	nces
About J	ANA98

Recovering m40 file

At the beginning of each refinement program *REFINE* makes m40 backup file named s40. This tool copies the s40 back to the m40.

In the current version of *JANA98* there is only one level of backup. If the refinement runs with the refinement repeat greater that 1 the s40 is overwritten after each refinement repeat (see page 231).

Transferring files from SHELX

This tool reads the name.hkl and name.ins SHELX files and creates files m40, m50, m91, m94 and m95. The job name of the created files is the one *JANA98* has been started with.

Figure 23 Importing SHELX files

	Define the input SHELX file	
<u>F</u> ile Name	laco.ins	Browse
	Esc Ok	

Creating CIF Files

JANA98 supports the core CIF dictionary version 2.1beta3 (the last update 8/12/1997) and the CIF for modulated structures (G.Madariaga, 1994) version 0.4 (the last update 27/9/1998).

This tool creates CIF file name.cif by combining the files m40, m50 and smr. The file name.smr is used for collecting necessary information during the run of the basic programs of *JANA98*. Each program has its own header in name.smr.

In order to have as complete CIF file as possible the user should

- check the basic crystallographic information like the cell contents in *PRELIM*.
- run several cycles of the refinement with the option for creation of the FoFc file
- calculate difference Fourier map for the independent cell volume
- run *DIST* with carefully selected bond limits and other options

If some information needed for the CIF file is missing *JANA98* fills the missing fields with "?". Some fields, like _cell_measurement_temperature are always filled with "?" and the user is expected to complete them in a text editor. The information from *DIST* usually contains superfluous items and needs some editing, too.

The CIF concept, syntax and tools are described in <u>http://www.iucr.ac.uk</u>. The CIF files can be checked or printed with help of the following automatic services¹:

- The services for checking of the syntax and completeness of the CIF files are <u>checkcif@iucr.ac.uk</u> and <u>http://www.iucr.org/iucr-top/journals/acta/c/services/checkcif.html</u>. If the mail serves is used the CIF file should be sent as the body of the message.
- The services for printing the CIF are <u>printcif@iucr.ac.uk</u> and <u>http://www.iucr.org/iucr-top/journals/acta/c/services/printcif.html</u>. In the case of the mail server the printed CIF is returned as a PostScript file. The WWW service returns a PDF file.

Reading CIF files

This tool reads CIF files and converts them to m40, m50, m91, m94 and m95. The initial job name is arbitrary as the tool gives the possibility to select new name for the converted structure. The files m91, m94 and m95 are created from the FoFc table by the standard procedure described in page 83.

¹ Unfortunately CIF for modulated structures is not supported. However, this version of CIF dictionary is accepted in the database of modulated structures in http://www.cryst.ehu.es/icsdb.

Generating a subgroup structure

One of the typical tasks of the structure analysis is changing of a structure model with higher symmetry to a lower symmetrical one. This tool enables to do such transformation easily and consistently. The necessary condition is that the new space group is a subgroup of the original one.

- In the first step the user selects from the list of symmetry operators which ones should be present in the new structure model. After pressing the Complete subgroup button the program completes the subgroup (this means that only necessary generators can be selected) and tries to derive the new space group symbol from the selected operators.
- When the subgroup is successfully completed and the form is closed the procedure continues by giving the user possibility of choosing operators which will be used for expanding the structure model or generation of twinning operations. This selection cannot influence results but can be convenient for instance in cases when several structure models are to be compared.
- In the last step the user decides if the removed symmetry operators are to be replaced by twinning operators and also selects the job name for the new structure model. Then the procedure creates the basic files of the lower symmetrical model.

	Define subgroup	
Operator		Smb. Dir.
хуг		1 (0,0,0)
-x -y -z		-1 (0,0,0)
1/2+x -y -z		21 (1,0,0)
1/2-x y z		m (1,0,0)
-x 1/2+y -z		21 (0,1,0)
x 1/2-y z		m (0,1,0)
1/2-x 1/2-y z		2 (0,0,1)
1/2+x 1/2+y -z		n (0,0,1)
<u>Inversion</u> center	<u>Complete</u> subgroup	
Space group : Pmmn	Origin : 0 0 0	
Subgroup : Pn	Origin : 0 0 0	Index : 4
	Esc Ok	

Figure 24 Generation of the subgroup structure

User preferences

Both PC and UNIX version of *JANA98* uses the configuration file jana96.ini (see page 12 for details about UNIX initialisation file with the user preferences. This tool is the interface to this file.

DOS preferences

- The Editor line contains the text editor command edit is default as it is always available.
- The DOS command line contains the command executed by File->Skip to DOS. Implicitly it is the DOS window.
- Tmp directory is used for temporary files see page 16 for details.
- The Use built-in viewer option is used for choosing between the built-in viewer or a text editor for viewing the listings of the basic programs.
- X-Shape is a program of STOE + CIE GmbH for optimisation of the crystal shape for absorption correction. Its usage in connection with *JANA98* is explained in page 60.

Figure 25 The User Preferences for the PC Version

Preferences				
<u>1</u> 6 colors	256 colors			
<u>R</u> educed window (con	nvenient for 17" display) 📝			
Editor	edit			
DOS <u>c</u> ommand line	2			
Tmp directory	c:\			
Use build-in viewer 🗸				
Allow skip to X-Shape				
\underline{X} -Shape command lin	ne c:\xshape\x-shape.exe			
	Esc Ok			

UNIX preferences

Unix preferences are much more complicated than in the case of DOS due to the existence of wide variety of workstations and flexibility of the environment. The most important features are

- hierarchy of initialisation files (see page 12 for details)
- possibility to define display specific settings, i.e. settings valid for a specific internet display address.

UNIX general preferences

The following figure shows the General preferences, which are executed regardless of the display address.

- Start as icon means that JANA98 will be automatically iconised after the start up.
- Set icon position defines the coordinates (in pixels) of the upper left corner of the icon window. If the x coordinate is negative it is understood as the distance between the right side of the icon window and the right side of the display. If the y coordinate is negative it is understood as the distance between the bottom of the icon window and the bottom of the display.
- The Window position enables to define the coordinates (in pixels) of the upper left corner of the *JANA98* window. For negative coordinates the same rules are valid like in the case of Set icon position. If the check box is activated and the user moves the window of *JANA98* by mouse (with open Preferences form) the current coordinates of the upper left corner appear automatically in the text boxes.
- The double click speed is given in tenth of the second.
- The editor and printer commands contain special characters %d and %f. The %d stands for the name of the X11 monospaced font used like *JANA98* system font. The %f stands for the name of the file, which will be printed or edited. The %f must not be omitted.
- The Unix shell command is used by File->Unix shell
- The viewer command is used for editing of listings of the basic programs in case the user does not prefer the built-in viewer.

Examples of printer commands

lpr %f	sends the output to the default printer.
lpr -Pname %f	sends the output to the printer named name.
lpr -Pname -s %f	sends the output to the printer named name. The option -s
	causes the file, which has to be printed, is not copied to the
	spool area so that large file can be printed.
rcp %f my.dear.cz:worl	c/pppp; rsh my.dear.cz "lpr -Pmyprinter work/pppp"
	This command is useful in case that the user runs JANA98
	on a fast central computer but needs printing on a local
	printer which is not directly accessible. The postscript
	print file (%f) is copied to the local workstation
	my.dear.cz to the directory work and named pppp. Then
	the print command for the local printer myprinter is
	executed. The user must be allowed to execute the rcp and

rsh commands on the local workstation - please contact the system administrator for more details.

xterm -e prjana %f The last command can help in the special case that a user dialogue precedes the printing. Typical situation is if the print server asks for login and password. The command opens the xterm window and immediately starts the procedure prjana in the window. Prjana should contain commands for connecting the print server and printing. The xterm window is closed automatically when prjana is finished.

Examples of editor commands

textedit -fn %d %f	Typical command for SUN workstation
emacs -font %d %f	The command for emacs editor.
xterm -fn %d -e vi %f	The command for vi editor. This editor does not open its own window and in this command it uses the xterm window.
nedit %f	The command for nedit editor. This is one of the most user friendly editors in Unix world.

Figure 26 The General User Preferences for UNIX Version

	Preferences
General Specific f	for display List
<u>N</u> ormal window	Window position X: Y:
Minimum window	Double click speed: 4
<u> </u>	Editor command:
Exactly	rxvt -geometry 80x60+20+20 -bg ivory2 -e→
Height: 🔼 🔽	Printer command: lpr -Pjosephine %f
<u>%</u> of screen	Unix shell command:
Start as icon	xterm -fn %d
Set icon position	Viewer command: 🖌 Built-in viewer
X: Y:	
Save preferences	Set Defaults Edit ini file
	Esc Ok

UNIX display-specific preferences

JANA98 automatically recognises an internet address of the display. If the address matches the one written to the initialisation file the corresponding preferences are used. The initialisation file can contain options for several displays. Problems with display-specific settings may arise when using ssh for connection to the Unix workstation because the secure shell changes the display address. See page 22 for more information.

- The options in the left part of the form are the same like the ones for General preferences. The Display specific preferences take priority over the General preferences.
- The Basic font is the one used for *JANA98* menus, forms etc. It can be selected by L button but the user rarely needs to change it. Proportional fonts are not allowed.
- The editor font is used for editing of files. It can be selected by L button and must not be proportional.
- The Viewer size and the Viewer font are used for the built in listing viewer. In the case the user does not use the built in viewer the listings are opened in a text editor and displayed with editor font. The Viewer size and the Viewer font cannot be set independently. They should be only used if the default viewer settings do not give satisfactory results, for instance if the viewer font is too small. In this case the most effective way is changing the Viewer size. The size units are given in pixels.
- Line spacing correction is used for the listing viewer. It is given in pixels and a positive value enlarges the line spacing.
- The Display dimensions setting is used for the definition of a virtual display. The user does not need this option under normal circumstances. Some X servers, however, returns invalid information about display dimensions. The virtual display defines the visible area of the screen and the window position and size are defined with respect to this rectangle. If the display dimensions are changed the position and window size are immediately recalculated in order to have the same window at the same place.

Preferences								
General 💽 Specific f	or display:	pcic519	a.unil	ch:0	L	ist		
• Normal window	Vindow p	osition	X: 30)	¥: 30			
Minimum window	Basic font:					L		
<u>F</u> ull screen	Editor font:					L		
Exactly	Viewer f	ont	Vie	wer siz	ze			
Height: 🔺 🔽	Width: 800		Heig	ht: 8	800			
$\frac{8}{2}$ of screen	Line spacing	g correct	ion:	0				
Start as icon	Display dime	ensions:		Set by	mouse			
Set icon position	Display widt	h: 128	0	Height	: 1024			
X: Y:		X: 0		Y	: 0			
Save preferences	Set <u>D</u> efaul	ts		<u>E</u> dit i	ni file			
	Esc 0	k						
	and the second se		_					

Figure 27 The Display-Specific User Preferences for UNIX version

Resizing JANA98 basic window

The PC version of *JANA98* runs in the full screen mode and the user can only select the reduced or full window size.

UNIX users can define the size of the JANA98 basic window by three ways:

- By the command line option -scale (see page 21).
- Through the "Preferences" form.
- By dragging the corner of the window by mouse

The "Normal window" in the Preferences is the default one or the one defined by the -scale option. The "Minimal window" is the smallest window *JANA98* can properly work in.

The resizing of the window by mouse works only in the basic window mode. The size of the window is changed and the X11 fonts are reloaded. The window manager is instructed to keep the aspect ratio unchanged. If *JANA98* is not in the basic window mode, the window size is automatically backed to the original value.

Printer settings

Some basic programs of *JANA98* and also the listing viewer can send an output directly to a printer through a Print button. Printing works only the printer settings in Preferences is correct.

The printer settings for UNIX discussed in page 47. The output format of the print files is always PostScript.

The PC printer settings can be defined via the Printer item of the Tools menu, which is available only for DOS version of *JANA98*. The PC version uses PostScript or raster output. Both of them can be directed to the ports Lpt1 or Lpt2. In the Printer form there is a list of printer drivers, which is important only for the raster output. In the case of the PostScript output there is only one PostScript driver available which is expected to work properly with every PostScript printer.

Printer 🔽							
HP DeskJet 500C or 310/colour							
HP DeskJet 310/320/500/520/520 (mono)							
Epson JX type/80 columns							
Epson JX type/wide carriage							
Epson LQ/colour 80 columns							
Epson LQ/colour wide carriage							
DEC LN03/1n03+(ANSI text mode)							
HP LaserJet III/4L							
HP LaserJet 4/5							
HP PaintJet XL 300							
Disabled Lpt1 Lpt2							
PostScript Raster print							
Esc Ok							

Preliminary Work

This part describes how to prepare the basic data files for JANA98.

IN THIS CHAPTER:

2.1	PROGRAM DATRED	55
2.2	PROGRAM <i>PRELIM</i>	67

Next Chapter: Structure Solution and Refinement, page 91. Previous chapter: Basic Features, page 7.

2 Preliminary Work

This part describes programs *DATRED* and *PRELIM* for preparation of the reflection file and the basic crystal information. This work precedes the structure determination.

- *DATRED* is used for reading of a diffractometer output, making the data reduction, testing the symmetry of the diffraction pattern and transformation of the cell and modulation vector.
- *PRELIM* is used for preparation or changes of the crystal information file m50 and for creation of the refinement reflection file m91.

The cursory overview of the basic programs and their communication is given in page 29.

2.1 Program DATRED

Input: diffractometer file or [m94 and m95] **Output:** m95,m94, SHELX diffractometer file

DATRED (the Data Reduction Program) is used for three basic tasks:

- reading of a diffractometer output
- making the data reduction
- testing the symmetry of the diffraction pattern and making transformation of the cell and modulation vector

DATRED transforms each supported diffractometer output to the common diffractometer format and saves it in files m95 and m94. These files are used for another tools of *DATRED* and also for creating of the reflection file m91 by *PRELIM*. If reflections are imported by *PRELIM* (because a diffractometer file is not available) they are converted to m95 and m94 to enable *DATRED* tools.

The common diffractometer file can be used for restoring original data. This is for instance used when changing symmetry - the data are restored from m95 and then a new symmetry is applied. The changes made by *DATRED* do not affect the original data in m95 as they only change additional coefficients.

2.1.1 Reading of diffractometer files

Figure 29 shows a screen appearing when starting *DATRED* for a job without m94 and m95. The user should select a diffractometer¹, supply a necessary information and start the import.

Figure 29 The basic window in the case that m95 does not exist

¹ The list of the diffractometer types can be extended by request of the users.

The next form is used to define the centring vectors which are necessary to recover (3+d) dimensional indices of modulated crystals from setting diffractometer angles and the orientation matrix. The form is activated only if the structure is modulated and the diffractometer cannot handle (3+d) dimensional indices directly (CAD4¹ and Siemens P4). As the vectors need not to be independent there is the Complete the set button for adding vectors derived from the already existing ones. In the example in Figure 30 the 4th line can be added by Complete the set.

		Centring vectors	
1st	0 0 0 0	9th	
2nd	1/2 0 0 0	10th	
3rd	0 1/2 0 0	11th	
4th	1/2 1/2 0 0	12th	
5th	•	13th	
6th		14th	
7th		15th	
8th		16th	
		\underline{C} omplete the set	
		Esc Ok	

Figure 30 The Centring Vectors Form

After quitting the Centring vectors form *DATRED* reads the diffractometer output file, makes the LP corrections and (for some diffractometer types) the correction for the standard reflections decay. When the transformation of the diffractometer file to m94 and m95 formal is successfully finished *DATRED* opens the main menu (see Figure 31).

Figure 31 The main menu of DATRED.

Import data collection file
Imp <u>o</u> rt psi-scan file
Absorption correction
S <u>h</u> ow crystal shape
$\underline{\mathbf{S}}$ imulation of precession photo
Point group test
Cell transformation
Change of modulation vector
Export to SHELX

¹ CAD4 data file collected in the file mode can be used without using any additional information.

Appending another diffractometer file

With the first item of the main menu of *DATRED* the existing m95 and m94 can be overwritten or appended by another data collection file. This tool can be used only for appending files of the same measurement. A procedure for joining data sets with different scales or twin domain numbers is described in chapters page 34 and 72.

2.1.2 The basic reflection file m95

The *basic reflection file* m95 contains all reflections from the measurement and their LP and absorption correction coefficients. Depending on the way it has been created m95 can also contain diffractometer angles and direction cosines. M95 can be created by *DATRED* from the diffractometer output file or by *PRELIM* by importing the reflection file of a different system (SHELX etc.).

M95 can include joined reflections from several measurements or from several twin domains. The scale factor and the serial number of the twin domain depends on a data set/twin domain the reflection belongs to. The joining of data set from several measurements or twin domains is described in chapters page 34 and 72.

```
Figure 32 The Basic reflection File m95
```


¹ Let us denote the direction cosines in m95 like D11, D12, D13, D21, D22, D23. Then the relationship to the direction cosines S11, S21, S12, S22, S13, S23 from SHELX diffraction files is the following: S11 = -D11; S21 = D22; S12 = -D12; S22 = D22; S13 = -D13; S23 = D23.

The vector of the incident beam in the JANA system is supposed to be directed from the source to the crystal

2.1.3 Absorption correction

Absorption correction is calculated for a spherical or cylindrical sample or for a general shape defined by the bounding crystal faces. The absorption coefficients are saved in m95 but the rest of the file remains unchanged so that the absorption correction can be arbitrarily repeated. The program needs the direction cosines to make the correction; in the case of four circle diffractometer they are calculated from the setting angles, for other diffractometer types they must be present in the diffractometer file.

Before calculating the absorption correction the program asks for a chemical formula and number of the formula units in the unit cell. The chemical formula can be entered in an arbitrary case but **a number must separate each chemical element**.

Figure 33 The Cell Contents Form

Cell contents							
Formula	As1K1F402H2						
Formula units 4							
	Esc Ok						

Absorption correction for a general shape

The absorption correction for a general shape is calculated by the Gaussian integration method. The accuracy of the absorption correction calculated with a default Gaussian grid "10 10 10" is usually sufficient.

The crystal shape is defined in the Crystal shape form in terms of the face indices and their perpendicular distances from an arbitrary common point in the crystal.

Figure 34 The Crystal Shape Form

Optimisation of the crystal shape by X-Shape

X-shape is a program of STOE + CIE GmbH for optimisation of the crystal shape. It needs as the input the basic crystallographic information, the list of bounding planes and the file with intensities, direction cosines of equivalent reflections or file with a set of reflections measured by the Ψ -scan.

The DOS version of *JANA98* has an additional item in the main menu of *DATRED* called Run X-Shape, which prepares the input files for X-Shape and then swaps *JANA98* in order to allow X-Shape running under windows95/98. When X-Shape is finished *JANA98* restores and reads a new optimised crystal shape so that the user can immediately run the absorption correction.

X-Shape is available in http://stoe.com/.

Figure 35 Running X-Shape

The necessary steps for running X-Shape from JANA98:

- First the Point group test has to be executed from the main menu of *DATRED* with the desired point group and its results has to be saved. See page 64 for details about the Point group test.
- The cell contents and optionally also the input crystal faces should be defined in Absorption correction in the main menu of DATRED
- X-Shape is executed by Run X-Shape item in the main menu of DATRED.
- DOS exit command restores *JANA98*. The optimised faces can be either accepted or rejected for a subsequent work.

The Crystal shape viewer

The Crystal shape viewer can examine the crystal shape used for the absorption correction. Before the viewer is started the form showed in page 60 is opened so that the crystal shape can be edited.

2.1.4 Simulation of a precession photo

DATRED calculates a simulated precession photo from reflections from m95.

Figure 37 The View Definition for the Precession Photo

View definition	on
	h k l
The layer direction	
The horizontal direction	
Esc Ok	1

Figure 38 The Simulation of the Precession Photo

2.1.5 The Point group test

This tool is used for testing the symmetry of a diffraction pattern. The reflections are averaged according to an interactively chosen point group and then the information showed in the following figure is reported:

Figure 39 The Point Group Test Results

Point group test									
New	:	4.771	4.771	4.497	90.00	90.00	120.00		
Min.	:	4.756	4.756	4.497	89.87	89.87	119.37		
Max.	:	4.801	4.801	4.497	90.13	90.13	120.32		
Rint	(o)	bs/all) =	10.18/ 1	0.18					
				OK					

The R_{int} value is calculated for all reflections and for observed reflections with $I > 3\sigma(I)$. The cell parameters are calculated as an average from their values resulting from the transformation by symmetry operations of the tested point group.

After pressing OK the user can continue with another point group or can quit the test and (optionally) save the results.

2.1.6 Cell transformations

This tool offers various types of cell transformations. The transformation matrix is defined by the following equation:

$$\begin{bmatrix} \mathbf{a}_{1}' & \mathbf{a}_{2}' & \mathbf{a}_{3}' \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{13} & T_{23} & T_{33} \end{bmatrix}$$

	0	riginal o	ll narama	atore	
4 9 1 9	16 001	6 274	00 00	00 76	90 00
4.010	10.001	0.374	30.00	33.30	30.00
	Tra	ansformed	cell para	maters	
6.374	9.636	16.711	73.24	87.31	80.64
	Exit from	n cell tra	nsformati	on routin	e
	Transform	mation by	matrix		
	Transform	ation to	doubled c	e11	
	Transform			11	
	Transform	nation to	reduced c	ell	
	Return to	the cell	from dat	a collect	ion
	One sten	hack			
	one peep				

Figure 40 The Cell Transformation Menu

The transformed cell parameters are shown in a small window in the top of the Cell transformation menu. The last transformation can be cancelled by One step back. The point Return to the cell from data collection cancels all transformations.

If the transformation is accepted it is saved in m94 and all subsequent reading of m95 is combined with this operation. The cell parameters in m50 are also changed. If m91 already exists its indices are automatically transformed together with coordinates of existing structure model in m40.

It should be noted that the point Return to the cell from data collection recovers the last saved transformation.

The transformation to a doubled unit cell offers all possible doubled cells in order to easily recognise proper centring if it was omitted during the data collection.

4.818	Or: 16.001	iginal cell 6.374	l paramateı 90.00 9	cs 9.36 9	0.00
4.818	Tran 16.001	sformed ce 6.374	11 paramat 90.00 9	ers 9.36 9	0.00
re	turn withou	it any doub	oling of ce	ell parame	eters
6.37	40 9.6360 80 6.3740	16.0010 32.0020	90.00	90.00	99.36 99.36
6.37 4.81	40 9.6360 80 12.7480) 16.7106) 16.0010	73.24	87.31 90.00	80.64
7.33	84 8.5924 80 12.748(16.0010 17.2238	90.00	90.00	73.97 80.64

Figure 41 Transformation to Doubled Cell

2.2 Program PRELIM

Input: m94,m95 or foreign reflection file (SHELX etc.), [m50] Output: m50,m91,[m95],pre M50 control keywords: none

2.2.1 Description of PRELIM

Figure 42 The Main Menu

PRELIM prepares or changes the *crystal information file* m50 and the *refinement reflection file* m91. In the case when m50 does not exist the crystal information prepared by *DATRED* and stored in m94 is used to initialise *PRELIM*. M91 is created from the *basic reflection file* m95 by applying of correction factors calculated in *DATRED* and stored in m95 to measured intensities (Lp and absorption). During this process all systematically absent reflections are deleted. Optionally the program makes averaging of the reflections by the used symmetry. If m95 doesn't exist, it should be created by Import of reflections.

The status line of *PRELIM* contains flags indicating if the corresponding information is known. For instance the flag "Cell-" indicates that information listed in the Cell form of *PRELIM* is incomplete or unknown. *PRELIM* checks the completeness of the crystal information before quitting.

The flags in the status line are not independent. For instance if the Cell information is edited and the new cell parameters are not consistent with the symmetry the flag "Symmetry" is set to "-". The flag "Change m50- m91-" indicates whether the basic crystal information and/or reflection file m91 have been modified.

2.2.2 The Cell form

This form is used for definition of the cell parameters, q-vectors and number of twinning and composite parts.

Cell information								
<u>T</u> itle	Testą							
Cell parameters	4.818 16.001 6.374 90 99.36 90							
<u>E</u> .s.d.'s	0 0 0 0 0							
T <u>w</u> inning	<u>N</u> umber of twin domains							
Dimension	4 Number of composite parts 1							
<u>1</u> st modulation vect	tor 0.8607 0 0.5585							
2nd modulation vect	tor							
<u>3</u> rd modulation vect	tor							
	Esc Ok							

Figure 43 The Cell Form

2.2.3 The Symmetry form

This form is used for entering the symmetry information. This can be done by two ways:

- By entering the (super)space group symbol in the upper part of the form. After finishing the text box by pressing the TAB button or by selecting other text box or by pressing a button the lines in the lower part of the form are automatically filled in with the generated symmetry operators and the following text appears in the form: "The operators derived from the group symbol".
- By entering symmetry operators in the lower part of the form. After pressing the Complete the set button the operators are completed to form a (super)space symmetry group. In the case that operators correspond to a standard setting of some (super)space group the text box in the upper part of the form is filled in with that symbol and the following text appears in the form: "The group symbol derived from the operators".

The flexibility of this tool can be appreciated with the tasks like adding/removing of the symmetry center or changing the centring of the cell. In both cases the user makes changes in the lower part of the form and new symmetry operators and a (super)space group symbol are derived simply by pressing Complete the set. It is also possible to remove some symmetry operators by pressing Ctrl-Y in the corresponding text box or to edit them. Pressing Complete the set again finishes the work.

It should be noted that for changing the (super)space group of an existing structure model to a subgroup there is more complex tool available in Tools-> Generating of subgroup structure, see page 45.

Symmetry information									
Supers	Superspace group C2/c(a0g) Origin shift 0 0 0 0								
	The op	erators derive	ed from the	group sym	nbol				
1st	x1 x2 x3 x4		9th						
2nd	-x1 x2 1/2-	x3 -x4	10th						
3rd			11th						
4th			12th						
5th			13th						
6th			14th						
7th			15th						
8th			16th						
Invers	Inversion center 🗸 Cell 🔺 C Complete the set 🔽								
	Esc Ok								

Figure 44 The Symmetry Form

The (super)space group symbols

The (super)space group symbols can be entered either in the short form or as Hall's symbols (Hall(1981)) by the following rules:

- The coding is case insensitive (P1 is the same <u>as p1</u>)
- The bar over a character is coded as minus (P is coded as P-1)
- Superscripts and subscripts are not distinguished $(P2_1/c \text{ is coded as } P21/c)$
- The generators of the Hall's symbols are separated by semicolons (P c is coded as P-6c;-2c)

Four-dimensional superspace groups

The symbol of a four-dimensional superspace group can be expressed in both Hall's notation and the notation from the International Tables vol. C 9.8. The α , β and γ are coded as alpha, beta, gamma and can be arbitrarily abbreviated to the shortest form a, b, g. Both the older and newer notation of the superspace groups are allowed.

Example: W:Pban:qq-1 or Pban(1/21/2gamma)qq

The same superspace group can be expressed using Hall's notation.

Example: W:-p-2xb;-2ya:qq or -p-2xb;-2ya(1/21/2gamma)qq

Permutation of basic vectors

For the monoclinic and orthorhombic crystal systems *PRELIM* enables all possible permutations of the basic vectors **a**, **b**, **c**. The sequence of the irrational components of the modulation vector is therefore not necessarily ($\alpha\beta0$) or (00γ) as used by De Wolff, Janssen & Janner(1981).

Non-standard centring

PRELIM enables a non-standard centring of the unit cell, which is useful for example if the form of the modulation vector leads to a centring in the superspace. If the centring symbol of the cell in the Cell form is chosen as "X" another form is opened for definition of the centring vectors:

Figure 45	The	Centrino	Vectors	Form
rigure 45	Ine	Centring	reciors	1 [°] Orm

		Centring vectors			
1st	0 0 0 0	9th			
2nd	1/2 1/2 0 1/2	10th			
3rd	•	11th			
4th		12th			
5th		13th			
6th		14th			
7th		15th			
8th		16th			
Complete the set					
Esc Ok					

Transformation of q_r

PRELIM checks the consistency between the rational part of the q vector entered in the Cell form and the one following from the superspace group symbol. If the $\mathbf{q_r}$ in the Cell form is zero and the derived $\mathbf{q_r}$ from the superspace group symbol is a non-zero the superspace group is transformed in order to get $\mathbf{q_r} = (0,0,0)$.

3d+2 and 3d+3 symmetry

In this case the user enters to the symmetry form only 3d space group symbol. Then *PRELIM* opens a form for submitting remaining information.

2.2.4 Wave length and chemical formula

This form is used to enter the chemical formula, wavelength and atomic form factors.

- The chemical formula is case insensitive; the numbers are used as delimiters of chemical elements. The information about chemical elements is saved in m50 in the same order they appears in the chemical formula. The sequence number of chemical elements is then assigned to the atoms of the structure model in m40. From this the important rule follows that *if there is already some structure model in m40, the order of the chemical elements in the chemical formula must not be changed*.
- For case of X-ray data both the parallel and perpendicular setting of the monochromator are available. Data collected with a source having the polarised beam can be handled as well. The atomic form factors can be prepared from a built-in table or from analytical expression. The atomic form factors for ions are not available and the user should type them directly to m50 (see the formtab keyword in Figure 55, page 78).

	Cell contents					
Formula	As1K1F402H2					
Formula <u>u</u> nits	4 <u>Wave length(s)</u>	0.5609				
<u>X</u> -rays Perpendicular setting						
Neutrons P	Neutrons Parallel setting Monochomato					
P	olarized beam	0				
Atomic form factors as Table Analytical approximation						
Esc Ok						

Figure 46 The Atoms Form

2.2.5 Import of reflections

Import of reflections by *PRELIM* is used in cases that data cannot be imported from a diffractometer file. Typical case is a structure in the SHELX format. Like in *DATRED* (page 55) the reflection file is also transformed to the common format and saved as m94 and m95. The information in m94 and m95 prepared by *PRELIM* is necessarily reduced but they can still be used for most tools in *DATRED* except for corrections. The difference between the two approaches is shown in the following two figures

Figure 47 The data reduction scheme starting from the diffractometer file

Figure 48 The data reduction scheme starting from other reflection file

Importing a single data set

If m95 does not exist *PRELIM* opens immediately a form shown in the next figure. In this example the user is going to read a reflection file laco.hkl with four integer indices followed by the intensity and its e.s.d written in the FORTRAN format (4i4,2fl2.4). The format can be changed, a free format (*) is allowed as well. The scale factor in the case of single data set should be one. If the Transform indices checkbox is activated the user has possibility do define a matrix which will be applied to the indices before saving to m95. After quitting the form the reflection file is read in and m94 and m95 are created.
	Specify input	reflect	ion file					
File <u>n</u> ame l	.aco.hkl			Browse				
File format	(414,2f12,4)		\underline{J} ANA93/94					
Number of india	ces	4	SHELX on F	SHELX on F				
Scale factor n	umber	1	SHELX on I					
Supercell			IPDS STOE					
Maximal satell:	ite index		DATRED					
Accuracy			General file	e on <u>F</u>				
Transform indic	ces 🔲 by mat	rix	General file	∍on <u>I</u>				
<u>1</u> st row								
2nd row								
<u>3</u> rd row								
4th row	4th row							
5th row								
<u>6</u> th row								
	Esc	Ok						

Figure 49 The Import form

In this first example the inserted reflections have 4 indices and the structure is 3+1 dimensional. In the case the input file has only 3 indices but the structure is still 3+1 dimensional the dialogue takes form shown in Figure 50 with textboxes for definition of the supercell, maximal satellite index and desired accuracy. The reflections that cannot be indexed with four indices within the limit of the desired accuracy are listed after the import.

Figure 50 The Import form if the 4th Index has to be generated

Specify	input	t reflecti	on file		
File <u>n</u> ame laco.m95				Brows	e
File format			<u>J</u> ANA93/94		
Number of indices		3	SHELX on F		
S <u>c</u> ale factor number		1	SHELX on I		
Supercell	11	1	IPDS STOE		
Maximal satellite index		4	DATRED		
Accuracy 0.01 0.01	0.01		General file	on <u>F</u>	
T <u>r</u> ansform indices 🔲 k	oy mat	rix	General file	on <u>I</u>	
<u>1</u> st row					
<u>2</u> nd row					
<u>3</u> rd row					
4th row					
<u>5</u> th row					
<u>6</u> th row					
	Esc	Ok			

Another possibility is starting the import tool when m95 already exists. In this case *PRELIM* opens a form in Figure 51 enabling to repeat the import of the same file, delete reflections previously imported from the highlighted file or import a new file. The new file is appended to m95. Re-import opens the Import form already filled in with the information entered in the previous session.

Figure 51 The Import list for single data set.

	Import file		
file		from	to
subl.m95		1	5187
<u>R</u> e-import	Delete	New	file
	Esc Ok		

Importing multiple data sets

With New file (Figure 51) several import files can be read and appended to m95. The Import list with several files already imported is in Figure 52.

Figure 52 The Import list for multiple data sets.

Import file									
file	from	to							
sub1.m95		1	5187						
sub11.m95		5188	10825						
sub111.m95		10826	16681						
<u>R</u> e-import	Delete	New	7 file						
	Esc Ok								

M95 prepared by *DATRED* from a diffractometer file and data imported by *PRELIM* **cannot** be appended. When joining data sets from several measurements the user should

- 1. Process each data set by *DATRED*, each of them with a unique job name. The result is the set of m94 and m95 named name1, name2,
- 2. Start *PRELIM* with a definitive job name and import files name1, name2, ... with the Import tool. An individual scale factor can be assigned to each data set.

Figure 53 Joining multiple data sets

Importing data sets of several twin domains

Before the import the twin matrices must be defined in m50 through the Twin option of *PRELIM*. The importing of data sets collected from several twin domains of the same crystal is then an analogy of the procedure described in the previous paragraph. The data sets can be imported with the same scale number. All reflections which can be indexed in the first domain are automatically labelled as belonging to this domain; with the rest of reflections the same procedure is applied with respect to the second, third etc. domain.

In the case when the twinning leads to a diffraction pattern composed from several not fully overlapped (3+d) dimensional lattices the domain to which a particular data set belongs must be specified explicitly.

2.2.6 The Twin option

For a twin the user should first define number of twin domains in the Cell form (see Figure 43). Then the twinning matrices can be defined via the Twin option of the main menu. The maximal number of twin domains is 18^{1} .

The twinning matrices are applied to the hkl indices defined as row vectors.

The refinement techniques used for various types of twins are discussed in 255.

2.2.7 The Commensurate option

The following form is used for setting of options for commensurate structures.

Figure 54 The Commensurate Options

Commensurate options								
<u>C</u> ommensurate case								
Supercell	114							
Tzero	0.25							
Esc	Ok							

¹ See page 108 for explanation about scale parameters.

2.2.8 The Basic crystal information file m50

The first part of m50 contains information about cell parameters, symmetry operators, form factor tables etc. The second part contains control commands for basic programs of *JANA98*.

The user usually doesn't need editing of m50 in a text editor. The first part of m50 is prepared interactively by *PRELIM* and the user interface for the second part is the SetCommands Tool (see page 39).

Both parts of m50 contain keywords followed by one or more values. The keywords are case insensitive. **The second part** of m50 is created by the following rules:

- The command section for a program starts with the program name and ends with the keyword end.
- The command consists of a keyword followed by one ore more numerical values written in a free format.
- Several commands in one line are permitted.
- The length of the command line is limited to 80 characters.
- The commands are case insensitive and their order inside the section is arbitrary.
- The keywords can be shortened until they are unique.
- The line starting with "*" or the part of the line starting with "!" is regarded as a comment.
- The commands between the end keyword and beginning of the next command section are not interpreted

The syntax of the **first part** is summarised in Table 9. The command of the basic programs of *JANA98* will be explained in the corresponding chapters.

title Testa cell 4.818 16.001 6.374 90 99.36 90 lambda 0.5609 radtype 1 lpfactor 1 monangle 0 esdcell 0 0 0 0 0 0 ndim 4 ncomp 1 qi 0.8607 0 0.5585 qr 0 0 0 spgroup C2/c(a0g) 15 22 lattice C centro										
symmetry unitsnumb 4 atom As	-x1	x2 1/2-x3	-x4							
atweight 74. f' 0.276 f" fneutron 6.5 formtab 56	.922 dmaz 1.331 58	k 3 formul	al							
33.000	32.278	30.491	28.301	26.218	24.386	22.739	21.196			
19.722	10 020	16.976	15.717	14.540	13.451	12.454	11.552			
7 053	6 817	5.403	6 415	6 239	6 076	7.020 5.922	7.320 5.774			
5.633	5.497	5.364	5.235	5.109	4.986	4.867	4.750			
4.637	4.527	4.420	4.317	4.217	4.120	4.027	3.938			
3.852 atom K	3.770	3.692	3.617	3.545	3.477	3.412	3.351			
atom O atweight 15. f' 0.006 f" fneutron 5.8 formtab 56	.999 dmax 0.004 303	x 3 formul	a 2	5 (22	4 000	4 000	2,400			
3,000	2 628	7.240	0.4/2	5.043 1 946	4.808	4.089	3.489			
1,568	1.512	1.463	1,419	1.377	1.337	1.298	1.260			
1.221	1.183	1.145	1.108	1.070	1.033	0.997	0.961			
0.926	0.891	0.857	0.824	0.792	0.761	0.731	0.702			
0.674	0.647	0.621	0.597	0.573	0.551	0.530	0.509			
0.490	0.472	0.455	0.439	0.424	0.410	0.397	0.384			
atom H										
atweight 1.0 f' 0 f" 0	08 dmax	3 formula	. 2							
formutab E_{6}	.739									
1 000	0 960	0 854	0 713	0 568	0 438	0 331	0 248			
0 184	0.300	0.004	0.078	0.060	0.430	0.036	0.0240			
0.022	0.018	0.014	0.011	0.009	0.007	0.006	0.005			
0.005	0.004	0.004	0.003	0.003	0.003	0.003	0.003			
0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003			
0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003			
0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003			
noofref 4351	L									
slimits 0.36 flimits 43.2	52376 0.4 2 70 119	453337 0.5 .9 188 311	20215 0.5 544.6 11	74811 0.6 36.6 5618	22404 0.6 4.4	65116 0.7	12413 0.913	44		
end										

Figure 55 The basic crystal information file m50 - Part I The commands are explained in Table 9.

refine	The beginning of the section for program REFINE
first sample	title of the section
cycles 3	control commands
iext 1 itypex 1 idistr 2	control commands
restric ol* 1	control commands
end	The end of the section for program REFINE
xxxxxxxxxxxxxx	not interpreted
	not interpreted
xxxxxxxxxxxxx	not interpreted
fourier	The begin of the section for program FOURER
	title (missing, but the line cannot be used for commands)
mapt 2	control commands
* center na2	comment
scope 0 1 0 ! This is a comment	control commands + comment
or 2413	control commands
x4lim 0 1 0.05	control commands
end	The end of the section for program FOURER
refine	This second occurrence of the section for REFINE will be ignored
cycles 18 damp 0.25	
ena	

Figure 56 The basic crystal information file m50 - Part II The commands are explained together with description of the basic programs.

keyword	Syntax + explanation
atom	atom chemical_type Introduces a section for a chemical element. The keywords between this
	chemical types in $m50$ is defined by order of atoms in the chemical formula
	given in <i>PRELIM</i> (see page 71). Chemical types of atoms in m40 are
	defined by the sequence number the chemical type has in $m50$.
atweight	atweight atomic_weight
cell	cell a b c alpha beta gamma Cell parameters in angstroms and degrees
centro	centro If present, the structure is centrosymmetric.
commen	Commen na nb nc
	Definition of the supercell for the commensurate refinement.
dmax	dmax distances_limit Sets the maximal limit (Å) for calculation of distances for this chemical type
esdcell	esdcell esda esdb esdc esdalpha esdqamma esdbeta
	The e.s.d's of cell parameters. This information is not used in the current
	version of <i>JANA98</i> .
f	f' fprime
	fine anomaious dispersion term f.
•	The anomalous dispersion term f"
flimits	flimits flim1 flim2 flim8
	Limits for reflection groups sorted by F . Thy are used for the calculation of
	the R statistics by <i>REFINE</i> (see page 261).
fneutron	fneutron scatlength
	The scattering length for neutrons. It is always present in $m50$ but it is only used if the neutron radiation is calculated by the user (see page 71).
formtab	formtab number of values
Torritado	val1 val2 val8
	val9 val10 val16
	valn
	Atomic form factors for X-ray. They are always present in $m50$ but they are
	only used if the X radiation is selected by the user (see page 71).
formula	formula number
	The number of atoms of this chemical type in the formula unit.

Table 9The Keywords in the First Part of m50

lambda	lambda wawe_length
	The wave length. If the number is negative its sign is changed, so that the
	older type of m50 where the negative wavelengths were used for the
lattico	
lattice	The cell centring symbol in the case of the non-standard centring X the the
	list of the centring vectors has to be defined by the lattvec command.
lattvect	lattvect vt1 vt2 vt _{rdim}
	Non-primitive centring vectors for the case of the non-standard centring.
	Each vector is introduced by the lattvec command.
Ipfactor	lpfactor number
	1 for perpendicular setting of a monochomator
	2 for parallel setting of a monochromator
	This option is propared for a future use in Pietveld's refinement
ncomn	ncomp number
neemp	The number of the composite parts (1 for non-composite structure).
ndim	ndim number
	The number of dimensions (3 for standard structure).
noofref	noofref number
	The number of reflections in m91.
qi	qi alpha beta gamma
	The irrational part of the q vector.
qr	qi alpha abeta gamma
radtura	I ne rational part of the q vector.
rautype	The radiaten type
	1 for X-rays narallel setting: 2 for neutrons
sashift	sashift sh1 sh2 shndim
	Origin shift of the structure according to the conventions in the International
	tables.

Table 9The Keywords in the First Part of m50 (Continued)

Table 9 7	he Keywords in the First Part of m50 (Continued)									
slimits	slimits slim1 slim2 slim8									
	Limits for reflection groups sorted by $\text{sin}\theta/\lambda$. Thy are used for calculation									
	of the R statistics by <i>REFINE</i> (see page 261).									
spgroup	spgroup symbol number1 number2									
	The space group symbol.									
	Number 2 specifies the crystal system.									
	Number2 specifies the crystal system:									
	12 monoclinic system with monoclinic angle α									
	22 monoclinic system with monoclinic angle B									
	32 monoclinic system with monoclinic angle γ									
	3 orthorhombic system									
	4 tetragonal system									
	5 rhombic system									
	6 hexagonal system									
avenetry										
Symmetry	Symmetry $x_{\perp} x_{\perp} x_{3} \dots$									
	inversion center are not listed.									
title	title									
twin	twin ntw									
	$T^{2}(11) T^{2}(12) T^{2}(13)$									
	$T^{2}(31) T^{2}(32) T^{2}(33)$									
	$T^{ntw}(11) T^{ntw}(12) T^{ntw}(13)$									
	$T^{ntw}(31) T^{ntw}(32) T^{ntw}(33)$									
	The twinning matrices. ntw is the number of twin domains. T ⁿ (ii) is an									
	element of a 3x3 twinning matrix. Real numbers are allowed. The first (unit)									
	matrix is not present.									
tzero	tzero number									
unitonumb	The value of the internal coordinate t for a commensurate refinement.									
unitshumb	Unitsnumb number The number of chemical units in the elementary cell									
wmatrix	wmatrix									
	W2(11) W2(12) W2(1,ndim)									
	W2(ndim, 1) $W2(ndim, 2)$ $W2(ndim, ndim)$									
	Wncomp(1,1) $Wncomp(1,2)$. Wncomp(1,ndim)									
	Wincomp (ndim, 1) Wincomp (ndim, 2) Wincomp (ndim, ndim)									
	The composite matrices. ndim is number of dimension of the structure,									
	ncomp is number of composite parts. The first (unit) matrix is not present.									

2.2.9 Creation of the Refinement reflection file

This tool creates the refinement reflection file m91 by combining the basic crystal information and the data from m94 and m95. The most important (optional) action here is the averaging of symmetrically equivalent reflections. This procedure does not influence the data in m94 and m95.

Here are the basic steps leading to creation of m91:

- *PRELIM* asks for the observability limit, which is used for calculation of R values for observed and unobserved reflections. This limit is used only locally *REFINE* has its own observability limit that can be edited with the SetCommands tool.
- *PRELIM* reads reflections from m95.
- *PRELIM* checks if the strongest intensity fits with the format of m91. Then it offers rescaling of intensities. If some intensities has been found to be out of format the user must rescale them in order to avoid the read error. Otherwise the rescaling is optional. By rescaling the precision of data cannot be enlarged because the intensities and e.s.d's in m95 are stored with one decimal place.
- *PRELIM* prints summary of reflection read from m95 and summary of systematically extinct reflections.
- *PRELIM* opens the Averaging form. When it is completed, it starts the averaging.
- *PRELIM* prints the final reflection summary. The internal factor R_{int} that is part of this information can be used as a measure if the symmetry used for the averaging is correct. However, the reliability of its value depends on the number of averaged reflections.
- After pressing Quit *PRELIM* asks if the changes of m50 and m91 are to be saved.

Figure 57 Creation of m91

R values

R factor calculated from e.s.d's is defined by the expression

$$R_{e.s.d} = \frac{\sum \sigma(F_i)}{\sum F_i}.$$

The internal R factor is defined as

$$R_{\rm int} = \sum_{i} \sum_{j} \frac{\left(I_{j} - \bar{I}_{i}\right)}{\bar{I}_{i}},$$

where i runs over all independent reflections and j over all equivalent reflections corresponding to the i-th independent reflection. Note that j need not to be the same for all independent reflections.

Calculation of estimated standard deviations PRELIM

The averaging procedure assigns new e.s.d's to the resulting intensities. In the case a reflection is unique, i.e. its intensity has not been calculated like an average value of a group of symmetrically equivalent reflections, the e.s.d. is taken from m95 and it is only multiplied by the rescaling factor. In the case a reflection belongs to a group of symmetrically equivalent reflections there are three optional ways how to calculate its e.s.d.:

- using Poisson statistics
- using equivalents
- using maximum

The Poisson method is based on the Poisson distribution and takes into account the e.s.d's of the individual intensities known from the measurement.

$$\sigma(\bar{I}_i) = \frac{1}{n} \sqrt{\sum_j \sigma^2(I_j)},$$

where n is the number of reflections in the symmetrically equivalent group.

The method using equivalents calculates new e.s.d's independently on the measured ones.

$$\sigma(\bar{I}_i) = \sqrt{\frac{\sum_{j} (I_j - \bar{I}_i)^2}{n(n-1)}}$$

The third method calculates both types of the e.s.d. and takes the larger one.

The culling procedure

The culling procedure is used in cases when some reflections in a symmetrically equivalent group are considerably different from the average value This option can eliminate some strong random errors during the data collection. If the "Apply culling" check box is selected and the limit for culling is set *PRELIM* uses the following procedure:

- 1. It finds the reflection differing most of the average value.
- 2. If the difference is less than or equal to the limit the culling is not applied.
- 3. If the difference is greater than the limit the reflection is discarded and the procedure is repeated with the new average value.

The culling procedure should be used with care and only in well-founded cases.

Listing from averaging

The detailed information about averaging is printed to the listing of *PRELIM* (see page 88). If the Full print check box is selected, each reflection from m95 can be found in the listing. The restricted output contains only the symmetrically equivalent groups where the difference of one or more reflections from the average value is greater that e.s.d. of the average reflection multiplied by the value of the limit. The limit number is optional and can be set *via* the Average form.

Groups of the symmetrically equivalent reflections are printed in the listing together with a flag consisting of asterisks and indicating the extent of the deviation of a single reflections from the average value.

2.2.10 The refinement reflection file m91

The file m91 contains reflections used for the refinement. It is created by *PRELIM* from the basic reflection file m95 by deleting systematically absent reflections and (optionally) by averaging of reflections according to the used symmetry.

¹ The key is used by the refinement control command skipflag (see page 240)

2.2.11 Listing of PRELIM

PRELIM creates listing jobname.pre containing information about creation of m50 and m91. It can be viewed and printed by the listing viewer (see page 41).

Figure 59	Listing of PRELIM
-----------	-------------------

3.07

Report from the PRELIM program structure : Testa							Basi	c Crystal	informati	on	page = 1 12:51:51 02/26/97
Centr Wave	osymmetr: length :	ic super- 0.5609	space group : 0	C2/c(alf	iaOganma)						
Cell Modul List	parameter lation ver of centr:	rs ctor q(1) ing vecto	: 4.8180 : 0.86070	16.0010 0.00000	6.3740 0.55850	90.00	99.36	90.00	Volume :	484.8	
0.0 0.5	000000 0. 500000 0.	.000000 .500000	0.000000 0.0 0.000000 0.0	00000							
Symme 2	etny opera 1. x2	ators : x3	x4								
-3	d x2	1/2-x3	-x4								
Accili	1 000	0.276	es: 1 331	32 983	32 278	30 491	28 301	26 218	24 386	22 739 21	196
no	1.000	0.270	1.351	19.722	18.313	16.976	15.717	14.540	13.451	12.454 11	.552
				10.744	10.030	9.403	8.858	8.386	7.978	7.626 7	.320
				7.053	6.817	6.606	6.415	6.239	6.076	5.922 5	.774
ĸ	1.000	0.140	0.156	18.999	18.206	16.732	15.244	13.726	12.269	10.980 9	.909
				9.057	8.398	7.888	7.480	7.134	6.823	6.528 6	.241
				5.956	5.674	5.395	5.120	4.851	4.589	4.336 4	.093
				3.801	3.640	3.431	3.235	3.052	2.882	2.724 2	.5/9
							· · ·	•••			_
Repor	t fram tl	ne PRELIM	í program				Inform	nation al	bout creat	tion of m9	1 page = 2
struc	ture : Te	esta									12:51:51 02/26/97
Summe	ary from t	the expor	ting to JANAS	98 - befor	e averagii	ng					
		1. (
		n (min	h = -7,h(me)	EX) = 7							
		1 (min	h = -11.1 (me	xx) = 24 xx) = 11	1						
		m(min	() = -2,m(me)	ux) = 2							
Extoor	ted 8555	reflecti	ans. 4860 abs	served one	e						
R-fac	tor from	e.s.d. o	f I(abs) : 5	5.49 for a	ll reflect bserved re	tions eflection	15				
List	of refle	ctions ab	sent due to s	ystematic	extinctio	ons	-				
h	k 1	m	I sig(I)	I/sig(I)	h	k 1	m :	I sig(I)	I/sig(I)	
0	0 -1	2	0.45 5.15	5 0.09	1	0	0 1	0 -29.	36 9.43	-3.11	
0	03	-2 1	1.21 4.80	2.33		0	03.	-1 8.	67 4.95	1.75	List of systematically
0	0 1	1 -	9.19 4.59	9 -2.00		0	0 1	2 6.	85 5.55	1.24	absent reflections
6	0 -3	_1 _	7 60 10 97	-0.69	1		0 -5	· · ·	63 15 95	-1 23	
6	0 -7	2 4	3.98 19.71	2.23		6	0-5	0 -89.	23 9 . 79	-9.11	
6	0 -3	-2 2	0.72 10.36	5 2.00	1	6	0 -5 -	-1 30.	52 13.78	2.21	
Summe	ary of exa	ctinction	s :								
The s	strangest	n(al reflecti	ans contradio	s): 5 ting to e	average (I, xtinction	rules	: 0.01				
	h 1	r 1	т	eia(T)							
	2 ()_3)	1917.03	95.20	20.14						
	0 0	09-1	218.95	47.30	4.63						
	6 (0 1 2	84.34	22.59	3.73						
	4 (030	68.31	11.85	5.76						
	0 () 7 -1	29.37	9.56	3.07						

Report from averaging reflections

Only reflections |I-I(ave) |> 5.0*sig(I) will be printed

Symbol *** means that for this reflection 10*sig< i(k)-i <20*sig Symbol **** means that for this reflection 20*sig< i(k)-i

Report from the PRELIM program structure : Testa

h	k	1	m	I	sig(I)	h	k	1	m	I	sig(I)	h	k	1	m	I	sig(I)
>>>1	3	0	0	16783.	148.							-1	5	-3	0	8197.	183.**
-1	3	0	0	18300.	243.**	>>>2	10	1	0	6155.	130.						
1	3	0	0	15878.	188.*	-2	10	-1	0	7429.	202.**	>>>1	5	3	1	1349.	49.
						2	10	1	0	5265.	169.**	-1	5	-3	-1	1912.	93.**
>>>1	7	0	0	25229.	241.							1	5	3	1	1128.	58.*
-1	7	0	0	28072.	357.**	>>>4	10	1	0	3083.	104.						
1	7	0	0	22824.	328.**	-4	10	-1	0	3978.	172.**	>>>0	6	3	0	4726.	100.
						4	10	1	0	2557.	132.*	0	6	3	0	4100.	135.*
>>>2	8	0	0	15478.	199.							0	6	-3	0	5508.	150.**
2	8	0	0	14117.	253.**	>>>2	12	1	0	796.	29.						
-2	8	0	0	17696.	323.**	-2	12	-1	0	1163.	57.**	>>>1	7	3	0	5897.	121.
						2	12	1	0	664.	34.*	-1	7	-3	0	7115.	186.**
>>>1	11	0	0	13018.	183.							1	7	3	0	4999.	159.**
1	11	0	0	11489.	247.**	>>>4	14	1	0	937.	32.						
-1	11	0	0	14869.	271.**	-4	14	-1	0	1284.	64.**	>>>1	9	3	1	444.	17.
						4	14	1	0	819.	38.*	1	9	3	1	364.	21.*
>>>3	11	0	0	2152.	77.							-1	9	-3	-1	595.	29.**
-3	11	0	0	2947.	139.**	>>>3	17	1	2	-80.	8.						
3	11	0	0	1801.	92.*	3	17	1	2	3.	16.**	>>>2	10	3	0	930.	32.
						-3	17	-1	-2	-108.	9.*	-2	10	-3	0	1299.	60.**
>>>1	1	1	0	17830.	153.							2	10	3	0	785.	38.*
1	1	1	0	15043.	219.***	>>>1	1	2	0	3279.	70.						
-1	1	-1	0	20496.	<u>214</u> .***	1	1	2	0	2595.	90.**	>>>4	10	3	-1	898.	30.
						-1	1	-2	0	4307.	<u>11</u> 0.**	4	10	3	-1	787.	35.*
>>>0	2	1	0	23878.	165.							-4	10	-3	1	1220.	59.**
0	2	1	0	22347.	220.**	>>>2	4	2	0	17779.	207.						
0	2	-1	0	25876.	251.**	2	4	2	0	15645.	296.**	>>>4	10	3	0	1246.	41.
						-2	4	-2	0	19804.	289.**	-4	10	-3	0	1659.	77.**

.

Report from the PRELIM program structure : Testa

Summary from the exporting to JANA98 - after averaging

Rint (obs/all) = 9.43/ 10.60 h(min) = -7, h(max) =7 k(min) = 0, k(max) = 241(min) = 0,1(max) = 11m(min) = -2,m(max) = 2

Exported 4351 reflections, 2725 observed ones R-factor from e.s.d. of I(obs) : 3.87 for all reflections 3.17 for observed reflections

The final information about m91

page = 6 12:51:51 02/26/97

Report from the averaging of reflections.

The list of equivalent groups is written in a newspaper column form. See Figure 60 for details.

page = 4

12:51:51 02/26/97

	h	k	1	m	I	sigma(I)+Flag	
>>	-1	3	-6	2	11.	2.	The values written to m91
	-1	-2	-6	2	26.	8.** 🥆	
	1	-3	-6	2	3.	7.*	A group of symmetrically
	-2	3	-6	2	5.	7.	equivalent reflections. The flag
	-2	-1	-6	2	4.	7.*	"*" means that the deviation of
	-2	-1	-6	2	15.	7.	the intensity from the average
	-1	-2	-6	2	9.	10.	value is between 3*sigma and
	-3	2	-6	2	-2.	4.**	5*sigma. The flag "* *" means
	-3	2	-6	2	3.	4.*	the same for the interval
	-2	3	-6	2	9.	6.	<pre><5*sigma, 10*sigma> etc. The</pre>
	-3	1	-6	2	43.	12.***	lowest deviation under which the
	1	-3	-6	2	5.	5.	printing is suppressed can be set
	-1	-2	-6	2	6.	7.	via the Average form.
	-3	1	-6	2	16.	9.	
	-2	-1	-6	2	14.	7.	
	2	-3	-6	2	6.	14.	

Figure 60 The details about the listing from averaging

Structure Solution and Refinement

This chapter describes basic programs of JANA98, their input and output files and the control keys.

IN THIS CHAPTER:

3.1	STRUCTURE PARAMETERS	93
3.2	PROGRAM <i>EDITM40</i>	153
3.3	PROGRAM <i>REFINE</i>	219
3.4	PROGRAM FOURIER	
3.5	Advanced Topics	

Next Chapter: Structure Interpretation, page 289. Previous chapter: Preliminary Work, page 53.

3 Structure Solution and Refinement

This part describes the programs and files necessary for solution of the phase problem, setting up the structure model and its refinement provided that the preliminary work like preparation of the reflection file and setting of the basic crystal information has been already done.

The structure solution and refinement means that a proper set of structure parameters is found and refined. The first part of this chapter describes the structure of m40 containing the structural parameters and gives a brief theoretical background for each refinable parameter.

After having the basic knowledge about m40 program *EDITM40* for setting and changing parameters of a structure model is introduced. This is a set of tools for tasks like changing isotropic temperature parameters to the anisotropic ones, adding or deleting modulation waves etc. The next part describes program *REFINE* for refinement of the structure model. *REFINE* is a hart of the system enabling large variety of refinement strategies. The last program in this chapter is *FOURIER* used for calculation of 3+d electron density maps.

3.1 Structure parameters

Structure parameters in *JANA98* are written in the Refinement parameter file m40. Usually the user prepares m40 with *EDITM40* interface or imports a starting model from SHELX or CIF format (see description of Tools, §1.4.4, page 43). There is also possibility to prepare the starting model *ab initio* using the Heavy atom method. In every case the model is further refined with *REFINE*, which overwrites the initial model in m40 with the refined one. See § 3.3 page 219 for more information about *REFINE* and § 3.2 page 153 for details about *EDITM40*.

In the next section m40 will be presented both in the symbolic form and in examples. The parameter names shown in the symbolic form are the same as used by *REFINE* in equations, constraints, fixed commands and in the listing. The refinable parameters are followed by the refinement keys, which equal 1 for refined and 0 for fixed parameters. The setting of the refinement keys is fully automatic in *JANA98* except rare cases. See more information about the refinement keys in §3.3.3 page 223.

3.1.1 The refinement parameter file m40

The basic parts of m40

Commands Header numbers Scale parameters Extinction parameters Atomic part of the 1st composite part Molecular¹ part of the 1st composite part Atomic part of the 2nd composite part Molecular part of the 2nd composite part Atomic part of the 3rd composite part Molecular part of the 3rd composite part E.s.d's in Atomic part of the 1st composite part E.s.d's in Molecular part of the 1st composite part E.s.d's in Atomic part of the 2nd composite part E.s.d's in Atomic part of the 2nd composite part E.s.d's in Atomic part of the 2nd composite part E.s.d's in Molecular part of the 3rd composite part E.s.d's in Atomic part of the 3rd composite part

¹ Molecule in *JANA98* is a group of atoms having some common parameters. It is not necessarily molecule in the chemical meaning. The rigidity of the molecule is determined by the type of parameters being common for all atoms of the molecule and for all its positions.

Typical examples of m40

commands 			Commands
end 5 0 0 1.263756 0.000000 0.000000 0.000000 0.000000 0.000000 As 1 2 0.016070 0.019152 -0.011058 0.000000 -0.001426 0.000000 0.00000 0.000000 0.001689-0.000003 0.000000 0.000003 0.000000 0.000003	0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.018667 0.000000 0.026379 0.000000 0.003925 0.000000 0.00000-0.001399 0.000386 0.000000-1 0.000000 0.000264	0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.631039 0.250000 0.003317 0.000000 0.013897 0.000000 0.001400 0.000000 0.000000 0.001612 0.000002 0.000000 0.000000 0.001977 0.000856 0.000000	100000 000000 000000 000000 000000 000000
0.000000 O3 4 2 0.033601 0.045856 0.001588 0.012132 0.007225-0.002704 0.001844 0.003826 -0.008377 0.003772 -0.002579 0.015193 -0.003972-0.014366 0.00000	1.000000 0.259540 0.050422-0.018620 0.014724 0.049204- 0.000271-0.004372- 0.005253-0.001272 0.004731 0.005381- 0.003039-0.005828- 0.017415 0.013566-	0.704262 0.334582 0.018743-0.023155 0.017804 0.060715 0.002479 0.004139 0.001209-0.002663 0.003017-0.006556 0.001797-0.012093 0.014126 0.018702	0 000 0 2 2 011111111 111111 111111 111111 111111
As 0.000194 0.000194 0.000110 0.000000 0.000156 0.000000 0.000206 0.000238 0.000000 0.000000 0.000343 0.000272 0.000000	0.000000 0.000000 0.000193 0.000000 0.000089 0.000000 0.000110 0.000000 0.000000 0.000172 0.000215 0.000000 0.000000 0.000245 0.000294 0.000000	0.000023 0.000000 0.000120 0.000000 0.000034 0.000000 0.000042 0.000000 0.000000 0.000175 0.000164 0.000000 0.000000 0.000217 0.000236 0.000000	The e.s.d's concerning atom As
O3 0.001374 0.001606 0.000776 0.000273 0.000999 0.000306 0.002027 0.002303 0.001743 0.001858 0.002445 0.002647 0.002550 0.002628 0.000000	0.000000 0.000581 0.001792 0.001219 0.000719 0.000752 0.000761 0.001031 0.002737 0.001787 0.001986 0.001432 0.002694 0.001990 0.002897 0.002092	0.000180 0.000472 0.001288 0.001398 0.000225 0.000618 0.000310 0.000811 0.001852 0.001985 0.001420 0.001470 0.002036 0.002197 0.002125 0.002218	The e.s.d's concerning atom O3

Figure 61 The example of m40 containing one composite part without molecules.

	_	
$\begin{array}{cccccccc} 1 & 1 & 0 \\ 4 & 1 \\ 1.263756 & 0.00000 \\ 0.000000 & 0.000000 \\ 0.000000 & 0.000000 \\ 0.000000 & 0.000000 \\ \hline \\ K & 2 & 2 \\ 0.033045 & 0.034587 \\ 0.008144 & 0.000000 \\ -0.012132 & 0.000000 \\ 0.000000 & 0.000000 \\ 0.000000 & 0.000000 \\ 0.000000 & 0.000000 \\ 0.000880 - 0.006496 \\ 0.000000 \\ \end{array}$	0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000 0.500000 0.590898 0.750000 0.026954 0.000000 0.006397 0.000000 -0.013341 0.000000 0.017261 0.000000 -0.006995 0.000000-0.003242 0.000000 0.00000-0.003714 0.000000 0.001670 0.004671 0.000000 0.00310 0.000000 0.00000-0.000712 0.000000 0.000816 0.002793 0.000000 0.001728 0.000000	100000 Header numbers 000000 Scale 000000 Extinction 000000 2 0010111010 101010 101010 101010 101010 Atomic part of the 1st composite part 000101 111010 0 0
0.000000	0 000000 0 631037 0 250000	U U
As 1 2 0.016070 0.019152 -0.011058 0.00000 -0.001426 0.000000 0.000000 0.000000 0.001689-0.000003 0.000000 0.000283-0.000805 0.000000	0.500000 0.631037 0.250000 0.500000 0.00000 0.631037 0.250000 0.018667 0.000000 0.003317 0.000000 0.026379 0.000000 0.013897 0.000000 0.003925 0.000000 0.001400 0.000000 0.00000-0.001399 0.000000 0.001612 0.000386 0.000000-0.000072 0.000000 0.000000 0.000264 0.000000 0.001977 -0.000181 0.000000 0.000856 0.000000	000 -1 2 2 0000111010 101010 000101 111010 000101 111010 0 000101 111010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O3 4 2 0.033601 0.045856 -0.048996 0.016087 -0.008104 0.001979 0.008068-0.004234 0.002911 0.003307 0.001474-0.018367 0.004500 0.009993 0.000000	1.000000 0.259540 0.704260 0.334582 0.050422-0.018620 0.018743-0.023155 -0.062108-0.004784 0.014331 0.006754 0.000799 0.002374 0.003089-0.004070 -0.005370-0.005172 0.002836 0.006845 0.004598-0.001957 0.001588-0.001793 -0.007401 0.009110-0.001884 0.016483 0.016054-0.011620 0.014114-0.014978	bart of the 0 the 111111 111111 111111 111111 111111
pos#1 1 0.00 0.00 0.000000 0.000000	1.000000 0.00 0.000000 0.000002 0.000000 0.000000 0.000000 0.000000 0.000000	Basic Molecular parameters

Figure 62 The example of m40 containing one composite part with a molecule¹.

¹ Work with molecules is explained in page 171.

Figure 63 The example of m40 with two composite parts.

```
Number of atoms and number of molecules in the
                     1<sup>st</sup> composite part
                    Number of atoms and number of
                   molecules in the 2<sup>nd</sup> composite part
   2
        0
                  0
                      0
                           1
             4
100000
0.000000
                                                                           the first composite part
000000
000000
Cu3
         2 2
                 0.250000 0.250000 0.500000 0.411729
                                                        000 0 2 0
0.003633 0.014991 0.038429 0.000000 0.000000 0.000000
                                                        0001111000
000000
0.000000 0.000000-0.004381 0.000000 0.000000-0.000478
                                                        001001
0.00000
                                                        0
                  0.500000 0.138088 0.500000 0.911579
                                                        000 0 2 0
031
         3 2
0.005802 \ 0.025042 \ 0.040320 \ 0.000000 - 0.000217 \ 0.000000
                                                        0101111010
0.000000-0.018516 0.000000 0.000000 0.000886 0.000000
                                                        010010
0.000165 0.000000-0.010134 0.001666 0.000000 0.008425
                                                        101101
0.000000
                                                        0
                  0.500000 0.500000 0.379118 0.250000
                                                        000 0 2 2
Sr1
         1 2
0.003084 0.003777 0.004647 0.000000 0.000332 0.000000
                                                        0010111010
-0.001380 0.000000 0.027145 0.000000-0.002329 0.000000
                                                        101010
-0.001204 0.000000 0.005127 0.000000-0.000367 0.000000
                                                        101010
0.000000 0.000000 0.000000 0.000568 0.000000 0.000545
                                                        000101
0.000537-0.000204 0.004526 0.000000-0.001025 0.000000
                                                        111010
                                                                           The second composite part
0.000000 0.000000 0.000000 0.000016 0.000000 0.000428
                                                        000101
0.000382 0.000083 0.002215 0.000000-0.000342 0.000000
                                                        111010
0.00000
                                                        0
Cu11
         2 2
                  0.500000 0.165562 0.250000 0.251157
                                                        000 0 2 0
0.001754 0.010143 0.003285 0.000000-0.002600 0.000000
                                                        0101111010
0.000000-0.001747 0.000000 0.000000-0.004030 0.000000
                                                        010010
-0.000849 0.000000-0.000686-0.000550 0.000000-0.000285
                                                        101101
0.00000
                                                        0
011
         3 2
                  0.500000 0.170184 0.250000 0.744511
                                                        000 0 2 0
0.003553 0.022622-0.002428 0.000000-0.005947 0.000000
                                                        0101111010
0.000000-0.002642 0.000000 0.000000 0.002326 0.000000
                                                        010010
0.000581 0.000000 0.000015 0.000551 0.000000-0.000152
                                                        101101
0.000000
                                                        0
02
         3 2
                  0.250000 0.500000 0.250000 0.750000
                                                        000 0 2 0
0.007134 0.024049 0.008364 0.000000-0.002584 0.000000
                                                        0000111010
0.000000 0.000000 0.000000 0.000000-0.013718 0.000000
                                                        000010
0.000783 0.000000-0.001805 0.000000 0.000000 0.000000
                                                        101000
0.000000
                                                        0
```

The symbolic form of m40

Table 10 shows m40 in symbolic form. Both constants and refinable parameters are explained in the section following the table.

Notation used in the table:

Name of a section of m40 Keywords Non-refinable constants Refinable parameters kkkkkk

"kkkkkk" denotes the refinement keys. Each "k" stands for a refinement key 0 or 1. The order of refinement keys is the same like the order of parameters in the same line, i.e. the first "k" in some line is the refinement key of the first parameter in the same line. A few exceptions from this rule which will be mentioned later. The setting of the refinement keys is fully automatic in *JANA98* except rare cases. See more information about the refinement keys in §3.3.3 page 223.

Figure 64 The location of refinement keys in m40

The numbers inside the box are the refinement keys except the line "000 0 2 2" which has different meaning (see Table 10).

5 (0 0	0				
1.263756	0.000000	0.000000	0.000000	0.000000	0.00000	100000
0.00000						
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	000000
0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	000000
As	12	0.500000	0.000000	0.631039	0.250000	000 0 2 2
0.016070	0.019152	0.018667	0.000000	0.003317	0.000000	0010111010
-0.011058	0.000000-	-0.026379	0.000000	0.013897	0.000000	101010
-0.001426	0.000000	0.003925	0.000000	0.001400	0.000000	101010
0.000000	0.000000	0.000000-	-0.001399	0.000000	0.001612	000101
0.001689	-0.000003	0.000386	0.00000-	-0.000072	0.000000	111010
0.000000	0.000000	0.000000	0.000264	0.00000	0.001977	000101
0.000283	-0.000805-	-0.000181	0.000000	0.000856	0.000000	111010
0.000000						0

Comment	a acat:	M (222		(105)								
Commana	s sectio	m (see	: pag	ge 105)		T						
Commands	8											
maxsc (pag	ge 105)	nsc										
ortho ¹ (pag	e 106)	name		delta		X 40			n			
n1sin		n1cos		n2sin		n2cos			·····			epsilon
wave ² (pag	e 105)	nwave)	nv ₁		nv ₂			·····			
end												
Header nu	mbers	(see p	bage	107)								
Nat ₁	Nmol ₁	Nat	2 ³	Nmol ₂	Nat ₃ '	4	Nmol₃	lt	temp	Irot		
Natm ₁	Npos ₁											
Natm ₂	Npos ₂		mol ₁	lines for	r the 1	st co	mposi	te s	ubsy	stem		
		J										
Natm ₁	Npos ₁											
Natm ₂	Npos ₂	> N	mol ₂	lines fo	r the 2	nd co	ompos	ite s	subsy	rstem (i	fexi	ists)
		J										
Natm ₁	Npos ₁											
Natm ₂	Npos ₂		mol ₃	lines fo	r the 3	rd cc	omposi	te s	subsy	stem (i	f exi	sts)
		J										
Scale para	meters	⁵ (see	page	e 108)								
scale1	scale	e2	sca	le3	scale	∋4	sca	le5	5	scale6	5	kkkkk
scale7	scale	∋8	sca	le9	scale	∋10	sca	le1	.1	scale1	2	kkkkk
scale13	scale	e14	sca	le15	scale	e16	sca	le1	7	scale1	-8	kkkkk
Overall iso	otropic	tempe	ratu	re paran	neter	(see	page 1	10))			
Otemp	Otemp											
Extinction	paran	neters	(see	e page 11	.0)							
rho11/ rho22 rho rhoiso rho		rhc	33	rho12	2	rho	rho13		rho23		kkkkk	
g11/giso	g22		g33	g33		g13				g23		kkkkk

Table 10File m40in the symbolic form

¹ This command is repeted for each atom needing the orthogonalisation method.

² This command is repeated for every wave needing a user definition of the wave vector.

³ The parameters Nat₂, Nmol₂ are present only when the number of composite parts is ≥ 2 .

⁴ The parameters Nat_3 , $Nmol_3$ are present only when the number of composite parts equals 2.

⁵ The 2^{nd} and 3^{rd} line of scale parameters is only present when the default number of scale parameters is changed by **maxsc** command (see page 105)

Table 10	(Continued) 001755					~				
THE FII The atom	RST COMP	OSITE P ha 1 st aan	ART	l - BEGI ita naut	INN bai	/1/N 	G				
(This exa	inc part of the second se	<i>l atom i</i>	iposi e Na	<i>ue parı -</i> at₁ = 1)	Deg	gini	ung				
Atomic h	eader parai	<i>meters</i> (s	ee p	age 116)							
Name	Chtype	Ttype	ai	x	У		z	SoS	pSt Wo Wp	Wt 1	
Name ²							<u> </u>	St3	St4St5St6 Wt3	Wt4 Wt5 Wt6	
Tempera	ture param	eters (see	pag	e 120)			<u>.</u>				
 U11	U22	Ū33	1 0	U12		U1	3	Ī	U23	kkkkkkk	kkk
Anharma	onic displac	ement pa	ram	eters (A)	DP)	³ (s	see pa	ige 1	121)		
C111	C112	C113		C122		C1	23	<u> </u>	C133	kkkkkk] _ •
C222	C223	C233		C333						kkkk	310
D1111	D1112	D1113		D1122		D1	123		D1133	 kkkkkk	<u>ן</u> ר
D1222	D1223	D1233		D1333		D2	222		D2223	kkkkkk	/ Ith
D2233	D2333	D3333								kkk	
E11111	E11112	E1111	3	E11122		E1	1123		E11133	kkkkkk	<u></u>
E11222	E11223	E1123	3	E11333		E1	2222		E12223	kkkkkk	_+1
E12233	E12333	E1333	3	E22222		E22223			E22233	kkkkkk	$\rightarrow 5^{\mathrm{u}}$
E22333	E23333	E3333	3							kkk	
F111111	F111112	F1111:	13	F11112	2	F1	11123	3	F111133	kkkkkk)
F111222	F111223	F1112	33	F11133	3	F1	12222	2	F112223	kkkkkk	
F112233	F112333	F1133	33	F12222	2	F1	22223	3	F122233	kkkkkk	(6^{tl})
F122333	F123333	F1333	33	F22222	2	F2	22223	3	F222233	kkkkkk	
F222333	F223333	F2333	33	F33333	3	-				kkkk	
Occupati	ion modulat	tion para	mete	rs, harm	oni	ic fi	inctio	ns ⁴	(see page	127)	
0						,				k	
osin1	ocosl									kk	
•••	•••									•••	
osin16	ocos16			-		-				kk	
•••	•••			-							
Occupati	ion modulat	tion para	mete	rs, crene	el fu	inci	tion ⁵ (see	page 127)	
0					5			Ī		k	
osinl	ocosl			-						kk	

¹ This cell is only present for modulated structures.

² This line is omitted for non-modulated atoms. With modulated atoms it is omitted if Ttype is less or equal to 2, i.e.for atoms without anharmonic displacement parameters, (see page 116).
³ These lines are present if Ttype > 2, (see page 116).

⁴ These lines are present in the case of occupation modulation described by harmonic functions, i.e. for $w_0 > 0$ and $s_0 = 0$, (see page 116). ⁵ These lines are present in the case of occupation modulation described by crenel function, i.e. for

 $w_0 > 0$ and $s_0 = 1$, (see page 116).

Table 10 (C	'ontinued)										
Position m	odulation p	ar	ameters, I	har	monic fu	ncti	ions ¹ (se	e pag	ge 123)		
xsinl	ysin1	z	sin1	xc	os1	ycc	os1	ZCOS	51	kkkk	kk
•••	•••	•	••	••	•	• • •		•••		•••	
xsin16	ysin16	z	zsin16		xcos16		ycos16		zcos16		kk
•••	•••	•	•••		•••		•••		•••		
Position m	odulation p	ar	ameters, s	saw	tooth fur	ıctio	on^2 (see	page	123)	4	
xsin\$ ³	ysin\$	z	sin\$	xc	os\$	усс)s\$			kkkk	k0
Temperatu	re modulati	on	n paramet	ers	⁴ (see pag	ge 11	31)	<u>.</u>		1	
III1sin1	ID2sin1		IR3sin1		III2sin1		III 3gin1		ID3gir	า1	<u> </u>
Betallsinl ⁵	Beta22sin1	L	Beta33sir	ป	Beta12si	nl	Beta13s	- sin1	Beta23	- Sin1	KKKKKK
Ullcos1	U22cos1		U33cos1		Ul2cos1		U13cos1	_	U23cos	51	kkkkkk
Betallcosl	Beta22cos1	L	Beta33cos	51	Beta12cc	s1	Beta13c	ros1	Beta23	3cos1	
•••	•••		•••		•••		•••		•••		
Ullsin16	U22sin16		U33sin16		Ul2sin16		Ul3sin16		U23sin16		kkkkkk
Betallsinle	Beta22sin16		Beta33sin16		Beta12sin16		Beta13sin16		Beta23sin16		
Ullcos16	U22cos16		UB3cos16		U12cos16	-	Ul3cos1	.6	U23cos	516	kkkkkk
Betallcos16	Beta22cos1	L6	Beta33cos16		Beta12cc	s16	Beta130	ros16	Beta23	3cos16	
•••	•••		• • •		•••		•••		•••		•••
Modulation	n of ADP ⁶ (s	see	e page 137	7)							
C111sin1	C112sin1		C113sin1		C122sin	1	C123si	n1	C133s	in1	kkkkkk
C222sin1	C223sin1		C233sin1		C333sin	1					kkkk
C111cos1	C112cos1		C113cos1		C122cos	1	C123co	s1	C133C	os1	kkkkkk
C222cos1	C223cos1		C233cos1		C333cos	1					kkkk
•••	•••		•••		•••		•••		•••		
Clllsin16	Cl12sin16		Cl13sin16		Cl22sin10	5	Cl23sin	16	Cl33sii	.16	kkkkkk
• • •	• • •		• • •		•••		• • •		•••		•••
D1111sin1	D1112sin1		D1113in1		D1122sin	L	D1123sii	11	D1133s	in1	kkkkkk
D1222sin1	D1223sin1		D1233sin1		D1333sin	L	D2222sii	1	D2223s	inl	kkkkkk
D2233sin1	D2333sin1		D3333sin1								kkk
D1111cos1	D1112cos1		D1113cos1		D11220051	L	D1123coa	51	D1133a	osl	kkkkkk
D1222cos1	D1223cos1		D1233ccs1		D13330051	L	D2222ccs1		D2223cos1		kkkkkk
D2233cos1	D2333cos1		D3333cos1								kkk
••••••				••••••••	••••••		*		••••••		۸

¹ These lines are present in the case of position modulation described by harmonic functions, i.e. for $w_p > 0$ and $s_p = 0$, (see page 116).

² This line is present in the case of position modulation described by crenel function, i.e. for $w_p > 0$ and $s_p = 1$, (see page 116). It is always the last line of position modulation parameters.

³ \$ symbolises the sawtooth function parameters are always in the place of the last wave - see page 123 for details.

⁴ These lines are present in the case of temperature modulation, i.e. for $w_t > 0$, (see page 116).

⁵ The name of the modulation temperature parameters can be referenced to as U or Beta regardless of the current setting in m40.

⁶ This line is present in the case of ADP modulation, i.e. for Ttype > 2 and ($w_{t3} > 0$ or $w_{t4} > 0$ or $w_{t5} > 0$ 0), (see page 116).

<i>Table 10 (C</i>	oniinuea)										
•••	•••	•••	•••	•••	•••						
D1111sin16	D1112sin16	D1113sin16	D1122sin16	D1123sin16	D1133sin16	kkkkkk					
E11111sin1	E11112sin1	E11113sin1	E11122sin1	E11123sin1	E11133sin1	kkkkkk					
E11222sin1	E11223sin1	E11233sin1	E11333sin1	E12222sin1	E12223sin1	kkkkkk					
E12233sin1	E12333sin1	E13333sin1	E22222sin1	E22223sin1	E22233sin1	kkkkkk					
E22333sin1	E23333sin1	E33333sin1				kkk					
E11111cos1	E11112cos1	E11113cos1	E11122cos1	E11123cos1	E11133cos1	kkkkkk					
E11222cos1	E11223cos1	E11233cos1	E11333cos1	E122220051	E12223cos1	kkkkkk					
E12233cos1	E12333cos1	E13333ccs1	E22222cos1	E22223cos1	E22233cos1	kkkkkk					
E22333cos1	E23333cos1	E33333cos1				kkk					
•••	•••	•••	•••	•••	•••	•••					
E11111sin16	E11112sin16	E11113sin16	E11122sin16	E11123sin16	E11133sin16	kkkkkk					
•••	•••	•••	•••	•••	•••						
F111111sin1	F111112sin1	F111113sin1	F111122sin1	F111123sin1	F111133sin1	kkkkkk					
F111222sin1	F111223sin1	F111233sin1	F111333sin1	F112222sin1	F112223sin1	kkkkkk					
F112233sin1	F112333sin1	F113333sin1	F122222sin1	F122223sin1	F122233sin1	kkkkkk					
F122333sin1	F123333sin1	F133333sin1	F222222sin1	F222223sin1	F222233sin1	kkkkkk					
F222333sin1	F223333sin1	F233333sin1	F333333sin1			kkkk					
F111111cos1	F111112cos1	F111113cos1	F111122cos1	F111123cos1	F111133ccs1	kkkkkk					
F111222cos1	F111223ccs1	F111233cos1	F111333ccs1	F112222cos1	F112223cos1	kkkkkk					
F112233ccs1	F112333ccs1	F113333ccs1	F122222cos1	F122223cos1	F122233cos1	kkkkkk					
F122333ccs1	F123333ccs1	F133333ccs1	F222222cos1	F222223cos1	F222233ccs1	kkkkkk					
F222333ccs1	F223333ccs1	F233333ccs1	F333333ccs1			kkkk					
•••	•••	•••	•••	•••	• • •						
F111111sin16	F111112sin16	F111113sin16	F111122sin16	F111123sin16	F111133sin16	kkkkkk					
•••	•••	•••	•••	•••	•••						
Phason (see	Phason (see page 139)										
phason						k					
The atomic	part of the 1 st	st composite p	part - end								

Table 10 (Continued)

10000 10 (continueuj											
<i>The molecular part¹ of the 1st composite part - beginning</i>												
This exam	ple is for 1	mo	lecule con	sis	ting of 1 a	tor	n and ha	avin	ig 1 posit	tion	,	
i.e. Nmol ₁ =	= 1, Natm ₁ =	= 1 a	and Npos ₁	=	1. The intr	od	uction to	o th	e concep	t of	m	olecules
in JANA98 i	s in page 14	40.										
Molecular	header pa	ran	<i>ieters</i> (see	pa	ige 141)							
Mname	IR		PointG		Mx		My		Mz			
Parameters of the model molecule (see page 142)												
See Atomic part in this table.												
The first n	iolecular p	osii	tion - begi	nn	ing							
Basic mole	ecular para	me	ters (see p	ag	e 142)							
Pname	Pname Sig aimol sm _o sm _p sm _t wm _o wm _p wm _t ²											
phi	chi	ps	i	x-	trans	Y	-trans	z-trans		kk	kkkkk	
rmx	rmy	rm	Z	rpx rpy				rpz				
TLS tenso	rs (see page	e 14	5)									
T11	T22		T33		T12		T13		T23			kkkkkk
I.1.1	L22		L33		L12		L13		L23			kkkkkk
S11	S21		S31	S12			S22		S32			kkkkkk
S13	S23		S33									kkk
Molecular	occupation	n m	odulation	pa	ırameters,	ha	irmonic	fur	nctions ³	(see	e pa	age 149)
om										k		
omsinl	omcosl									kk		
•••	•••											
omsin16	omcos16									kk		
•••	••• ••• ••• •••											
Molecular	<i>Molecular occupation modulation parameters, crenel function</i> ⁴ (see page 149)											
om										k		
omsin1	omcosl									kk		

Table 10 (Continued)

¹ The concept of molecules in *JANA98* is described in page 140.
² This cell is only present for modulated structures.

³ These lines are present in the case of molecular occupation modulation, i.e. for $wm_0 > 0$ (see page 142).

⁴ These lines are present in the case of occupation modulation described by crenel function, i.e. for $wm_0 > 0$ and $sm_0 = 1$, (see page 142).

Table 10 (Continued)

<i>Molecular position modulation parameters</i> ¹ (see page 148)											
xtsin1	ytsin1	ztsinl	xtcos1	ytæs1	ztæs1	kkkkkk					
•••	•••	•••	•••	•••	•••	•••					
xtsin16	ytsin16	ztsin16	xtcos16	ytcos16	ztcos16	kkkkkk					
xrsinl	yrsinl	zrsinl	xrcosl	yrcos1	zrcosl	kkkkkk					
•••	•••	•••	•••	•••	•••	•••					
xrsin16	yrsin16	zrsin16	xrcos16	yrcos16	zrcos16	kkkkkk					
Modulation	of TLS tens	ors ² (see page	e 150)								
Tllsinl	T22sin1	T33sin1	T12sin1	T13sin1	T23sin1	kkkkkk					
T11ccs1	T22ccs1	T33ccs1	T12ccs1	T13ccs1	T23ccs1	kkkkkk					
•••	•••	•••	•••	•••	•••	•••					
Tllsin16	T22sin16	T33sin16	Tl2sin16	Tl3sin16	T23sin16	kkkkkk					
T11ccs16	T22ccs16	T33ccs16	T12ccs16	T13ccs16	T23ccs16	kkkkkk					
L11sin1	L22.sin1	L33sin1	L12sin1	L13sin1	L23sin1	kkkkkk					
L11cos1	L22ccs1	L33ccs1	L12ccs1	L13cos1	L23ccs1	kkkkkk					
•••	•••	•••	•••	•••	•••	•••					
Lllsinl6	L22sin16	L33sin16	L12sin16	L13sin16	L23sin16	kkkkkk					
L11ccs16	L22ccs16	L33ccs16	L12ccs16	L13ccs16	L23ccs16	kkkkkk					
S11sin1	S21sin1	S31sin1	S12sin1	S22sin1	S32sin1	kkkkkk					
S13sin1	S23sin1	S33sin1				kkk					
S11cos1	S21ccs1	S31cos1	S12ccs1	S22cos1	S32ccs1	kkkkkk					
S13ccs1	S23ccs1	S33cos1				kkk					
•••	•••	•••	•••	•••	•••						
•••	•••	•••									
Sllsinl6	S21sin16	S31sin16	S12sin16	S22sin16	S32sin16	kkkkkk					
Sl3sin16	S23sin16	S33sin16				kkk					
S11cos16	S21ccs16	S31ccs16	S12ccs16	S22cos16	S32ccs16	kkkkkk					
S13ccs16	S23ccs16	S33ccs16	g			kkk					
Phason (see page 151)											
phasonm						k					

¹ These lines are present in the case of molecular position modulation, i.e. for $wm_p > 0$ (see page 142).

² These lines are present in the case of molecular temperature modulation, i.e. for $wm_t > 0$ (see page 142). Note that only the atoms from the model molecule having $w_t < 0$ (see page 116) take part in the molecular temperature modulation refinement.

Table 10 (Continued)

The first molecular position - end
Here would begin the next molecular position
<i>The molecular part¹ of the 1st composite part - end</i>
THE FIRST COMPOSITE PART - END
THE SECOND COMPOSITE PART - BEGINNING
THE FIRST COMPOSITE PART - END
THE SECOND COMPOSITE PART
<i>The same parameters like for the 1st composite part</i>
THE THIRD COMPOSITE PART
<i>The same parameters like for the 1st composite part</i>
ESD'S OF THE FIRST, THE SECOND AND THE THIRD COMPOSITE PART
Here are the estimated standard deviations listed in the same order like the
parameters.

¹ The concept of molecules in *JANA98* is described in page 140.

3.1.2 Commands section

This part of m40 is optional and it is used only in special cases. The section starts with the keyword *commands* and ends with *end*. Inside the section there are keywords of commands followed by constants.

Maximal number of scale parameters

Usually m40 contains six scale parameters in one line of the file. They are reserved for refinement of scales of various data sets or twin domains. If the number of scale parameters is insufficient it can be enlarged by command

maxsc nsc

, where nsc is typically 12 or 18, resulting in 2 or 3 lines of scale parameters. Note that if you change nsc you should also change correspondingly the number of scale parameters lines and placement of the scale refinement keys. These changes should be done by a text editor.

Definition of wave vectors

The harmonic modulation functions (see for instance equation E 20) are defined with respect to selected linear combinations of the modulation vectors, $\overline{\mathbf{q}}_i = \sum_{j=1}^d \alpha_{ij} \mathbf{q}_j$, where α_{ij} are integers. The combination can be set by the user with

command

wave nwave $nv_1 nv_2 \dots$

The wave vector with a wave number nwave is defined by $nv_1*q1 + nv_2*q2 + ...$, where q1, q2 ... are **q**-vectors. In the case of four-dimensional structures the default setting

wave 1 1 wave 2 2 wave 3 3 etc.

is usually the optimal one. For 5 or 6 dimensional structures the wave vectors often need to be redefined. The user interface of *EDITM40* for definition of wave vectors is shown in page 168.

Definition of orthogonalization parameters

The orthogonalization procedure is necessary in cases where the strong occupational modulation having step-like character is combined with harmonic modulations of other parameters (position, temperature parameters, \dots). The calculation of structure factors for the atom having this type of modulation requires proper selection and orthogonalization of the basic set of harmonic functions.

Theoretical

The selection and orthogonalization procedure is explained in page 133.

Setting or deleting orthogonalization parameters

The basic parameters (Δ, x_4^0) together with selection keys defining which sin and cos components of modulation waves are allowed in the calculation are defined in the header of m40 by command

ortho name delta x40 n [n1sin n1cos n2sin n2cos nisin nicos [epsilon]],

where name is name of the atom, delta is width of the crenel or sawtooth function, n is a parameter reserved for future use, $n_i sin$ and $n_i cos$ are the selection keys for wave components and epsilon is defined in equation E 38.

In case that the second line is omitted all waves will be used in the orthogonalization procedure. With the second line present the functions having $n_i sin$ or $n_i cos$ equal to 0 will be excluded and only the remaining set of functions will be orthogonalized and used in the refinement.

The second line can be edited in a text editor or *via EDITM40* user interface. The parameter epsilon is saved for a successive use of *EDITM40*. However, epsilon is not used by the refinement and can be therefore omitted if the second line is edited with a text editor, i.e. without the *EDITM40* interface.

The following example shows the ortho command for atom As:

The numbers 111001111.... mean the sin component of the 1^{st} wave will be used, cos of the 1^{st} wave will be used, sin of the 2^{nd} wave will be used, cos of the 2^{nd} wave will not be used, sin of the 3^{rd} wave will not be used etc. up to 2^* mxw wave components (see § 1.1.4 page 15 for details about mxw parameter).

3.1.3 Header numbers

Header numbers (This is part of table in page 98)								
Nat ₁	Nmol ₁	Nat ₂ 1	Nmol ₂	Nat ₃ ²	Nmol ₃	Itemp	Irot	
Natm ₁	Npos ₁							
Natm ₂	Npos ₂	> Nmol ₁	Nmol ₁ lines for the 1 st composite subsystem					
		J						

The header of m40 contains number of atoms in atomic and molecular parts, number of molecules and molecular positions. In the case of a composite these numbers are listed repeatedly for each composite part.

The number of composite parts is given in m50 (see the key **ncomp**, Table 9, page 80) and can be defined with *PRELIM* user interface (see § 2.2.2, page 68). The numbers for non-existing composite parts are omitted.

Meaning of parameters

Nat₁	Number of atoms in the 1 st composite part.
Nmol₁	Number of molecules ³ in the 1 st composite part
Nat ₂	Number of atoms in the 2^{nd} composite part.
Nmol ₂	Number of molecules in the 2 nd composite part
Nat₃	Number of atoms in the 3 rd composite part.
Nmol₃	Number of molecules in the 3 rd composite part
Itemp	Type of temperature parameters (0 for U, 1 for beta)
Irot	Key of molecular rotation (0 for Eulerian, 1 for axial). See page 143
	for more information.

Natm ₁	Number of atoms in the 1 st molecule of the 1 st composite part				
Npos ₁	Number of positions of the 1 st molecule of the 1 st composite part				
Natm ₂	Number of atoms in the 2 nd molecule of the 1 st composite part				
Npos ₂	Number of positions of the 2 nd molecule of the 1 st composite part				
etc. for all molecules of all composite parts					

The total number of symmetrically independent atoms in m40 is a sum of atoms in all atomic parts + sum of atoms in all molecular parts:

 $\begin{aligned} \text{Nall} &= \text{Nat}_1 + \text{Nat}_2 + \text{Nat}_3 + (\text{Natm}_1 + \text{Natm}_2 + \dots)_{1. \text{ composite part}} + (\text{Natm}_1 + \text{Natm}_2 + \dots)_{2. \text{ composite part}} + (\text{Natm}_1 + \text{Natm}_2 + \dots)_{3. \text{ composite part}} \end{aligned}$

¹ The parameters Nat₂,Nmol₂ are present only when the number of composite parts is ≥ 2 .

² The parameters Nat₃,Nmol₃ are present only when the number of composite parts equals 3.

³ For the concept of molecules in *JANA98* see page 140.

Figure 65 Example of the header of m40 with 1 molecule and 1 composite part

3.1.4 Scale parameters

Scale parameters ¹ (This is part of table in page 98)							
scale1	scale2	scale3	scale4	scale5	scale6	kkkkkk	
scale7	scale8	scale9	scale10	scale11	scale12	kkkkk	
scale13	scale14	scale15	scale16	scale17	scale18	kkkkk	

Usually m40 contains six scale parameters in single line of the file. They are reserved for refinement of scales of various data sets or twin domains. If the number of scale parameters is insufficient it can be enlarged by command **mxsc** in the Commands section of m40 (see page 105). The scale parameters are of two types: *Data scales* and *Fractional volumes*.

Meaning of parameters

scale1,scale2,	data scales				
scale18,scale17,	fractional volumes; for mxsc 1	12 they	start with	12,	for
	mxsc 6 they start with 6.				

Data scales

The scale parameters for data sets or groups of reflections are allocated from the left of the m40 line, i.e. the scale factor of the first data set is scale1. If there is no another scale factor scale1 is the overall scale.

Typically the data scales are assigned when joining diffractometer or reflection files from various sources *via* the Import procedure of *PRELIM* (see page 72). In the Import form (see

¹ The 2^{nd} and 3^{rd} line of scale parameters is only present when the default number of scale parameters is changed by **maxsc** command (see page 105)
Figure 49, page 73) there is the Scale factor number textbox. The number typed here is valid for the imported data set and is saved in m95 (see page 58) and m91 (see page 87). It must correspond to the serial number of the Data scale in m40, i.e. the scale factor number 3 is refined as scale3 etc.

Another way how to assign a Data scale is the **scale** command (see page 239) of *REFINE*. It is assigned via the SetCommands tool for *REFINE* (see page 230) and sets a special scale factor number for user-defined group of reflections. The number must again correspond to the serial number of the Data scale in m40 but it is not connected with the scale numbers in m91 or m95.

Fractional volumes

The scales of twin domains (fractional volumes) are allocated from the right of the m40 scale line(s). The first fractional volume is a complementary quantity and is not present in m40. Therefore (for default number of 6 scales) the second fractional volume is refined as scale6. If the number of the scale parameters is enlarged by **mxsc** command the second fractional volume is scalen, where n is the maximal number of scale parameters.

The number of fractional volumes is given by number of twin domains - see § 2.2.6, page 76. The assignment of the fractional volume numbers to the twin domains is done *via* the Import procedure of *PRELIM* (see page 72 and 75) during reading of the diffractometer or reflection file. The numbers are saved in m95 (see page 58) and m91 (see page 87) and must correspond with the serial numbers of the fractional volumes in m40, i.e. the fractional volume number 1 is not refined, the fractional volume number 2 is refined as scale6 (assuming that maximal number of the scale parameters is 6), the fractional volume number 3 is refined as scale5 etc.

The different fractional volume numbers in m91 and m95 are only necessary in the case of non-meroedric twinning. If all reflections can be indexed in all used domains, i.e. each index is transformed by every twinning matrix to another but integer index, then all reflections in m91 and m95 have the same fractional volume number. The Fractional volumes in m40 are then independent of the fractional volume number in m91 and the only condition the user should keep is that their number must be by 1 less than the number of twin domains (for instance for a 6-fold twin there is 5 Fractional volumes in m40).

Refinement keys of scale factors

The initial values of scale parameters and corresponding refinement keys (see page 97) are always set manually by the user. The only exception is scale1, which is always refined in the automatic mode. The details about refinements keys and automatic mode are explained in § 3.3.3, page 223. With default setting for refinement keys the user can follow a simple rule that scale1 is automatic but for another scales it is necessary to set manually both the initial values and the refinement keys.

Figure 66 Example of m40 with scale parameters for a 6-fold twin.

3.1.5 Overall isotropic thermal parameter

This is constant, which is not refined and is added to all isotropic thermal parameters.

3.1.6 Extinction parameters

Extinction parameters (This is part of table in page 98)							
rho11/	rho22	rho33	rho12	rho13	rho23	kkkkkk	
rhoiso							
g11/giso	g22	g33	g12	g13	g23	kkkkk	

Meaning of parameters

rhoiso	The ratio of the particle size (μm) to the wavelength $(Å)$. This is Type II isotropic extinction correction.							
rholl, , rho23	The anisotropic components of the Type II extinction correction.							
giso	The width of the Lorentzian/Gaussian distribution function. This is Type I isotropic extinction correction.							
g11,,g23	The anisotropic components of the Type I extinction correction.							
kkkkk	refinement keys belonging to parameters in the same line							

JANA98 works with several types of the secondary extinction correction:

- Isotropic Type I, Gaussian distribution.
- Isotropic Type I, Lorentzian distribution.
- Isotropic Type II
- Isotropic mixed types, Gaussian distribution.
- Isotropic mixed types, Lorentzian distribution.
- Anisotropic Type I, Gaussian distribution.
- Anisotropic Type I, Lorentzian distribution.
- Anisotropic Type II

The anisotropic extinction has not been completely finished and its use should be first consulted with the authors.

The refined anisotropic extinction parameters are g11, g22, g33, g12, g13, g23 for the case of Gaussian distribution and rho11, rho22, rho33, rho12, rho13, rho23 for Lorentzian distribution. The isotropic parameters are g1so and rho1so for the Gaussian and Lorentzian distribution, respectively. In m40 the parameter g11 shares place with g1so, while rho11 is at the same place like rho1so.

The extinction parameters are interconnected with the extinction keys in the section for *REFINE* in m50. They can be edited *via* the Extinction form (page 243) of the SetCommands tool of *REFINE*.

Figure 67 Example of m40 *with isotropic extinction of type I with Lorentzian distribution.*

5	0	0	0					
1.263756	5 0.0	00000	0.000000	0.00000	0.00000	0.000000	100000	
0.00000)							
6.524139	9 0.0	00000	0.000000	0.000000	0.00000	0.000000	100000	
A								
0.00000	0.0	00000	0.000000	0.000000	0.000000	0.00000	000000	
							_	
rhois	0			The r	efinement	t kev of rhois	5 I	

Theoretical

JANA98 allows to extinction correction according to the theoretical models and formulas derived by P.J.Becker and P. Coppens, (1974) in Acta Cryst, **A30**, 129-147. The notation used here is taken from that paper and it also well corresponds to that defined by W.H.Zachariasen, (1967) in Acta Cryst, **23**, 558-564.

The integrated intensity P_k of the Bragg reflection according to the kinematical approximation can be calculated from the intensity of the incident beam I_0 and the volume of the irradiated volume *v*:

$$\mathsf{P}_{\mathsf{k}} = \mathsf{I}_{\mathsf{0}} v Q \tag{E1}$$

The value Q is the average scattering cross section per unit volume:

$$Q = \left|\frac{aFK}{V}\right|^2 \lambda^3 / \sin 2\theta \tag{E2}$$

F is the structure factor, *K* is polarisation factor (1 for neutron or synchrotron radiation and for the parallel component of X-ray electric field and $\cos\theta$ for the perpendicular component of X-ray electric field), *V* is the unit cell volume, θ is the Bragg angle, λ is the wavelength of the used radiation. The constant factor *a* is 10^{-12} cm for neutrons and $\frac{e^2}{mc^2} \approx 2.81776.10^{-13}$ cm for X-rays.

JANA98 can only refine the secondary extinction correction. Its influence can be expressed by the factor *y*:

$$\mathbf{P} = \mathbf{P}_{\mathbf{k}} \cdot \mathbf{y} \tag{E3}$$

The secondary correction is dependent on the used assumption concerning angular distribution W of the crystalline domains in the crystal. There are two most generally used models with Gaussian and Lorentzian distribution:

$$W_{G}(\varepsilon) = \sqrt{2}g \exp\left(-2\pi g^{2}\varepsilon^{2}\right) \qquad W_{L}(\varepsilon) = 2g/\left(1 + 4\pi^{2}\varepsilon^{2}g^{2}\right)$$
(E4)

, where g is the width of the distribution.

The correction factor *y* can be according to P.Becker and P.Coppens approximated by the formula:

$$y(x,\theta) = \left\{ 1 + \xi_{G,L} x + \frac{A(\theta)x^2}{1 + B(\theta)x} \right\}^{-1/2} x = \frac{2}{3}Q\alpha_{G,L}\bar{t}$$
(E5)

$$\alpha_G = \overline{\alpha} / \left(1 + \frac{\overline{\alpha}^2}{2g^2} \right)^{1/2} \qquad \xi_G = 2.12 \tag{E6}$$

$$\alpha_{L} = \overline{\alpha} / \left(1 + \frac{2\overline{\alpha}}{3g} \right) \qquad \xi_{L} = 2 \tag{E7}$$

The parameter $\overline{\alpha} = \frac{3}{2} \frac{r}{\lambda} \sin 2\theta = \frac{3}{2} \rho \sin 2\theta$, where *r* is the particle size.

The program allows to correct for three different types of isotropic secondary extinction for which there are some differences in used functions $A(\theta), B(\theta)$.

Mixed type

The mixed type makes no other assumptions and uses the expressions for x as defined above. The functions $A(\theta), B(\theta)$ have the following form:

Gaussian distribution:

 $A(\theta) = 0.58 + 0.48 \cos 2\theta + 0.24 \cos^2 2\theta$ $B(\theta) = 0.02 - 0.025 \cos 2\theta$ (E8)

Lorentzian distribution:

$$A(\theta) = 0.025 + 0.285 \cos 2\theta$$

$$B(\theta) = 0.15 - 0.2(0.75 - \cos 2\theta)^2 \quad \cos 2\theta > 0$$

$$B(\theta) = -0.45 \cos 2\theta \qquad \cos 2\theta < 0$$
(E9)

The extinction depends both of the particle size (parameter ρ) and the width of the distribution g and both can be refined.

Type I – extinction being dominated by distribution

In the case when $\overline{\alpha} >> g$ the expressions for $\alpha_{G,L}$ are reduced to:

$$\alpha_G = \sqrt{2} g \quad \alpha_L = \frac{3}{2} g \tag{E10}$$

The extinction is then independent of the particle size and only parameter to be refined is the width of the distribution g.

The functions $A(\theta), B(\theta)$ have the same form as for the mixed type (see above).

Type II – extinction being dominated by particle size

In the case when $\overline{\alpha} \ll g$ the expressions for $\alpha_{G,L}$ are reduced to:

$$\alpha_{GL} = \overline{\alpha} \tag{E11}$$

The extinction is then independent of the width of the distribution particle size and only parameter which to be refined is the particle size $\overline{\alpha}$.

The functions $A(\theta), B(\theta)$ have the same form as for the primary extinction, see Becker&Coppens (28):

$$A(\theta) = 0.20 + 0.45 \cos 2\theta$$

$$B(\theta) = 0.22 - 0.12(0.5 - \cos 2\theta)^2$$
(E12)

The program JANA98 allows using all mentioned types. The mean path \bar{t} [cm] for each reflection is recorded in the file m95 during the numerical absorption correction. Then it is copied to m91 and used in the refinement. In case that \bar{t} is not at disposal the program uses the radius defined in the form for the extinction and the following equation for a spherical crystal of radius *R*:

$$\bar{t} = \frac{3}{2}R\tag{E13}$$

The parameters ρ and g can be refined by the least square program REFINE. The recorded values are multiplied by 10⁴. This means that the parameter ρ gives the ratio of the particle size in micrometers to the wavelength in Angstroms.

The anisotropic extinction has not been completely finished and its use should be first consulted with the authors.

Type of the correction	Pofinad parameters and their meaning
	Renneu parameters and men meaning
Isotropic Type I, Gaussian	giso the width of the Gaussian distribution
Isotropic Type I, Lorentzian	giso the width of the Lorentzian distribution
Isotropic type II	rhoiso the ratio of the particle size in micrometers to the
	wavelength in Angstroms.
Isotropic mixed	giso and rhoiso
Anisotropic Type I Gaussian	g11g23
Anisotropic Type II, Lorentzian	g11g23
Anisotropic Type II	rho11rho23

Table 11The meaning of the extinction parameters in JANA98

3.1.7	Atomic header parameters	

Atomic header parameters (This is part of table in page 98)							
NameChtypeTtypeaixyzsospst wo wp wt 1							S ₀ S _p St W ₀ W _p Wt ¹
Name ²							$S_{t3}S_{t4}S_{t5}S_{t6}$ Wt3 Wt4 Wt5 Wt6 ³

The atomic header lines contain the basic information about the atom whose parameters are refined, the number and type of parameters which follow in the next part of m40, occupation and positional parameters. The four refinement keys belonging to refinable parameters ai, x, y and z are placed together with the refinement keys of temperature parameters (see page 120 and Figure 68).

Parameters meaning

Name Chtype	the name of atom. It is repeated in the second header line for clarity. the reference number of chemical type. This is the serial number of the atom in the atomic form factors list in m50, i.e. the first atom in m50 has Chtype=1 etc. See § 0, page 77 for more information about m50.
Ttype	the type of temperature parameters. 1=isotropic, 2=anisotropic, 3,4,5 and 6 = anharmonic atomic displacement tensors of the 3^{rd} , 4^{th} , 5^{th} and 6^{th} order, respectively. If the atom is part of a model molecule (see page 142) Ttype can also be equal to 0 which means that the temperature parameter is refined as molecular TLS parameters (see page 145).
ai	site occupation. In convention of <i>JANA98</i> ai of a symmetric position is reciprocal value of its multiplicity.
x,y,z	positional parameters. For a modulated structure refined with modulation waves x, y, z is a position in the basic structure. For a modulated structure refined <i>without</i> modulation waves on main reflections x, y, z is a position in the average structure.
S ₀	key of special function for occupancy modulation. 0 means ordinary function, 1 means special function. The special function for occupancy modulation is the crenel function (page 128).
Sp	key of special function for position modulation. 0 means ordinary function, 1 means special function. The special function for position modulation is the sawtooth function (page 124).
St	key of special function for temperature modulation. 0 means ordinary function, 1 means special function. Currently no special function for temperature modulation is available.
W0 ⁴	number of occupation modulation waves
Wp	number of position modulation waves

¹ This cell is only present for modulated structures.

 $^{^{\}mathbf{2}}$ This line is omitted for Ttype less or equal to 2, i.e.for atoms without anharmonic displacement parameters.

³ This cell is only present for modulated structures.

⁴ The maximal number of modulation waves is 16. In Unix version it can be changed during the compilation of the program - see 1.1.4 page 15.

Wt	number of temperature modulation waves
St3, St4, St5,St6	key of special function for the 3 rd , 4 th , 5 th and 6 th order anharmonic
	displacement tensors. 0 means ordinary function, 1 means special
	function. Currently no special function for temperature modulation is
	available.
Wt3, Wt4, Wt5, Wt6	number of modulation waves for the 3 rd , 4 th , 5 th and 6 th order
	anharmonic displacement tensors.

The atomic header parameters are also used for atoms of a model molecule - see page 142.

Setting the atomic header line parameters

The name, the reference number of chemical type, occupation and position parameters are entered via the *Replacing/Inserting atoms* interface of *EDITM40* (see page 159). For setting of the type of temperature parameters (Ttype) there are three tools in *EDITM40*: *Temperature parameters* (page 164) converts between anisotropic and isotropic parameters. *Beta*<->*U* (page 164) converts between U and beta type and *Adding or deleting anharmonic tensors* (page 165) sets the anharmonic displacement parameters (ADP). The parameters defining the number of modulation waves are set together with the initial values of modulation parameters with *Setting or deleting of modulation waves* (page 168).

Figure 68 An atom in m40 with anisotropic temperature parameters.

Name C	htype	Ttype	ai	x	У	Z	
Ce	3	2	0.250000	0.000000	0.386452	0.250000	
0.0027	20 0	.005093	0.003850	0.000000	0.00000	0.00000	0010111000
U11		U22	U33	U13	U13	U23	refinement keys for ai,x,y,z,Uij

Figure 69 An atom in m40 with ADP of the 3^{rd} order.

 The next two lines have the same meaning like in Figure 68.

 La2
 2
 3
 0.500000
 0.000000
 0.326373

 0.054580
 0.022898
 0.023297
 0.000000
 0.002195
 0001111001

 The next two lines contain components of the 3rd order anharmonic tensor followed by their refinement keys

 0.000000-0.031857
 0.000651
 0.000000
 0.000000
 011000

 -0.027452-0.000329-0.000498-0.000050
 1111

<i>Figure 70</i> An atom in m40 with	position and	l temperature n	nodulation.
--------------------------------------	--------------	-----------------	-------------

	$S_0 S_p S_t$ $W_0 W_p W_t$
The next two lines have the same meaning like in Figure 68 . 03 4 2 1.000000 0.259540 0.704262 0.334582	
0.033601 0.045856 0.050422-0.018620 0.018743-0.023155	011111111
The next two lines contain the position modulation parameters wave, followed by their refinement keys.	s, one line per one modulation
0.001588 0.012132 0.014724 0.049204-0.017804 0.060715 0.007225-0.002704 0.000271-0.004372-0.002479 0.004139	111111 111111
The next four lines contain the temperature modulation paran modulation wave, followed by their refinement keys	neters, two lines per one
0.001844 0.003826 0.005253-0.001272 0.001209-0.002663 -0.008377 0.003772 0.004731 0.005381-0.003017-0.006556 -0.002579 0.015193 0.003039-0.005828-0.001797-0.012093 -0.003972-0.014366-0.017415 0.013566-0.014126 0.018702	111111 111111 111111 111111
The phason parameter	
0.000000	0

Figure 71 An atom in m40 with modulation of the 3^{rd} order ADP.

So Sp St St3 St4 St5 St6 Wo Wp Wt The 1st and the 3rd lines have the same meaning like in the previous f Wt3 Wt4 Wt5 Wt6 The 2nd line is the extended atomic header for the case of modulation of ADP. 000 0 2 2 0000 2 0 La2 2 3 0.500000 0.000000 0.000000 0.326373 La2 0 0 0.054580 0.022898 0.023297 0.000000 0.000000 0.002195 0001111001 The next two lines contain components of the 3rd order anharmonic tensor followed by their refinement keys 0.000000-0.031857 0.000651 0.000000 0.000000 0.000000 011000 -0.027452-0.000329-0.000498-0.000050 1111 The next two lines contain the position modulation parameters, one line per one modulation wave, followed by their refinement keys. 0.001376 0.000000 0.000000 0.000000 0.016677-0.001907 100011 -0.010213 0.000000 0.000000 0.000000-0.011741 0.000315 100011 The next four lines contain the temperature modulation parameters, two lines per one modulation wave, followed by their refinement keys 0.000000 0.000000 0.000000-0.009427-0.003535 0.000000 000110 0.010381-0.002141-0.001840 0.000000 0.000000 0.004628 111001 0.000000 0.000000 0.000000-0.020498-0.003375 0.000000 000110 -0.026560 0.002990-0.010303 0.000000 0.000000-0.011721 111001 The next eight lines contain the modulation parameters of the 3rd order anharmonic tensor, four lines per one modulation wave, followed by their refinement keys 0.019411 0.000000 0.000000 0.001126 0.000155-0.000331 100111 0.000000 0.000000 0.000000 0.000000 0000 011000 0.000000 0.005532-0.002968 0.000000 0.000000 0.000000 0.005339-0.001135-0.000068-0.000182 1111 -0.042605 0.000000 0.000000 0.000936-0.003285-0.000959 100111 0.000000 0.000000 0.000000 0.000000 0000 0.000000 0.038119-0.000733 0.000000 0.000000 0.000000 011000 -0.037520 0.001431-0.000268 0.000188 1111 The phason parameter 0.000000

3.1.8 Temperature parameters

Atomic temperature parameters (This is part of table in page 98)						
U11	U22	U33	U12	U13	U23	<i>kkkk</i> kkkkk

This part contains the parameters of the isotropic or anisotropic temperature factor. By default the temperature factor in *JANA98* takes so called "U-form", i.e. it is defined by expression E14 and E15 for the anisotropic and isotropic case, respectively. The alternative definition is so called "beta-form" - see expressions E16 and E17. The key ltemp in the header of m40 (see page 107) defines whether the temperature parameters are in the U-form or Beta-form. The conversion of m40 between these two forms can be made *via* the *Beta*<->*U* command of *EDITM40* (see page 164).

In the isotropic case the refined parameter is U11 for both the U-form and Beta-form of the temperature factor. The corresponding refinement key is the 5th key from 10 refinement keys in the line containing the temperature parameters because the first four refinement keys belong to the occupation and position(see page 116 and Figure 68, page 118).

In the anisotropic case the refined parameters are U11 - U23 for both the U-form and Beta-form and the corresponding refinement keys are the 5th - 10th ones.

The expressions defining various forms of the temperature factor

Anisotropic case, U-form:

$$\exp\left[-2\pi^{2}\left(U_{11}h^{2}a^{*^{2}}+U_{22}h^{2}b^{*^{2}}+U_{33}h^{2}c^{*^{2}}+U_{12}hka^{*}b^{*}+U_{13}hla^{*}c^{*}+U_{23}klb^{*}c^{*}\right)\right]$$
(E14)

Isotropic case, U-form:

$$\exp\!\left(-8\pi^2 U \frac{\sin^2 \theta}{\lambda^2}\right) \tag{E15}$$

Anisotropic case, Beta-form:

 $\exp(\beta_{11}h^2 + \beta_{22}h^2 + \beta_{33}h^2 + \beta_{12}hk + \beta_{13}hl + \beta_{23}kl)$ (E16)

Isotropic case, Beta-form:

$$\exp\left(-\beta \frac{\sin^2 \theta}{\lambda^2}\right) \tag{E17}$$

Anharmo	nic displace	ment paran	neters (ADP) for atomic	r part		
(This is part	t of table in pag	<u>ge 98)</u>					
C111	C112	C113	C122	C123	C133	kkkkkk	b rd
C222	C223	C233	C333			kkkk	53
D1111	D1112	D1113	D1122	D1123	D1133	kkkkkk	J
D1222	D1223	D1233	D1333	D2222	D2223	kkkkkk	4^{th}
D2233	D2333	D3333				kkk	J
E11111	E11112	E11113	E11122	E11123	E11133	kkkkkk	J
E11222	E11223	E11233	E11333	E12222	E12223	kkkkkk	th
E12233	E12333	E13333	E22222	E22223	E22233	kkkkkk	S
E22333	E23333	E33333				kkk	J
F111111	F111112	F111113	F111122	F111123	F111133	kkkkkk)
F111222	F111223	F111233	F111333	F112222	F112223	kkkkkk	
F112233	F112333	F113333	F122222	F122223	F122233	kkkkkk	6^{tl}
F122333	F123333	F133333	F222222	F222223	F222233	kkkkkk	
F222333	F223333	F233333	F333333			kkkk	J

3.1.9 Anharmonic displacement parameters (ADP)

The parameter ltemp (see page 116) determines whether the atomic displacement will be described by isotropic, anisotropic or anharmonic tensor. The order of the ADP and their initial values are set *via* the tool *Setting or deleting anharmonic tensors* of *EDITM40* (see page 165). A simple example of m40 with the 3rd order ADP is shown in Figure 69).

Meaning of parameters

C111,,C333	The independent contravariant component of tensor C (see equation E 18, page 122) multiplied by 10^3 .
D1111,,D3333	The independent contravariant component of tensor D (see equation E 18, page 122) multiplied by 10^4 .
E11111,,E33333	The independent contravariant component of tensor E (see equation E 18, page 122) multiplied by 10^5 .
F111111,,F333333	The independent contravariant component of tensor F (see equation E 18, page 122) multiplied by 10^6 .
kkkkk	refinement keys belonging to the parameters in the same line. The refinement program (similar as for all parameters) can derive the symmetry restrictions following from the site symmetry automatically.

Theoretical

Non-harmonic ADP (atomic displacement parameters) used in the program are based on the Gram-Charlier expansion of the structure factor:

$$F(\mathbf{H}) = \sum_{\nu=1}^{n} f_{\nu} \left(|\mathbf{H}| \right) \exp(2\pi i \mathbf{r}_{\nu} \cdot \mathbf{H}) \exp\left(-\beta^{ij} h_{i} h_{j}\right) \cdot (1 - i C^{ijk} h_{i} h_{j} h_{k} + D^{ijkl} h_{i} h_{j} h_{k} h_{l} + i E^{ijklm} h_{i} h_{j} h_{k} h_{l} h_{m} - i F^{ijklmn} h_{i} h_{j} h_{k} h_{l} h_{m} h_{n}\right)$$

$$(E \ 18)$$

The tensors C, D, E and F are the symmetrical tensors of order 3,4,5 and 6, respectively.

More details concerning theory of ADP can be found in Kuhs (1992) and the references herein.

Setting or deleting ADP

The anharmonic displacement parameters can be set in *EDITM40* - see page 165.

3.1.10 Position modulation parameters

Position modulation parameters, harmonic functions (This is part of table in page 98)									
xsin1	ysinl	zsinl	xcosl	ycosl	zcosl	kkkkkk			
•••	•••	•••	•••	•••	•••	••••			
xsin16	ysin16	zsin16	xcos16	ycos16	zcos16	kkkkkk			
Position modulation parameters, sawtooth function									
xsin\$ ¹	ysin\$	zsin\$	xcos\$	ycos\$		kkkkk0			

The type of position modulation parameters is defined by s_p and w_p (see the atomic header parameters, page 116). With $s_p = 0$ and $w_p > 0$ the modulation is described as a linear combination of w_p harmonic modulation waves. With $s_p = 1$ and $w_p = 1$ the position modulation is expressed by a simple sawtooth function. For $s_p = 1$ and $w_p > 1$ the modulation is linear combination of harmonic functions (w_p -1 waves) and the sawtooth function.

Theoretical

In the case of a *d*-dimensional modulated crystal the *v*th atom is located at

$$\mathbf{r}_{\mathbf{n}\nu} = \mathbf{r}_{\nu}^{0} + \mathbf{n} + \mathbf{u}_{\nu} \{ \mathbf{q}_{1} (\mathbf{g}_{\nu} + \mathbf{n}), \dots, \mathbf{q}_{d} (\mathbf{g}_{\nu} + \mathbf{n}) \}, \qquad (E \ 19)$$

where \mathbf{r}_v^0 is the average position of atom v, \mathbf{n} represents the lattice translations, \mathbf{u}_v is the *d*-dimensional periodic vector field $\mathbf{u}_v(x_1,...,x_d) = \mathbf{u}_v(x_1 + n_1,...,x_d + n_d)$, $n_1, ..., n_d$ being integers, $\mathbf{q}_1,...,\mathbf{q}_d$ are incommensurate modulation vectors, which are rationally independent in the basis $\mathbf{a}_1^*, \mathbf{a}_2^*, \mathbf{a}_3^*$; \mathbf{g}_v is the phase reference point, which is equal to the atomic position for an atom not part of a rigidly displaced entity.

Harmonic position modulation

The vector field \mathbf{u}_v is the general modulation function of the atomic position. It can be expanded into a truncated Fourier series:

$$\mathbf{u}_{v} = \sum_{i=1}^{l} \mathbf{U}_{v}^{s}(i) \sin[2\pi \overline{\mathbf{q}}_{i} \cdot (\mathbf{n} + \mathbf{g}_{v})] + \sum_{i=1}^{l} \mathbf{U}_{v}^{c}(i) \cos[2\pi \overline{\mathbf{q}}_{i} \cdot (\mathbf{n} + \mathbf{g}_{v})], \qquad (E\ 20)$$

where

$$\overline{\mathbf{q}}_i = \sum_{j=1}^d \alpha_{ij} \mathbf{q}_j, \qquad (E\ 21)$$

¹ \$ symbolises the sawtooth function parameters are always in the place of the last wave - see page 123 for details.

 α_{ij} being integers, are selected linear combinations of the modulation vectors and \mathbf{U}_{v}^{s} , \mathbf{U}_{v}^{c} are the amplitudes of the sin and cos displacement waves, respectively.

Sawtooth position modulation

Sometimes the displacement \mathbf{u}_{v} can be more effectively described as a linear function rather than by harmonic function shown in equation E 20. In *JANA98* the linear position modulation function is called sawtooth function. Its usage is limited to 4 dimensions. The sawtooth function can be expressed like

$$\mathbf{u}_{v} = 2\mathbf{u}_{0,v} \left[\left(x_{4} - x_{4}^{0} \right) / \Delta \right] \qquad \text{for} \left(x_{4}^{0} - \Delta / 2 < x_{4}^{0} < x_{4}^{0} + \Delta / 2 \right), \tag{E 22}$$

where \mathbf{u}_{v} is the displacement of the *v*th atom, \mathbf{u}_{0} is the maximal displacement and Δ is the definition interval of the sawtooth function.

An example is given in Figure 72, where the sawtooth function defined by the center x_4^0 , by the width Δ and the maximal displacement \mathbf{u}_0 is plotted in the x_i - x_4 projection. For $x_4 = x_4^0$ the displacement from the basic atomic position is 0. With increasing x_4 , the displacement increases linearly until the maximal value \mathbf{u}_0 . When x_4 reaches the point A, the atom disappears and does not exist until point B appears again in the next cell with the opposite maximal displacement \mathbf{u}_0 .

It should be noted that sawtooth function describes simultaneously the position modulation and occupation modulation.

Figure 72 An example of a sawtooth modulation function (abscissa A-B) in the x_4 - x_i projection.

 Δ , x_4^0 and $u_{0,i}$ define the width of the function, the center of the function and the maximal displacement from the basic position, respectively. The occupation of the atom described by this function is equal to Δ .

Selection of wave vectors

The vector components $\overline{\mathbf{q}}_i$ (see equation E 21) are linear combinations of q-vectors defined by user. The combination can be defined by the **wave** command (see page 105). In the case of one dimensional modulation there is usually no reason to change the default definition of $\overline{\mathbf{q}}_i = j\mathbf{q}$.

Setting or deleting position modulation

Provided that the dimensions and modulation vector(s) have been properly set in *PRELIM* (see page 68) the number of harmonic waves can be changed in *EDITM40* (page 168). With the automatic setting for refinement keys (see §3.3.3 page 223 for details) the symmetry restrictions of the wave components are made automatically. The setting of a sawtooth function is described in page 286. It can be applied together with harmonic modulation functions - see page 132 for details.

Figure 73 Example of an atom in the atomic part of m40 with harmonic position modulation.

						S	p		V	Vp	
							\checkmark		♦		
Lal	12	0.500000	0.168380	0.50000	0.253	771	000	0	1 (C	
0.000950	0.003198	0.004465	0.00000	0-0.000475	5 0.000	000	0101	111	010		
The next lin	ne contain	Sxsin1,	ysin1,	zsin1, x	cosl,	ycos1,	zcos1	L, k	kkkk	ζ.	
0.006008	0.000000	-0.023387-	0.000706	5 0.000000	0.000	909	1011	01			
0.000000							0				

Figure 74 Example of an atom in the atomic part of m40 with sawtooth position modulation.

¹ \$ symbolises the sawtooth function parameters are always in the place of the last wave - see page 123 for details.

Occupation modulation parameters, harmonic functions (This is part of table in page 98)								
0						k		
osinl	ocosl					kk		
•••	•••					••••		
osin16	ocos16					kk		
Occupatio	Occupation modulation parameters, Crenel function							
0						k		
osin1	ocosl					kk		

3.1.11 The occupation modulation parameters

The type of occupation modulation parameters is defined by s_0 and w_0 (see the atomic header parameters, page 116). With $s_0 = 0$ and $w_0 > 0$ the modulation is described by w_0 harmonic modulation waves. With $s_0 = 1$ and $w_0 = 1$ the occupation modulation is expressed by a crenel function. The combinations $s_0 \neq 0$ and $w_0 \neq 1$ are illegal leading to an unpredictable behaviour of the refinement.

Theoretical

Similarly as for position (see equation E 19) we can write

$$p_{nv} = p_v^0 + p_v \left[\mathbf{q}_1 \cdot (\mathbf{g}_v + \mathbf{n}), \dots, \mathbf{q}_d \cdot (\mathbf{g}_v + \mathbf{n}) \right], \qquad (E \ 23)$$

where p_{nv} and p_v^0 are occupation in the *n*th cell and the average occupation of atom v, respectively. \mathbf{g}_v and \mathbf{n} are explained in E 19. p_v is the *d*-dimensional periodic scalar function

$$p_{v}(x_{1},...,x_{d}) = p_{v}(x_{1}+n_{1},...,x_{d}+n_{d}), \qquad (E\ 24)$$

 n_1, \ldots, n_d being integers.

Harmonic occupation modulation

Similarly, as for \mathbf{u}_v (see equation E 20), p_v can be expanded into a Fourier series:

$$p_{\nu} = \sum_{i=1}^{l} p_{\nu}^{s}(i) \sin[2\pi \overline{\mathbf{q}}_{i} \cdot (\mathbf{n} + \mathbf{g}_{\nu})] + \sum_{i=1}^{l} p_{\nu}^{c}(i) \cos[2\pi \overline{\mathbf{q}}_{i} \cdot (\mathbf{n} + \mathbf{g}_{\nu})], \qquad (E\ 25)$$

where the summation is over all occupation waves¹. $\overline{\mathbf{q}}_i$ are selected linear combinations of the modulation vectors (see equation E 21) and p_v^s , p_v^c are the amplitudes of the sin and cos occupation waves, respectively. The choice of the upper limit *l* define the actual truncation of the infinite formula.

Crenel occupation modulation

Very often modelling the proper shape of the occupation modulation function requires a large number of harmonics. In these cases more efficient way is to use crenel function defined as

$$p_{v}(x_{4}) = 1 \qquad x_{4} \in \left\langle x_{4}^{0} - \Delta/2, x_{4}^{0} + \Delta/2 \right\rangle$$

$$p_{v}(x_{4}) = 0 \qquad x_{4} \notin \left\langle x_{4}^{0} - \Delta/2, x_{4}^{0} + \Delta/2 \right\rangle$$
(E 26)

Usage of crenel function in *JANA98* is limited to 4 dimensions. Normally it is applied together with harmonic modulation functions - see page 132 for details.

Meaning of parameters

For harmonic functions

0	average occupation of atom <i>v</i> ; p_v^0 in equation E 23.
osin1,ocos1	amplitudes of the sin and cos occupation waves
	$(p_v^s \text{ and } p_v^c \text{ in equation E 25})$

For crenel function

0	the width of the crenel function (Δ in equation E 26)
osinl	the center of the crenel function (x_4^0 in equation E 26)
ocos1=1	Reserved for a future use. Should not be refined or modified.

¹ Note that in the case of pure occupation modulation the harmonic wave the mth order gives raise to only mth order satellites.

Figure 76 Example of an atom in the atomic part of m40 *with harmonic occupation modulation.*

	So Wo
Na3 4 2 0.50000 0.118274 0.126328 0.500000	000 1 1 1
0.002500 0.004732 0.022182-0.000051 0.000000 0.000000	0110111100
The next line contains \circ , k	
0.865520	1
The next line contains osin1, ocos1, kk	
0.000000-0.018457	01
0.000000 0.000000-0.002118 0.000349-0.009846 0.000000	001110
0.000000 0.000000 0.000000 0.000000 0.000500 0.000311	000011
-0.000051 0.000796 0.005622 0.000241 0.000000 0.000000 0.000000	111100

Figure 77 *Example of an atom in the atomic part of* m40 *with Crenel occupation modulation*

						S ₀	↓	Wo	
0	32	0.500000	0.155298	0.155298	0.500000		100	1 3	3
0.003439	0.003439	0.058492-	0.000174	-0.002425	0.002425		01001	L01110	
The next li	ne contains	so, k							
0.500000							0		
The next lin	ne contains	Sosin1,	ocos1, k	0					
0.250000	1.000000						00		
0.002561	0.002561	0.00000-	0.002344	0.002344	0.055930		10010)1	
-0.001675	0.001675	-0.010607	0.003021	0.003021	0.00000		10110	00	
0.002421	-0.002421	0.003984	0.002846	0.002846	0.00000		10110	00	
-0.001929	-0.001929	-0.023379	0.000274	0.001268-	0.001268		10111	LO	
-0.000725	0.000725	0.000000	0.00000	0.004529	0.004529		10001	LO	
-0.000574	0.000574	0.00000	0.000000	-0.000567-	0.000567		10001	LO	
0.001699	0.001699	0.030008	0.002512	-0.002588	0.002588		10111	LO	
-0.001006	0.001006	0.000000	0.00000	0.000179	0.000179		10001	LO	
0.002198	0.002198	0.031639	0.001819	-0.005934	0.005934		1011:	LO	

Setting or deleting occupation modulation

Provided that the dimensions and modulation vector(s) have been properly set in *PRELIM* (see page 68) the number of harmonic waves can be changed in *EDITM40* (see 168). With the automatic setting for refinement keys (see §3.3.3 page 223 for details) the symmetry restrictions of the wave components are made automatically. The setting of the crenel function is described in page 286. For its application together with harmonic modulation functions see page 132.

The relationship between occupation factor ai and occupation modulation.

The value of the occupancy factor ai (see page 116) follows from the local site symmetry (for instance, it is 0.5 for atom located in a mirror or two-fold axis). In case that the position is not fully occupied the maximal value must be reduced. For regular structures or for atoms without occupational modulation it is usually done by refinement of ai. In cases where occupational modulation is used the ai parameters should not be refined. Instead the zero term o of the occupation wave is refined and the program automatically uses the theoretical value of ai following from the site symmetry and reduced by \circ . This value is also assigned to ai when converting an atom with occupation modulation to a non-modulated one (by setting 0 occupation modulation waves in *EDITM40*).

Temperatur	Temperature modulation parameters (This is part of table in page 98)									
Ullsin1	U22sin1	W3sin1	Ul2sin1	Ul3sin1	U23sin1	kkkkkk				
Betallsin1	Beta22sin1	Beta33sin1	Beta12sin1	Beta13sin1	Beta23sin1					
Ullcos1	U22cos1	UB3cos1	Ul2cos1	U13cos1	U23cos1	kkkkkk				
Betallcosl	Beta22cos1	Beta33cos1	Beta12cos1	Beta13cos1	Beta23cos1					
•••	•••	•••	•••	•••	•••					
Ullsin16	U22sin16	U33sin16	Ul2sin16	Ul3sin16	U23sin16	kkkkkk				
Betallsin16	Beta22sin16	Beta33sin16	Beta12sin16	Beta13sin16	Beta23sin16					
Ullcos16	U22cos16	UB3cos16	Ul2cos16	Ul3cos16	U23cos16	kkkkkk				
Betallcos16	Beta22cos16	Beta33cos16	Betal2cos16	Beta13cos16	Beta23cos16					
•••	•••	•••	•••	•••	•••					

3.1.12 The temperature modulation parameters

The temperature modulation in *JANA98* can only be described with harmonic functions. The type of harmonic waves is defined by w_t (see the atomic header parameters, page 116).

Theoretical

Let us consider that the positional modulation described in \$3.1.10, page 123, is accompanied by the modulation of the mean-square displacement tensors. Similarly as for position (see equation E 19) we can write

$$\boldsymbol{\beta}_{nv} = \boldsymbol{\beta}_{v}^{0} + \boldsymbol{\beta}_{v} [\mathbf{q}_{1} \cdot (\mathbf{g}_{v} + \mathbf{n}), \dots, \mathbf{q}_{d} \cdot (\mathbf{g}_{v} + \mathbf{n})], \qquad (E\ 27)$$

where β_{nv} and β_{v}^{0} are the tensor of the temperature parameters in the *n*th cell, and the average temperature parameter tensor of atom *v*, respectively. \mathbf{g}_{v} and **n** are explained in E 19. β_{v} is the *d*-dimensional periodic tensor function

$$\beta_{v}(x_{1},...,x_{d}) = \beta_{v}(x_{1}+n_{1},...,x_{d}+n_{d}), \qquad (E\ 28)$$

 $n_1, ..., n_d$ being integers.

Similarly, as for \mathbf{u}_{v} (see equation E 20), β_{v} can be expanded into a truncated Fourier series:

$$\beta_{v} = \sum_{i=1}^{l} \beta_{v}^{s}(i) \sin[2\pi \overline{\mathbf{q}}_{i} \cdot (\mathbf{n} + \mathbf{g}_{v})] + \sum_{i=1}^{l} \beta_{v}^{c}(i) \cos[2\pi \overline{\mathbf{q}}_{i} \cdot (\mathbf{n} + \mathbf{g}_{v})], \qquad (E \ 29)$$

where the summation is over all distorsion waves, including higher harmonic terms.

¹ The name of the modulation temperature parameters can be referenced to as U or Beta regardless of the current setting in m40.

 $\overline{\mathbf{q}}_i$ are selected linear combinations of the modulation vectors (see equation E 21) and β_v^s , β_v^c are the amplitudes of the sin and cos displacement waves, respectively.

Parameters meaning

components of the first harmonic temperature
modulation wave. They correspond to tensor
components $\beta_{v,1,1}^{s}(1)$, $\beta_{v,2,2}^{s}(1)$, $\beta_{v,3,3}^{s}(1)$, $\beta_{v,1,2}^{s}(1)$,
$\beta_{v,1,3}^{s}(1), \ \beta_{v,2,3}^{s}(1)$ (sinus terms) and $\beta_{v,1,1}^{c}(1), \ \beta_{v,2,2}^{c}(1)$,
$\beta_{\nu,3,3}^{c}(1), \ \beta_{\nu,1,2}^{c}(1), \ \beta_{\nu,3}^{c}(1), \ \beta_{\nu,2,3}^{c}(1)$ (cosinus terms) in
equation E 29.
refinement keys belonging to the parameters at the same line

Setting or deleting temperature modulation

Provided that the dimensions and modulation vector(s) have been properly set in *PRELIM* (see page 68) the number of harmonic temperature waves can be changed in *EDITM40* (see page 168). With the automatic setting for refinement keys (see \$3.3.3 page 223 for details) the symmetry restrictions of the wave components are made automatically.

3.1.13 Special and harmonic functions applied together

This chapter is based on Petricek, Lee & Evain (1995)

Introduction

The functions describing the displacive, occupation and temperature modulation waves are expressed as periodic functions of the actual position in the crystal:

$$f_{\mathbf{n}\nu} = f_{\nu} [\mathbf{q}_1 (\mathbf{g}_{\nu} + \mathbf{n}), \dots, \mathbf{q}_d (\mathbf{g}_{\nu} + \mathbf{n})].$$
(E 30)

The quantities g_v and n are described after equation E 19. For d=1 we can write

$$f_{\mathbf{n}\nu} = f_{\nu} [\mathbf{q}(\mathbf{g}_{\nu} + \mathbf{n}) + t] = f_{\nu} (x_4). \tag{E 31}$$

The periodic function $f_v(x_4) = f_v(x_4 + 1)$ is usually expanded in a Fourier series

$$f_{\nu} = A_{0,\nu} + \sum_{n=1}^{\infty} A_{n,\nu}^{s} \sin(2\pi n x_{4}) + \sum_{n=1}^{\infty} A_{n,\nu}^{c} \cos(2\pi n x_{4}).$$
 (E 32)

The Fourier coefficients $A_{0,v}$, $A_{n,v}^s$ and $A_{n,v}^c$ define the set of parameters of the (3+1) dimensional structure.

Combination of harmonic functions and crenel functions

The important advantage of using Fourier series is that the harmonic functions are mutually orthogonal in the sense that the scalar product defined by the integral

$$(g_i \cdot g_j) = \int_0^1 g_i(x) g_j(x) dx = \delta_{ij},$$
 (E 33)

where δ_{ij} is the Kronecker delta. The orthogonality condition is necessary to prevent correlations between the Fourier coefficients in the refinement process.

Usually, it suffices to take only a very limited number of harmonics to model the proper shape of the periodic functions defined in E 30. However, in cases that require a large number of harmonics, special functions like sawtooth function for position modulation (see page 124) or crenel functions for an occupation modulation wave (see page 128) can be used with less parameters than would be necessary with a Fourier expansion in E 31.

The discontinuous functions (or functions with discontinuous derivatives) certainly describe an ideal situation that never occurs in a real modulated crystal. We usually use these functions together with harmonic modulation functions (see

equation E 31) in order to describe various effects smearing the pure discontinuous character of the modulation function. However, combination of these special functions¹ with harmonic functions may create problem in the refinement. For instance, with a crenel function taking the value 1 for Δ less than 1 (see page 124 for details) the displacive modulation functions are no longer defined for all x₄ and the orthogonality condition (see equation E 33) is no longer warranted, causing severe correlations between the position or temperature Fourier coefficients.

In *JANA98* the problem is solved by *orthogonalization of the basic functions* (see the next paragraph). If the set of harmonic functions is nearly linearly dependent the orthogonalization of the complete set of functions is not recommended. In this case the orthogonalization procedure should be preceded by *selection of basic functions* (see page 134).

Orthogonalization of basic functions

The orthogonalization procedure in *JANA98* is based on Schmidt orthogonalization procedure. By this method the *n*th orthogonalized function $\gamma_n(x)$ is built from a combination of the first *n* basic functions $g_1(x), \dots, g_n(x)$:

$$\gamma_n(x) = \sum_{i=1}^n T_{ni} g_i(x),$$
 (E 34)

where i runs over the non-selected functions. The procedure is unique if the condition of orthogonality is combined with the normalization of the new functions. It transforms the complete set of the basic functions to a new complete set.

The major problem of the orthogonalization method is that the calculation of structure factors might be troublesome when the initial subset of functions is almost linearly dependent. This is because even small displacements are described as combinations of large partial displacements. In this cases the orthogonalization procedure should be preceded by selection of basic functions (see page 134).

Selection of basic functions

The selection of basic functions is based on their mutual scalar products. A symmetrical **G** matrix is defined from scalar products according to relations

$$G_{ij} = (g_i \cdot g_j) / [(g_i \cdot g_i)(g_j \cdot g_j)]^{1/2}$$

and
$$(g_i \cdot g_j) = \int_{x_4^0 - \Delta/2}^{x_4^0 + \Delta/2} g_i(x)g_j(x)dx .$$

(E 35)

¹ The problem is caused by using a discontinuous function for occupation modulation. It should be noted that sawtooth function for position modulation includes a crenel function for occupation.

The **G** matrix has all diagonal elements equal to 1.00. The off-diagonal elements define cosines of the generalized angle between two elements of the set of functions. The larger the off-diagonal element, the larger is the correlation in the refinement¹. The function $g_i(x)$ will only be accepted to enlarge the subset $M_n = \{g'_1, ..., g'_n\}$ of the functions already selected for the refinement if the cosine, ε_i , of its angle to the linear subspace M_n is smaller than the chosen limit λ . To do so, the function $g_i(x)$ can be split into two components, one perpendicular to M_n and one that is a linear combination of the functions of M_n :

$$g_i(x) = g_{\perp}(x) + g_{M_n}(x) = g_{\perp}(x) + \sum_{i=1}^n \alpha_i g'_i(x).$$
 (E 36)

The coefficients α_i (i=1,...,n) follow from th matrix equation

$$\alpha = \mathbf{F}^{-1}\boldsymbol{\beta}\,,\tag{E 37}$$

where $\beta_i = (g \cdot g'_i)/[(g \cdot g)(g'_i \cdot g'_i)]^{\frac{1}{2}}$ and the matrix **F** is composed from the subset M_n in the same way as the matrix **G** in equation E 35. The length of $g_{M_n}(x)$ divided by the length of g_i represents the cosine of the angle:

$$\boldsymbol{\varepsilon}_{i} = \left[\boldsymbol{\beta}^{T} \mathbf{F}^{-1} \boldsymbol{\beta} / (\boldsymbol{g}_{i} \cdot \boldsymbol{g}_{i})\right]^{1/2}. \tag{E 38}$$

Thus, g_i is rejected if $\varepsilon_i > \lambda$.

The disadvantage of this method is that some of harmonic functions g_i are skipped and therefore a part of the displacive modulation is not completely described. The quality of the selection can be estimated from the perpendicular components of the non-selected harmonic functions. The larger the perpendicular component, the higher the chance that a serious error occurs in describing the displacive modulation. Thus, the sum of all such contributions, ξ , is a measure of completeness of the selected set of g'_i functions:

$$\xi = \sum_{i=1}^{n} \left(1 - \varepsilon_i^2 \right)^{\frac{1}{2}}.$$
 (E 39)

The selection procedure does not ensure orthogonality, but can be used to approach orthogonality. Therefore the selected set of basic functions is not directly used for the refinement but it is orthogonalized (see page 134).

¹ The G matrix for the orthonormalized set of functions is equal to the unit matrix.

Figure 78 Example of a crenel function in a Contour plot.

The position modulation function is made by combination of the crenel occupation modulation and the harmonic position modulation.

The setting and deleting of orthogonalization parameters is described in page 106. The details about this topic can be found in Petricek, Lee & Evain (1995).

3.1.14 The ADP modulation parameters

Modulation of ADP (This is part of table in page 98)									
Clllsinl	Cll2sinl	C113sin1	C122sin1	Cl23sinl	C133sin1	kkkkkk			
C222sin1	C223sin1	C233sin1	C333sin1			kkkk			
C111cos1	C112cos1	C113cos1	C122cos1	C123cos1	C133cos1	kkkkkk			
C222cos1	C223cos1	C233cos1	C333cos1			kkkk			
•••	• • •	• • •	•••	• • •	• • •	••••			
Cl11sin16	C112sin16	Cl13sin16	C122sin16	Cl23sin16	C133sin16	kkkkkk			
•••	•••	•••	•••	•••	•••				
D1111sin1	D1112sin1	D1113sin1	D1122sin1	D1123sin1	D1133sin1	kkkkkk			
D1222sin1	D1223sin1	D1233sin1	D1333sin1	D2222sin1	D2223sin1	kkkkkk			
D2233sin1	D2333sin1	D3333sin1				kkk			
D1111ccs1	D1112cos1	D1113ccs1	D1122cos1	D1123ccs1	D1133cos1	kkkkkk			
D1222ccs1	D1223ccs1	D1233cos1	D1333cos1	D2222ccs1	D2223cos1	kkkkkk			
D2233ccs1	D2333ccs1	D3333cos1				kkk			
•••	•••	•••	•••	•••	•••				
D1111sin16	D1112sin16	D1113sin16	D1122sin16	D1123sin16	D1133sin16	kkkkkk			
•••	•••	•••	•••	•••	•••	•••			
Elllisin1	E11112sin1	E11113sin1	E11122sin1	E11123sin1	E11133sin1	kkkkkk			
E11222sin1	E11223sin1	E11233sin1	E11333sin1	E12222sin1	E12223sin1	kkkkkk			
E12233sin1	E12333sin1	E13333sin1	E22222sin1	E22223sin1	E22233sin1	kkkkkk			
E22333sin1	E23333sin1	E33333sin1				kkk			
E11111cos1	E11112cos1	E11113ccs1	E11122ccs1	E11123ccs1	E11133ccs1	kkkkkk			
E11222ccs1	E11223ccs1	E11233ccs1	E11333ccs1	E12222ccs1	E12223ccs1	kkkkkk			
E12233ccs1	E12333ccs1	E13333ccs1	E22222ccs1	E22223ccs1	E22233ccs1	kkkkkk			
E22333ccs1	E23333ccs1	E33333ccs1				kkk			
•••	•••	•••	•••	•••	•••				
E11111sin16	E11112sin16	E11113sin16	E11122sin16	E11123sin16	E11133sin16	kkkkkk			
•••	•••	•••	•••	•••	•••				
F111111sin1	F111112sin1	F111113sin1	F111122sin1	F111123sin1	F111133sin1	kkkkkk			
F111222sin1	F111223sin1	F111233sin1	F111333sin1	F112222sin1	F112223sin1	kkkkkk			
F112233sin1	F112333sin1	F113333sin1	F122222sin1	F122223sin1	F122233sin1	kkkkkk			
F122333sin1	F123333sin1	F133333sin1	F222222sin1	F222223sin1	F222233sin1	kkkkkk			
F222333sin1	F223333sin1	F233333sin1	F333333sin1			kkkk			
F111111cos1	F111112cos1	F111113ccs1	F111122cos1	F111123ccs1	F111133ccs1	kkkkkk			
F111222cos1	F111223ccs1	F111233ccs1	F111333ccs1	F112222cos1	F112223ccs1	kkkkkk			
F112233ccs1	F112333ccs1	F113333ccs1	F122222ccs1	F122223ccs1	F122233ccs1	kkkkkk			
F122333ccs1	F123333ccs1	F133333ccs1	F222222ccs1	F222223ccs1	F222233ccs1	kkkkkk			
F222333ccs1	F223333ccs1	F233333ccs1	F333333ccs1			kkkk			
•••	•••	•••	•••	•••	•••				
F111111sin16	F111112sin16	F111113sin16	F111122sin16	F111123sin16	F111133sin16	kkkkkk			
•••	•••	•••	•••	•••	•••	•••			

The anharmonic displacement parameters are explained in page 122. The ADP modulation in *JANA98* can only be described for (3+1) modulated structures using harmonic functions. The number of harmonic waves is defined by Wt3, Wt4, and Wt5 (see the atomic header parameters, page 116).

For (3+1) modulated structures the non-harmonic ADP parameters can be modulated in similar way as occupancy, position or temperature parameters. Any component of ADP tensor is then a function of the internal coordinate:

$$p_{\mathbf{n}\nu} = p_{\nu}^{0} + p_{\nu} \{ \mathbf{q}(\mathbf{g}_{\nu} + \mathbf{n}) \}, \tag{E 40}$$

where p_v^0 is the average value of the relevant component of the ADP tensor for atom v, **n** represents the lattice translations, p_v is the periodic function $p_v(x) = p_v(x+n)$, n being integer, **q** is the incommensurate modulation vector, \mathbf{g}_v determines the phase reference point of the displaced entity.

The function p_v is the general modulation function of the atomic position. It can be expanded into a truncated Fourier series:

$$p_{\nu} = \sum_{i=1}^{l} P_{\nu}^{s}(i) \sin[2\pi \overline{\mathbf{q}}_{i} \cdot (\mathbf{n} + \mathbf{g}_{\nu})] + \sum_{i=1}^{l} P_{\nu}^{c}(i) \cos[2\pi \overline{\mathbf{q}}_{i} \cdot (\mathbf{n} + \mathbf{g}_{\nu})], \qquad (E \ 41)$$

Meaning of parameters

Clllsinl,, C333cosl	Components of the first modulation wave of tensor
	C (see equation E 18).
D1111sin1,, D3333cos1	Components of the first modulation wave of tensor
	D.
E11111sin1,, E33333cos1	Components of the first modulation wave of tensor
	E.
F111111sin1,, F333333cos1	Components of the first modulation wave of tensor
	F.
kkkkk	The refinement keys related to parameters present
	in the same line of m40.

Setting or deleting of ADP modulation parameters.

The modulation of anharmonic displacement parameters can be set in *EDITM40* - see page 168.

3.1.15 Phason for atoms

The phason parameter p accounts for reducing of intensities of satellite reflections. The factor as derived by Axe(1980) has an exponential form :

$$F_{corr}(hklm) = \exp[-(m-1)mp]F(hklm)$$

where m is the order of the satellite reflection. Note that there is no reduction for main reflections and first order satellites and therefore it can be applied only if satellites of order higher that 1 were observed and measured. The more complex way how to describe such an effect is modulation of temperature parameters. But this usually needs much more parameters.

3.1.16 The concept of molecules in JANA98

Molecule in *JANA98* is a model group of atoms representing one or more molecular positions of this group in the elementary cell. This enables to distinguish *atomic parameters* that are defined individually for each atom of the group and reproduced in the molecular positions and *molecular parameters* which are defined uniquely for each molecular position. Such treatment enables refinement of less parameters than would result from an atomic model. The molecule as defined in *JANA98* need not be a molecule in the chemical meaning.

The group of atoms shaping the molecule but not yet placed in the molecular position is called the *model molecule*. The model molecule is transformed to its real positions by rotations defined by three rotational angles and translations defined by a translation vector.

The model and molecular parameters

The parameters of atoms forming the model molecule are called *model parameters*. They are refined independently for each atom of the model and they are common for all molecular positions. Their order and names in m40 are the same like for atoms in the atomic part.

The *molecular parameters* are refined independently for each position of the model molecule. The *basic molecular parameters* are the same for both modulated and ordinary structures. They comprise *rotation parameters*, *translation parameters*, *occupation* and *TLS tensors*. The *molecular modulation parameters* can be refined for *occupancy, position and TLS tensors*.

Coordinates of the model molecule are example of model parameters. The rotation and translation parameters are typical molecular parameters. However, for many cases the user can decide whether some parameter type will be refined as model or molecular parameters. For example thermal parameters can be refined as model parameters U11,,U23 (i.e. independently for each atom) or as molecular parameters TLS tensors (i.e. independently for each molecular position). The distribution of parameters between the model and molecular part influences the rigidity of the molecule.

The creation of molecules and molecular transformations are described in *EDITM40*, page 171.

3.1.17 Molecular header parameters

Molecular header parameters (This is part of table in page 98)						
Mname	IR	PointG	Mx	Му	Mz	

The molecular header parameters cannot be refined.

Meaning of parameters

Mname	The name of the molecule.
IR	The type of the reference point (0=explicit, 1=gravity
	center, 2=geometry center)
PointG	The point group (typed as a string) defining the local
	symmetry of the model molecule. The point group can be
	defined either by its Schoenflies or International (Hermann-
	Mauguin) symbol. This parameter is optional.
Mx, My and Mz	Coordinates of the reference point.

The reference point

In the case of standard structures setting of the reference point does not influence the calculation. Due to the fact *JANA98* uses the rectilinear approximation for calculation of molecular modulations, the distance of the reference point from the center of the molecule should be as short as possible.

In all cases the reference point influences calculation of symmetry restrictions - see page 189 for more information.

Local symmetry

Any of 32 crystallographic point groups and two non-crystallographic (icosahedral I and I_h) can be used as definition of local symmetry of the model molecule. The model molecule in m40 then contains only symmetrically independent atoms. The setting of local symmetry is optional. See page 207 for examples.

Figure 79 Example of m40 with the C_{60} molecule having the local point group symmetry Ih.

Mname	PointG		Mx I	My N	/z				
C60	1 Ih		0.00000	0.000000	0.000000				
The next t	wo lines c	ontain the	paramete	ers of the	model molecule	. Becaus	e o	f the Ih	local
symmetry	the model i	molecule c	onsists of	only 1 ator	n.				
C1	1 1	0.500000	0.00000	0.049469	0.246679				
0.010201	0.000000	0.000000	0.00000	0.000000	0.000000	00111000	000		
pos#1	1	0.942766				000 0	0	0	
99.341	0.000	0.000	0.000000	0.000000	0.000000	1100000			
1.000000	1.000000	1.000000	1.000000	1.000000	1.000000				
pos#2	1	0.057234				000 0	0	0	
39.341	0.000	0.000	0.000000	0.000000	0.000000	0000000			
1.000000	1.000000	1.000000	1.000000	1.000000	1.000000				

3.1.18 Parameters of the model molecule

The parameters of the model molecule are atomic parameters of atoms forming the molecule. Therefore they are constructed by the same rules as the atomic parameters (see Atomic header parameters, page 116, and consequent paragraphs).

The parameters w_0, w_p and w_t (i.e. the number of occupation, position and temperature waves) should be understood together with corresponding basic molecular parameters of molecular positions. The number of modulation waves equal to zero means that the relevant modulation is refined as molecular parameters. See page 148 for more information.

The parameter Ttype in case of a model molecule can also be equal to 0 meaning that the temperature parameter is refined as molecular TLS parameters (see page 145).

3.1.19 Basic molecular parameters

Basic molecular parameters (This is part of table in page 98)						
Pname	Sig	aimol	sm₀sm _p smt w	m _o wm _p wm _t	1	
phi	chi	psi	x-trans	y-trans	z-trans	kkkkkkk
rmx	rmy	rmz	rpx	rpy	rpz	

The basic molecular parameters are present for each molecular position. The basic parameter lrot is not present in this part of m40 and is explained in page 107.

Meaning of parameters

Pname	Name of the molecular position (optional).
Sig	Sign of the rotation. The values -1 and 1 define the
-	improper and proper rotation, respectively.
aimol	Occupation of this molecular position.
smosmpsmt wmo wmp wmt	Key for type of molecular modulation function and number of modulation waves. The meaning of parameters is the same like for the atomic header parameters, page 116. The atoms from the model molecule whose modulation parameters are refined in the molecular part must have the corresponding parameters w_0 w ₀ or $w_t \le 0$ (see page 116)
phi chi psi	The rotation angles.
x-trans y-trans z-trans	The translation vector.
kkkkkk	Refinement keys for aimol, phi,chi,psi,x-rans,y-trans,z-trans
rmx rmy rmz	Direction of rotation axis in the model molecule. $(0,0,0)$ means the default direction. Can be entered like a vector coordinates rmx, rmy, rmz or by names of two atoms from

¹ This cell is only present for modulated structures.

rpx rpy rpz	m40 whose positions define the start and end point of the vector. Direction of rotation axis in this position. (0,0,0) means the default direction. Can be entered like a vector coordinates rox roy roz or by names of two atoms from
	m40 whose positions define the start and end point of the vector.

Theoretical

The actual position of the model molecule is calculated according to the formula

$$\mathbf{r} = \mathbf{R} \cdot (\mathbf{r}_m - \rho) + \rho + \mathbf{t}, \qquad (E \ 42)$$

where **r** and \mathbf{r}_m are respectively the actual and model position, ρ is the reference point and **t** is the translation vector.

The matrix **R** comprises the following operations:

- Transformation of the model molecule to the Cartesian system. •
- Rotation of the model molecule by angles φ , χ and ψ along the Cartesian axes. •
- Transformation back to the fractional coordinate system. •

The transformation to Cartesian system is defined as

$$\mathbf{r}' = \begin{pmatrix} a & b\cos\gamma & c\cos\beta \\ 0 & b\sin\gamma & c\sin\beta\cos\alpha^* \\ 0 & 0 & c\sin\beta\sin\alpha^* \end{pmatrix} \mathbf{r}.$$
 (E 43)

The type of rotations is determined by the parameter lrot in the header of m40 (see page 107). The *Eulerian rotations* (lrot=0) are defined as

$$\mathbf{r}'' = \pm \begin{pmatrix} \cos\varphi & -\sin\varphi & 0\\ \sin\varphi & \cos\varphi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\chi & -\sin\chi\\ 0 & \sin\chi & \cos\chi \end{pmatrix} \begin{pmatrix} \cos\psi & -\sin\psi & 0\\ \sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{pmatrix} \mathbf{r}'. \quad (E \ 44)$$

The axial rotations (lrot=1) are defined as

$$\mathbf{r}'' = \pm \begin{pmatrix} \cos\varphi & -\sin\varphi & 0\\ \sin\varphi & \cos\varphi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\chi & 0 & \sin\chi\\ 0 & 1 & 0\\ -\sin\chi & 0 & \cos\chi \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\psi & -\sin\psi\\ 0 & \sin\psi & \cos\psi \end{pmatrix} \mathbf{r}'. \quad (E \ 45)$$

The upper and lower sign are used respectively for the proper rotation and for the improper rotation (see the parameter Sig above).

Rotation along predefined axis

Sometimes we are interested in rotation of the molecule along a vector in some important direction. This may be for instance rotation of a terminal CH_3 group, where the rotation axis goes through the carbon of the methyl group and the neighbouring non-hydrogen atom. In these cases the rotation of the model molecule can be limited to the rotation along the user-defined rotation axis.

For this purpose the user should define the rotation axis \mathbf{r}_m of the model molecule (the parameters rmx, rmy, rmz in page 142) and the rotation axes \mathbf{r}_p for each molecular position (rpx, rpy, rpz in page 142).

The matrix **R** then comprises the following operations:

- Transformation of the model molecule to the Cartesian system.
- Rotation bringing the Cartesian z axis and the vector \mathbf{r}_m into coincidence. The rotation is made along the direction perpendicular to the plane defined by the original z axis and the vector \mathbf{r}_m The relevant rotation matrix is:

$$\mathbf{F} = \begin{pmatrix} 1 - \frac{\cos^2 \lambda}{1 + \cos \nu} & -\frac{\cos \lambda \cdot \cos \mu}{1 + \cos \nu} & -\cos \lambda \\ -\frac{\cos \lambda \cdot \cos \mu}{1 + \cos \nu} & 1 - \frac{\cos^2 \mu}{1 + \cos \nu} & -\cos \mu \\ \cos \lambda & \cos \mu & \cos \nu \end{pmatrix}, \qquad (E \ 46)$$

where $\cos\alpha$, $\cos\mu$ and $\cos\nu$ are the direction cosines of the vector with respect to the Cartesian axis.

- Rotations of the model molecule by angle $\,\phi,\,\chi$ and ψ along the new Cartesian axes .
- Rotation making coincident the Cartesian z axis and the vector r_p.
- Transformation back to the fractional coordinate system.
3.1.20 TLS tensors

TLS tensors (This is part of table in page 98)						
T11	T22	T33	T12	T13	T23	kkkkkk
IJ1	L22	L33	L12	L13	L23	kkkkkk
S11	S21	531	S12	S22	S32	kkkkkk
S13	S23	\$33				kkk

The TLS tensors are used for refinement of temperature parameters for a molecule assuming that all atoms in the group have amplitudes appropriate to a rigid body and that all atoms move in phase. In *JANA98* one molecule can contain atoms with individual temperature parameters (Ttype > 0) and atoms being part of the TLS group (Ttype = 0). The parameter Ttype is part of the atomic header (see page 116).

Meaning of parameters

T11,,T23	The independent components of the T tensor (see equation E 50).
L11,,L23	The independent components of the L tensor (see equation E 50).
S11,,S33	The independent components of the S tensor (see equation E 50).
kkkkk	The refinement keys related to parameters present in the same line of
	m40.

Theoretical

The theory behind the TLS parameterisation has been presented by Schomaker and Trueblood 1968. Any displacement of a rigid body can be described as a rotation about an axis passing through a fixed point, together with a translation of that fixed point. The corresponding displacement of a point at \mathbf{r} relative to the fixed point is given by

$$\mathbf{u} = \mathbf{t} + \mathbf{D} \cdot \mathbf{r} \,, \tag{E 47}$$

where \mathbf{t} is a column vector for the translation and \mathbf{D} is the rotation matrix. For small displacements, the last term in E 47can be linearised with respect to the amplitude of the rotation to give

$$\mathbf{u} \cong \mathbf{t} + \lambda \times \mathbf{r}, \qquad (E \ 48)$$

where lambda is a vector along the rotation axis with a magnitude equal to the angle of rotation, and x denotes a cross product. We can write

$$\mathbf{u}\mathbf{u}^{\mathrm{T}} = \mathbf{t}\mathbf{t}^{\mathrm{T}} + \mathbf{t}\boldsymbol{\lambda}^{\mathrm{T}} \times \mathbf{r}^{\mathrm{T}} - \mathbf{r} \times \boldsymbol{\lambda}\mathbf{t}^{\mathrm{T}} - \mathbf{r} \times \boldsymbol{\lambda}\boldsymbol{\lambda}^{\mathrm{T}} \times \mathbf{r}^{\mathrm{T}} .$$
 (E 49)

A time and spatial average over all displacements yields

$$\mathbf{U} \equiv \left\langle \mathbf{u}\mathbf{u}^{\mathrm{T}} \right\rangle = \mathbf{T} + \mathbf{S}^{\mathrm{T}} \times \mathbf{r}^{\mathrm{T}} - \mathbf{r} \times \mathbf{S} - \mathbf{r} \times \mathbf{L} - \mathbf{r} \times \mathbf{L} \times \mathbf{r}^{\mathrm{T}}, \qquad (E \ 50)$$

where $\mathbf{T} \equiv \langle \mathbf{t}\mathbf{t}^{\mathrm{T}} \rangle$, $\mathbf{L} \equiv \langle \lambda \lambda^{\mathrm{T}} \rangle$ and $\mathbf{S} \equiv \langle \lambda \mathbf{t}^{\mathrm{T}} \rangle$.

In this context, the cross product is used as follows: $\mathbf{L} \times \mathbf{r}^{\mathrm{T}}$ yields a matrix whose *i*th row is the cross product of the *i*th row of **L** and **r**.

Equation E 50 gives the mean square displacement of a point **r** in a rigid body in terms of three tensors **T**, **L** and **S**. Considering in particular the set of points $\{\mathbf{r}\}$ corresponding to the rest positions of atoms in a single rigid body, **U** is the mean square displacement of each such atom, and can be identified as the anisotropic displacement parameter that occurs in the Debye-Waller factor in the expression for the structure factor. **T** and **L** are symmetric tensors, while **S** is in general asymmetric. Expanding equation E 50 out fully shows that the trace of **S** is not fixed by **U**. Hence, there are a total of 20 refinable parameters (6 from **T**, 6 from **L** and 8 from **S**).

Setting or deleting TLS tensors

The TLS tensors can be set in EDITM40 - see page 165.

Figure 80 Example of m40 *with TLS Tensors*

	↑ Th 0 r tak pa	ne type of t means that ken from TL rameters.	he temper the temper S tensors	ature facto rature parar refined as r	or neters are nolecular			
Octahedr			0.00000	0.631037	0.250000			Molecular header
As	1 0	0.500000	0.000000	0.631037	0.250000	000 -1 -1 -:	L	parameters
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0000000000	_	
F1	3 0	1.000000-	-0.099919	0.627170	0.499035	000 -1 -1 -:	1	
0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	0111000000		Atomic parameters
F2	3 0	1.000000	0.237283	0.552059	0.331158	000 -1 -1 -1	L	of the model
0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	0111000000		
03	4 0	1.000000	0.259975	0.704294	0.334697	000 -1 -1 -:	L	molecule
0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	0111000000		
pos#1	1	1.000000				000 0 2 2	2	Basic molecular
0.00	0.00	0.00	0.000000	-0.000004	0.00000	0000010		parameters
0.000000	0.000000	0.000000	0.000000	0.000000	0.00000			
T11	T22	T33	T12	T13	T23			
0.014132	0.001481	0.009300	0.000000	0.002228	0.000000	111010	_	
L11	L22	L33	L12	L13	L23			TLS tensors
0.010230	0.000595	0.005274	0.000000	-0.001615	0.000000	111010		
S11	S21	S31	S12	S22	S32	101010		
0.002033	0.000000	0.000386	0.000000	0.000122	0.000000	TOTOTO		
0 000494	523 0 000000.	-0 002155				100		
0.000484	0.000000	0.026420	0 00000	0 012900	0.00000	101010	-	
-0.001324	0.000000	0.020429	0.000000	0.013030	0.000000	101010	N	lolecular position
-0.031994	0.000000	0.020277	0.000000	-0 003030	0.000000	101010	mo	dulation parameters
-0.001632	0.000000	0.020277	0.000000	0 001542	0.000000	101010		
0.000000	0.000000	0.000000-	-0.000385	0.000000	0.000300	000101		
0.001490-	-0.000001	0.000198	0.000000	-0.000042	0.000000	111010		
0.000000	0.000000	0.000000	0.000100	0.000000	0.000384	000101		
-0.000073-	-0.000076	0.000026	0.000000	0.000509	0.000000	111010		
0.000000	0.000000	0.000000	0.000663	0.000000-	-0.000181	000101		
-0.001411	0.000087	0.000849	0.000000	-0.000258	0.000000	111010		
0.000000	0.000000	0.000000	0.000393	0.000000-	-0.000257	000101		
0.002053-	-0.000102	0.001321	0.000000	-0.001739	0.00000	111010		Madulations of
0.000000	0.000164	0.000000	0.000363	0.000000	0.000164	010101	>	Modulations of
0.000000	0.000431	0.000000				010	(ILS tensors
0.000624	0.000000	0.001277	0.000000	-0.000069	0.00000	101010		
-0.000269	0.000000-	-0.000555				100		
0.000000	0.000956	0.000000	0.000350	0.000000	0.000342	010101		
0.000000-	-0.000608	0.000000				010		
0.000825	0.000000	0.001718	0.000000	0.000270	0.00000	101010		
-0.000793	0.000000-	-0.001095				100		
0.000000							/	

Molecular position modulation parameters (This is part of table in page 98)							
xtsinl	ytsin1	ztsinl	xtcos1	ytæs1	ztæs1	kkkkkk	
•••	•••	•••	•••	•••	•••	•••	
xtsin16	ytsin16	ztsin16	xtcos16	ytæs16	ztæs16	kkkkkk	
xrsin1	yrsin1	zrsinl	xrccs1	yræsl	zrcosl	kkkkkk	
•••	•••	•••	•••	•••	•••	•••	
xrsin16	yrsin16	zrsin16	xrccs16	yrcos16	zrcos16	kkkkkk	

3.1.21 Molecular position modulation

The number of molecular position modulation waves is defined by wm_p (see the basic molecular parameters, page 142). The position modulation of each atom is defined by the molecular position modulation parameters. The atoms having $w_p>0$ have an additional "internal" modulation which generally allows to break down the rigidity of the molecule during modulation¹.

Meaning of parameters

xtsin1,,ztcos1	The translation components of the 1 st position modulation
	wave (see equation E 53, page 149)
xrsin1,,zrcos1	The rotation components of the 1 st position modulation wave
	(see equation E 54, page 149)

Theoretical

Let us consider a displacively modulated crystal in which the vth atom in the unit cell defined by n is located at:

$$\mathbf{r}_{\mathbf{n}\nu} = \mathbf{r}_{\nu}^{0} + \mathbf{n} + \mathbf{u}_{\nu} \{ \mathbf{q}_{1} \cdot (\mathbf{g}_{\nu} + \mathbf{n}), \dots, \mathbf{q}_{d} \cdot (\mathbf{g}_{\nu} + \mathbf{n}) \}, \qquad (E \ 51)$$

where \mathbf{r}_v^0 is the average position of atom v, \mathbf{n} represents the lattice translations, \mathbf{u}_v is the *d*-dimensional periodic vector field $\mathbf{u}_v(x_1,...,x_d) = \mathbf{u}_v(x_1 + n_1,...,x_d + n_d)$, $n_1, ..., n_d$ being integers, $\mathbf{q}_1,...,\mathbf{q}_d$ are incommensurate modulation vectors, which are rationally independent in the basis $\mathbf{a}_1^*, \mathbf{a}_2^*, \mathbf{a}_3^*$; \mathbf{g}_v is the phase reference point.

In the molecular displacement model all atoms in the molecule share the same phase reference point \mathbf{g} . The model assumes a molecule to be displaced as a rigid unit, i.e. the displacements are limited to translation and libration displacement coordinates. For all atoms in the rigid body

$$\mathbf{u}_{v} = \mathbf{u}_{m}^{t} \{ \mathbf{q}_{1} \cdot (\mathbf{g} + \mathbf{n}), \dots, \mathbf{q}_{d} \cdot (\mathbf{g} + \mathbf{n}) \} + \mathbf{u}_{m}^{r} \{ \mathbf{q}_{1} \cdot (\mathbf{g} + \mathbf{n}), \dots, \mathbf{q}_{d} \cdot (\mathbf{g} + \mathbf{n}) \} \times (\mathbf{r}_{v}^{0} - \mathbf{g}), \quad (E 52)$$

where \mathbf{u}^t and \mathbf{u}^r are respectively the displacement vector field and the rotational displacive vector field, m is number of a molecular position. Assuming that both

¹ But most of the molecule must be refined with $wp \le 0$.

vector fields are harmonic functions they can be expanded into a truncated Fourier series

$$\mathbf{u}_{v}^{t} = \sum_{i=1}^{l} \mathbf{U}_{m}^{t,s}(i) \sin[2\pi \overline{\mathbf{q}}_{i} \cdot (\mathbf{n} + \mathbf{g}_{v})] + \sum_{i=1}^{l} \mathbf{U}_{m}^{t,c}(i) \cos[2\pi \overline{\mathbf{q}}_{i} \cdot (\mathbf{n} + \mathbf{g}_{v})]$$
(E 53)

and

$$\mathbf{u}_{v}^{r} = \sum_{i=1}^{l} \mathbf{U}_{m}^{r,s}(i) \sin[2\pi \overline{\mathbf{q}}_{i} \cdot (\mathbf{n} + \mathbf{g}_{v})] + \sum_{i=1}^{l} \mathbf{U}_{m}^{r,c}(i) \cos[2\pi \overline{\mathbf{q}}_{i} \cdot (\mathbf{n} + \mathbf{g}_{v})], \qquad (E 54)$$

where $\overline{\mathbf{q}}_i$ is defined according to equation E 21, page 123.

Setting and deleting of molecular position modulation

This is described in EDITM40, page 168 and 191.

3.1.22 Molecular occupation modulation

Molecular (This is part	<i>Molecular occupation modulation parameters, harmonic functions</i> (see page 149) (<i>This is part of table in page 98</i>)					
OM						k
omsinl	omcosl					kk
•••	•••					
omsin16	omcos16					kk
•••	•••					
Molecular occupation modulation parameters, crenel function (see page 149)						
om						k
omsinl	omcosl					kk

The molecular occupation modulation is defined for positions with $wm_0 > 0$ (see page 142). It is calculated in analogy with occupation modulation for free atoms - see page 127. Harmonic occupation waves can be set in *EDITM40*, see page 168 and 191. Setting of a crenel occupation function is described in page 286.

Modulation	Modulation of TLS tensors (This is part of table in page 98)							
T11sin1	T22sin1	T33sin1	T12sin1	T13sin1	T23sin1	kkkkkk		
T11ccs1	T22cos1	T33ccs1	T120051	T13ccs1	T23ccs1	kkkkkk		
•••	•••	•••	•••	•••	•••	•••		
Tllsin16	T22sin16	T33sin16	Tl2sin16	T13sin16	T23sin16	kkkkkk		
T11ccs16	T22cos16	T33ccs16	T1200s16	T13ccs16	T23ccs16	kkkkkk		
L11sin1	L22sin1	L33sin1	L12sin1	L13sin1	L23sin1	kkkkkk		
Lilcosl	L22cos1	L33cos1	L120051	L13ccs1	123ccs1	kkkkkk		
•••	•••	•••	•••	•••	•••			
L11sin16	L22sin16	L33sin16	L12sin16	L13sin16	L23sin16	kkkkkk		
L11ccs16	L22cos16	L33ccs16	L1200s16	L13ccs16	123ccs16	kkkkkk		
S11sin1	S21sin1	S31sin1	S12sin1	S22sin1	S32sin1	kkkkkk		
S13sin1	S23sin1	S33sin1				kkk		
S11ccs1	S21ccs1	S31ccs1	S12cos1	S22cos1	S32cos1	kkkkkk		
S13ccs1	S23cos1	S33ccs1				kkk		
•••	•••	•••	•••	•••	•••			
•••	•••	•••						
S11sin16	S21sin16	S31sin16	S12sin16	S22sin16	S32sin16	kkkkkk		
S13sin16	S23sin16	S33sin16				kkk		
S11ccs16	S21ccs16	S31ccs16	S12ccs16	S22ccs16	S32ccs16	kkkkkk		
S13ccs16	S23ccs16	S33ccs16				kkk		

3.1.23 Molecular temperature modulation

The TLS parameters for rigid body description of temperature parameters are explained in page 145. For (3+1) modulated structures the non-harmonic ADP parameters can be modulated in similar way as occupancy, position or temperature parameters. The number of TLS modulation waves is given by the parameter wmt (see page 142).

Any component of a TLS tensor is then a function of the internal coordinate:

$$p_{\mathbf{n}\nu} = p_{\nu}^{0} + p_{\nu} \{ \mathbf{q}(\mathbf{g}_{\nu} + \mathbf{n}) \}, \qquad (E 55)$$

where p_v^0 is the average value of the relevant component of the TLS tensor for atom v, **n** represents the lattice translations, p_v is the periodic function $p_v(x) = p_v(x+n)$, n being integer, **q** is the incommensurate modulation vector, \mathbf{g}_v determines the phase reference point of the displaced entity.

The function p_v is the general modulation function of the atomic position. It can be expanded into a Fourier series:

$$p_{\nu} = \sum_{i=1}^{l} P_{\nu}^{s}(i) \sin[2\pi \overline{\mathbf{q}}_{i} \cdot (\mathbf{n} + \mathbf{g}_{\nu})] + \sum_{i=1}^{l} P_{\nu}^{c}(i) \cos[2\pi \overline{\mathbf{q}}_{i} \cdot (\mathbf{n} + \mathbf{g}_{\nu})], \qquad (E 56)$$

Meaning of parameters

T11sin1,, T23cos1	Components of the first modulation wave of the
	tensor T (see equation E 50).
L11sin1,, L23cos1	Components of the first modulation wave of the
	tensor L.
S11sin1,, S33cos1	Components of the first modulation wave of the
	tensor S.
kkkkk	The refinement keys related to parameters present
	in the same line of m40

Setting and deleting of molecular temperature modulation

Molecular temperature modulation waves can be set in *EDITM40*, see page 168 and 191.

3.1.24 Phason for molecular positions

The phason for molecular positions is defined analogically to the one for free atoms (see page 139).

3.2 Program EDITM40

Input: m50,[m40],[m48],[m45] **Output:** m40 **M50 control keywords:** none

Figure 81 The Basic Window of EDITM40¹

3.2.1 Description of EDITM40

EDITM40 is an interactive program for changing the *basic refinement parameter file* m40. It is rather set of tools than true editor and it is focused for making changes in m40 which cannot be simply done "by hand".

Before reading this chapter the user should have a preliminary knowledge about structure parameters and the structure parameters file m40 described in § 3.1 page 93.

The usage of *EDITM40* is closely connected with *REFINE* (see page 219).

¹ The list of tools in the basic window of *EDITM40* changes according to the type of the structure. For instance the item "Setting or deleting modulation waves" is missing for standard structures. The item "Undo/Do command" is only present if some changes have been already done.

Rules for making temporary and permanent changes

All changes made in *EDITM40* are temporary until the program is closed by Quit button and the changes are confirmed by the user. This rule has no exceptions, for instance holds true also for the tool Editing of the file m40.

After quitting *EDITM40* and confirming the changes there is no way to get back the original m40 except from the backup copy made by *REFINE* (see page 227).

Selecting atoms

Many *EDITM40* procedures uses the Select Atoms form to select a group of atoms for some action. In the upper part of the form there are listed atoms from m40. They can be selected by clicking the left mouse button or from the keyboard by typing the atom name (or a group including wildcards) in the textbox in the lower part of the form. The selected atoms have white background. In the case of a long list spread over more than one page the selection made from the keyboard influences the whole list. If the structure contains molecules, the Select atoms form is opened separately for the atomic and molecular part.

Figure 82 The Select Atoms Form

The examples given later in this chapter are mostly based on the molecular structure **testm** coming with the package as a testing example.

Figure 83 Testm.m40

	1 1	-	Ŧ	Ŧ					
4	4 1	-							
2.5	75509	0.	000000	0.000000	0.000000	0.000000	0.000000	100000	
0.0	00000	_							
0.0	00000	0.	000000	0.000000	0.000000	0.000000	0.000000	000000	
1.2	34301	0.	000000	0.000000	0.000000	0.000000	0.000000	100000	
Fe		1	2	0.250000	0.250000	0.250000	0.250000	000 0 1 1	L
0.0	01540	0.	002149	0.012272	0.000000	0.000000-	-0.001499	0000111001	
0.0	02502	0.	000000	0.000000	0.000000	0.000000	0.000000	100000	
0.0	00000	0.	000000	0.000000	0.000000	0.000000	0.000000	000000	
0.0	00000	υ.	000000	0.000000	0.000185	-0.000253	0.000000	000110	
0.0	00000	2	2	0 125000	0 250000	0 207577	0 00000		1
01 0	02504	۵ ۵	4 002569	0.125000	0.250000	0.307377	0.000000	0010111000	L
0.0	02304	٥. م	002303	0.0003333	0.000000	0.000000	0.000000	000100	
0.0	00000	٥. ٥	000000	0.000000	0.000209	0.000000	0.000000	000100	
0.0	00000	0. n	000000	0.000000	0.000000	0.000002	0.000000	000100	
0.0	00000	۰.	000000	0.000000	0.0000000	0.000000	0.000000	0	
01f	00000	5	2	0.125000	0.250000	0.307577	0.00000	000 0 1 1	1
0.0	02504	0.	002569	0.005933	0.000000	0.000000	0.000000	0000000000	-
0.0	00000	0.	000000	0.000000	0.006269	0.000000	0.000000	000000	
0.0	00000	0.	000000	0.000000	0.000000	-0.000062	0.000000	000000	
0.0	00000	0.	000000	0.000000	0.000035	0.000000	0.000000	000000	
0.0	00000							0	
Na1		4	2	0.250000	0.250000	0.000000	0.250000	000 0 1 1	L
0.0	03767	ο.	007208	0.017782	0.000000	0.000000	0.005009	0000111001	
0.0	00000	ο.	000000	0.000000	0.009265	0.000000	0.000000	000100	
0.0	00000	ο.	000000	0.000000	0.000308	0.000096	0.000000	000110	
0.0	00000	0.	000000	0.000000	0.000000	0.000000	0.00000	000000	
0.0	00000							0	
Na2		4	2	0.250000	0.000000	0.250000	0.250000	000 0 1 1	L
0.0	06046	0.	004531	0.015942	0.000000	0.000000	0.000000	0000111000	
-0.0	03914	0.	000000	0.000000	0.000000-	-0.011934	0.00000	100010	
0.0	00000	0.	000000	0.000000	0.000000	0.000000	0.000280	000001	
0.0	00000	0.	000000	0.000000	0.000000	0.002393	0.000000	000010	
0.0	00000							0	
Na3		4	2	0.500000	0.118296	0.126419	0.500000	000 1 1 1	L
0.0	02508	0.	004740	0.022151-	-0.000079	0.000000	0.00000	0110111100	
0.8	67840	_						1	
0.0	00000-	•0.	022042					01	
0.0	00000	0.	000000-	-0.001981	0.000365	-0.009662	0.000000	001110	
0.0	00000	0.	000000	0.000000	0.000000	0.000606	0.000496	000011	
-0.0	00015	0.	000743	0.0051/6	0.000289	0.000000	0.000000	111100	
0.0	00000	4	<u>_</u>	0 050000	0 000000	0 000000	0.050000	000 1 1 1	1
Na4	01005	4	4	0.250000	0.000000	0.000000	0.250000	000 1 1 1	L
0.0	04880	υ.	004643	0.01/2/5	0.000000	0.000000	0.000000	1	
0.0	00000	^	147027					1	
0.0	00000-	^U.	000000	0 002001	0 00000	0 00000	0 00000	01000	
0.0	00000	٥. ٥	000000	0.0000001	0.000000	0.000000	0.000000	00100	
0.0	000000	.0 .0	001012	0.0000000	0.0000033	0.000000	0.000000	111000	
0.0	02327-		001012	0.001000	0.000000	0.000000	0.000000	0	
Po4		0			0.119955	0.121983	0.00000	·	
P		2	2	0.500000	0.119801	0.121386	0.000000	000 0 -1 1	L
0.0	01488	0.	001991	0.007169	-0.000368	0.000000	0.000000	0000111100	1
0.0	00000	0.	000000	0.000000	0.000000	0.000171	-0.000181	000011	
-0.0	00028	0.	000192	0.000268	0.000051	0.000000	0.000000	111100	
0.0	00000							0	

Figure 83 (Continued)

O2 3 2 1.000000 0.157912 0.163473 0.11 0.003871 0.005279 0.008810-0.002440-0.000327-0.0 0.000364-0.000601-0.000221-0.000221-0.001290 0.0 0.000364-0.000601-0.000221-0.000021-0.001290 0.0 -0.000297 0.001116 0.000691-0.000255 0.000603-0.0 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000	75969 000 0 -1 1 00840 011111111 01471 111111 01057 111111 0
04 3 2 0.500000 0.138480 0.023283 0.0	00000 000 0 -1 1
0.005204 0.002468 0.024080 0.000089 0.000000 0.0	00000 0110111100
0.000000 0.000000 0.000000 0.000000-0.000818-0.0	00854 000011
-0.000172 0.000495 0.003761 0.001313 0.000000 0.0	00000 111100
0.00000	0
05 3 2 0.500000 0.025914 0.139070 0.0	00000 000 0 -1 1
0.001766 0.006197 0.022536 0.000413 0.000000 0.0	00000 0110111100
0.000000 0.000000 0.000000 0.000000 0.000981-0.0	000011 000011
-0.000273-0.001402-0.000084-0.001155 0.000000 0.0	00000 111100
0.000000	0
pos#1 1 1.000000	000 0 1 0
0.000 0.000 0.000-0.000003 0.000000 0.0	00000 0000110
0.000000 0.000000 0.000000 0.000000 0.000000	00000
0.000000 0.000000 0.002955 0.000477 0.001805 0.0	00000 001110
0.003709 0.005367 0.000000 0.000000 0.000000 0.00	32134 110001
0.000000	0
Fe 0.000000 0.000000 0.000000 0.0	00000
0.000014 0.000017 0.000082 0.000000 0.000000 0.0	00027
0.000037 0.000000 0.000000 0.000000 0.000000 0.0	00000
0.000000 0.000000 0.000000 0.000000 0.000000	00000
0.000000 0.000000 0.000000 0.000022 0.000044 0.0	00000
0.00000	

.

3.2.2 Service tools

Do/Undo command

EDITM40 saves every change of m40 in a temporary backup file. The Do/Undo interface enables to step back and forward in the list of the backup copies. The selected copy becomes the current temporary¹ m40 file. *The backup files are deleted after quitting EDITM40*.

Figure 84 The Undo/Do Form

	The last made change :	
	#3 - Deleting of atoms	;
Step back	1	Step forward
	Esc Ok	

Editing of the file m40

The first item of the *EDITM40* main menu is Editing of m40. However, the user does not edit original m40 but only a copy containing the current stage of temporary m40. The changes made by the user in the editing mode become permanent after quitting *EDITM40* and confirmation by the user.

Conversion of m40 and m50 to various formats

This tool converts a structure to formats of various crystallographic plotting programs. The result of the conversion of the modulated structure is a 3 dimensional structure expanded to a desired volume. The symmetry is reduced to *P1*.

Figure 85 Conversion of m40 and m50 to various formats

¹ The change is permanent after quitting *EDITM40* and confirmation by the user.

3.2.3 Procedures for deleting or adding atoms

Replacing/inserting atoms

The Replacing/inserting tool can be used for inserting new atoms from the keyboard or for inserting peaks previously calculated by *FOURIER*. The initial form varies dependent whether the list of peaks exists (Figure 86b) or does not exist (Figure 86a). This tool is usually used for adding small number of new atoms or for adding the strongest maxima from Fourier maps. For importing SHELX files there is a more efficient way through Tools->Transfer files from SHELX (see page 43).

Inserting/replacing of atoms Maximum distance 3 Esc Ok	a)
Inserting/replacing of atoms Peaks from Fourier (file M48) Coordinates from keyboard Maximum distance Esc Ok	b) Explained here

Figure 86 Replacing/inserting atoms: the initial form

shows the typical dialogue during adding of new maxima from their list saved by *FOURIER* in m48. The user first selects the maxima to be added to m40. Then *EDITM40* displays for selected maximum list of the equivalent positions and their distances to atoms already present in m40 so that the user can select a position within an existing molecule or molecular fragment in m40. The limit for calculation of these distances is set in the form shown in Figure 86. Finally the information about atom name, initial isotropic temperature parameter, occupancy and chemical type is required. The reduction of occupancy is used if the position is less occupied than it follows from the site symmetry.

Select peaks Max1 Max2 Max3 Max4 Max5 Max6 Max9 Include - atom type Include Include - atom name List Select all Esc Ok Refresh
Peak : Max2 Equivalent coordinates Distance Atom $0.00000 \ 0.091176 \ 0.750000 \ -$ as read/typed in $0.500000 \ 0.591176 \ 0.750000 \ 2.71 \ F2$ $0.500000 \ 0.591176 \ 0.750000 \ 2.76 \ F1$ $0.500000 \ 0.591176 \ 0.750000 \ 2.83 \ F2$ $0.500000 \ 0.591176 \ 0.750000 \ 2.92 \ G1$ $$ Skip this peak Esc $0k$
Complete information for the new atom
Name of the atomBiso3Occupancy 1/2Reduction1Atomic typeAs
Esc Ok

Figure 87 Adding maxima from m48.

Deleting of atoms

The atoms to be deleted can be selected through the Select atoms form (see page 155). In case when molecules are present the form opens separately for the atomic part and for the model molecule. If the model molecule is completely deleted the program automatically removes also the molecular header and all parameters related to molecular positions.

Adding of hydrogen atoms

Figure 88 shows a typical dialogue during adding of new hydrogen atoms. *EDITM40* calculates new hydrogen positions to be in the vertices of a tetrahedron, triangle or abscissa with the center at the selected atom. In the first form the user specifies the distance between the central atom and new hydrogens ("hydrogen distance") and the distance limit for searching of the vertices which are already occupied by existing atoms ("neighbour distance"). Then the Select atoms form is opened in order to select the central atoms around which the hydrogens are to be calculated. For each central atom the last form is opened to specify number of hydrogens defining the shape of the body (tetrahedron, triangle or abscissa). The new hydrogen atoms are added by the program to m40 with default names.

Adding of "hydrogen" atoms	
Neighbour distance 1.5	
" <u>Hy</u> drogen" distance 1	
"Hydrogen" atomic type 🔺 H	
Esc	
Select atoms from atomic part	
Zn Br O1 N1 N2	
N3 C1 C2 C3 C4	
C5 C6 C7 C8 C9	
C10 C11 C12	
Include - atom type Include Include - atom p	name
List	
Select all Esc Ok Refresh	_
Adding hydrogen atom to the atom : C7	Geometry of selected neighbours of
Select its neighbours	the central atom determines
Distance to atom C12 1.398	positions of new hydrogen atoms. In
Distance to atom C6 1.428	this case one new hydrogen
Distance to atom C8 1.435	completes the tetrahedron around
Number of "hydrogen" atoms to be added	C7.
Esc Ok	

Merging of symmetry related atoms

The program merges atoms within a given distance limit.

3.2.4 Transformation procedures

Transformation and/or origin shift

Figure 89 shows the tool for transformation of a selected part of m40. In the first form the user selects the way of entering the transformation matrix. The next form already contains the matrix. Then a menu follows showing available parts of m40 (in the given example m40 contains a molecule named "PO4"). Finally the Select atoms form is used for the definition which atoms from the chosen part of m40 will be transformed.

Choice Symmetry Explicit _1*Symmetry	Choice Symmetry Explicit -1*Symmetry
Transformation matrix	Transformation matrix
1st row	<u>1</u> st row -1 0 0 0
2nd row	2nd row 0 1 0 0
3rd row	<u>3</u> rd row 0 0 -1 0
4th row	4th row 0 0 0 -1
Origin shift	Origin shift 0 0 1/2 0
Esc Ok	Esc Ok
Po4 Whole structure	
Select atoms from Fe 01 01 01f 01 Na3 Na4	atomic part
Include - atom type Include	e Include - atom <u>n</u> ame
List	*
Select all Esc	Ok <u>R</u> efresh

Figure 89 Transformation and origin shift

Expansion by symmetry operation(s)

This tool generates a set of new atoms from atoms already existing in m40 using one or more symmetry matrices. The interface is similar to the one for the transformation (see page 162) with the exception that more than one transformation matrices can be used. The new atoms are added to m40 with automatically generated names.

Choice Symmetry Explicit -1*Symmetry 1st row 2nd row 3rd row 4th row Origin shift Next matrix Apply Esc Ok	Choice Symmetry Explicit1*Symmetry Expansion matrix # 1 1st row 2nd row 3rd row 4th row Origin shift Next matrix Apply Esc Ok
Choice Symmetry Explicit -1*Symmetry Expansion matrix # 1 1st row -1 0 0 0 2nd row 0 1 0 0 3rd row 0 0 -1 0 4th row 0 0 0 -1 Origin shift 0 0 1/2 0 Next matrix Apply Esc 0k Atomic parameters Po4 Whole structure	Choice Symmetry Explicit -1*Symmetry 1st row 2nd row 3rd row 4th row Origin shift Next matrix Apply Esc Ok
Select atoms from Fe O1 O1 O1f Na3 Include - atom type Inclu List Select all Esc	m atomic part Nal Na2 de Include - atom name

Transforming m40 to supercell

This tool transforms a commensurate structure a superstructure. The new 3dimensional structure has a new name given by the user so that the parent commensurate structure is not changed. The procedure does not require any additional information as the superstructure is sufficiently defined by the q-vector and the commensurate option parameters (see page 76). The transformation is a complete one, i.e. the new structure contains all necessary files (m40, m50 and m91) for the refinement.

3.2.5 Procedures handling temperature parameters and ADP

JANA98 works with the following types of displacement parameters:

- Isotropic or anisotropic temperature parameters of an individual atom
- TLS tensors for refining of molecular temperature parameters
- Anharmonic displacement parameters (ADP)

All types are available for both standard and modulated structures. However, ADP parameters cannot be modulated for 3+2 and 3+3 dimensional structures.

Temperature parameters

This tool converts between isotropic and anisotropic temperature parameters. In case of molecules it can also convert individual temperature parameters of a model molecule (i.e. isotropic and anisotropic temperature parameters) to molecular temperature parameters (i.e. TLS tensors). See page 140 for more information about molecules, page 120 and 131 for more information about individual temperature parameters, page 145 and 150 for more information about TLS tensors.

Figure 91 shows usage of this tool for conversion between individual and molecular temperature parameters.

Beta<->U

This tool converts between beta and U form of individual temperature parameters. This change can only be done for all atoms in m40. See page 120 for more information.

Figure 91 Conversion of individual temperature parameters to TLS

Setting or deleting anharmonic tensors

The anharmonic displacement parameters (see page 121 and 137.) are available up to the 6^{th} order and can be set or deleted through a simple interface shown in Figure 92. The second order corresponds to an individual anisotropic temperature factor. The 5^{th} and 6^{th} order tensors should be used only for a very precise data.

Figure 92 Setting anharmonic tensors

Select a	nharmon	ic ten	sors to	be used	
<u>2</u> nd	<u>3</u> rd	$\underline{4}$ th	5th	<u>6</u> th	
\checkmark	\checkmark	\checkmark			
	Es	c	0k		

3.2.6 Setting modulation waves and refinement keys

Setting of refinement keys

The refinement keys are explained in pages 93 and 223. This tool can be used for setting keys which cannot be set automatically (see Table 13, page 226) or if the automatic setting of refinement keys is off¹. In case when automatic setting is on the keys set here will be overwritten by *REFINE* expect those which are not handled automatically.

The refinement keys can only be set for groups of atoms having the same sets of parameters. This is for instance group of O1, O1f and Na1 in Figure 83 but not atoms O1 and O2 or atoms Na2 and Na3.

¹ We recommend work without automatic refinement keys only in well-founded cases.

Setting or deleting modulation waves

This tool initialises or deletes modulation parameters for atoms in atomic part of m40, for atoms from model molecules and for molecular positions. The modulation parameters are added with default initial values (small positive numbers) and with refinement keys set to "1". In the automatic mode (see page 223) the refinement keys are changed in *REFINE* by application of the symmetry restriction rules. An example is given in Figure 95.

Define modulation waves

This tool is used for definition of wave vectors (see page 105 for more information). In the case of four-dimensional structures the default setting is usually the optimal one. The example shown in **Figure 94** is for a 5-dimensional structure with q-vectors q_1 and q_2 . The first two waves cannot be changed and are equal to the first and the second vector, respectively. The 3rd and 4th waves are respectively defined by the user as $q_1 + q_2$ and $q_1 - q_2$. The remaining waves are left with the default parameters.

Figure 94 definition of wave vectors for a 5-dimensional case

	Modul	ation	waves		
1st wave		1	*q1	0	*q2
2nd wave		0	*q1	1	*q2
3rd wave		1	*q1	1	*q2
4th wave		1	*q1	-1	*q2
5th wave		3	*q1	0	*q2
6th wave		0	*q1	3	*q2
7th wave		4	*q1	0	*q2
8th wave		0	*q1	4	*q2
					•
	Esc		Ok		

Atomic parameters Po4 Modulation waves for atoms of a model molecule are set in the atomic part. The PO4 part is for setting of molecular parameters related to molecular positions.
Select atoms from atomic part Fe O1 O1 O1f Na1 Na2 Na3 Na4 Include - atom type Include Include - atom name List Select all Esc Ok Refresh Select atoms from molecular part
P 02 04 05 Include - atom type Include Include - atom name List Image: Constraint of the second
Number of modulation waves Occupational parameters 0 Positional parameters 1 Temperature parameters 1 Esc Ok
Select atoms from atomic part Fe O1 O1f Na1 Na3 Na4 Include - atom type Include Include - atom name List Select all Esc Ok Refresh
Select atoms from molecular part P 02 04 05 Include - atom type Include Include - atom name List Image: Select all Esc 0k Refresh

Figure 95 Example of setting modulation waves

Setting orthogonalization parameters

The orthogonalization is needed in cases when modulation of position, temperature or ADP parameters is combined with a crenel or sawtooth function not defined on a full interval of x_4 . The underlying theory is given in the chapter "

Special and harmonic functions applied together" in page 133. The details about **ortho** command are given in page 106. The orthogonalization can be made for individual atoms as well as for molecules.

The ortho command consists of two lines. The first line tells the program that modulation functions for selected atom or molecular position will be orthogonalized. The second (optional) line tells which functions will be included in the orthogonalization. The missing second line means all functions are included. If we set epsilon equal to 1 and press "Calculate" all checkboxes in the form will be checked, i.e. all functions will be included.

3.2.7 Procedures handling molecules

The concept of molecules in *JANA98* is described in page 140. The chapters starting in page 141 explain molecular parameters and underlying theory. Here we shall proceed by description of the basic tools in *EDITM40* for work with molecules.

Creation of new molecular part

The example given in Figure 97, Figure 98 and Figure 99 shows creation of a molecule from the atomic part of m40. Another way is creation of a new molecule from a model molecule in m45 - see page 177.

Figure 97 Atomic m40

(See Figi	ure 98 fo	or creating molecules from this input)	
76 0	0 0	1	
0.349776 0.000000	0.134152	0.151879 0.211076 0.141322 0.156513	111111
0.000000	0.000000	0.000000 0.000000 0.000000 0.000000	000000
0.000000	0.000000	0.000000 0.000000 0.000000 0.000000	000000
K11	12	1.000000 0.148290 0.560673 0.581993	
0.009251	0.032521	0.022902-0.000130 0.003376-0.016116	011111111
к12	1 2	1.000000 0.656510 0.567390 0.557002	
0.009251	0.032521	0.022902-0.000130 0.003376-0.016116	0111000000
			0111000000
Min23	2 1	1.000000 0.791403 0.142776 0.648432	
0.006213	0.000000	0.000000 0.000000 0.000000 0.000000	0111100000
Min24	2 1	1.000000 0.295958 0.151763 0.662833	
0.006213	0.000000	0.000000 0.000000 0.000000 0.000000	0111000000
Bela	3 2	1.000000 0.246889 0.870496 0.470083	
0.008280	0.017171	0.011088 0.005632-0.002418-0.000267	011111111
F21a	4 2	1,000000 0,257669 0,925575 0,330705	
0 022625	0 029282	0 008272-0 004914-0 003285 0 000824	011111111
F11a	4 2	1 000000 0 277380 0 963096 0 575194	011111111
0 040734	0 011777	0.019152-0.010180-0.000190-0.005892	011111111
F21a	4 2	1 000000 0 280730 0 735286 0 488883	011111111
0 033603	0 025945	0.048385.0.023503_0.011240_0.003297	0111111111
F41a	4 2	1 00000 0 171727 0 850744 0 498849	011111111
0.016242	1 4 0 026662		011111111
0.010242	0.030002	1 000000 0 742221 0 964902 0 491125	VIIIIIII
	0 017000		011111111
0.007908	0.01/008	0.011623 0.003669-0.001552-0.000/15	
FZLD	4 4		011111111
0.021115	0.029213		
FITD	4 2	1.000000 0.781307 0.949327 0.581643	011111111
0.039648	0.012903		011111111
F3LD	4 4		011111111
0.031/39	0.025680		UIIIIIII
0 001056	4 4		0111111111
0.021956	0.03/011	0.043631-0.004998 0.021408-0.001483	UIIIIIII
Belk	3 2		
0 019697	0 011907	0 004935 0 001630-0 001047 0 000038	011111111
F21k	4 2	1 000000 0 096999 0 180200 0 307647	011111111
0.025429	0.012521	0.022229-0.001520 0.005786-0.008363	011111111
F11k	4 2	1.000000 0.122882-0.040546 0.201213	
0.008452	0.021032	0.042179 0.005572 0.000699-0.006543	011111111
F31k	4 2	1.000000 0.016095 0.066117 0.152211	******
0 041347	0 051257	0 015229 0 013392-0 017012 0 002357	011111111
F41b	4 2	1 000000 0 034112-0 026195 0 378345	011111111
0 032080	0 035278	0.035241_0.007909.0.006918.0.022251	011111111
Be11	3 2	1 000000 0 571119 0 042951 0 266168	011111111
0 018394	0 011366	0.006778 0.002253-0.002807-0.003333	011111111
F211	4 2	1 000000 0 584092 0 190777 0 246193	011111111
0 026014	0 000040		011111111
F111	4 2	1 000000 0 633315_0 030133 0 232542	VIIIIII
0 006830	0 021530		0111111111
F311	4 2	1 000000 0 515994_0 009339 0 174351	VIIIIII
0 034382	0 047990	0.025660 0.00059-0.0000000 0.014000	011111111
F411	4 2		VIIIIII
0 036036	4 4 0 050303	1.000000 0.3490/9 0.0138/0 0.4111/3	011111111
0.00000	11.11.11.11.15	U.U.U.C.17=U.UU11119 U.UU4134 U.U.D.AM	

Figure 98 creation of molecules from the atomic part of m40

(The input m40 file is shown in Figure 97)

The result of the process shown in Figure 98 is m40 with one molecule BeF_4 repeated in 12 positions. The reverse process can be done with the tool "Move atoms from molecule to atomic part".

Figure 99M40 from Figure 97 after creating molecule	S
---	---

16 : 5 1:	10 2	1							
0.349776	0.134152	0.151879	0.211076	0.141322	0.156513	111111			The atomic part
0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	000000			
0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	000000			
K11	12	1.000000	0.148290	0.560673	0.581993				
0.009251	0.032521	0.022902	-0.000130	0.003376-	-0.016116	0111111	111		
• • • • •									
Mn23	2 I	1.000000	0.791403	0.142776	0.648432	0111100			
0.006213	0.000000	1 000000	0.000000	0.000000	0.000000	0111100	000		
MIL24	2 I	1.000000	0.295958	0.151/63	0.002833	0111000			
0.006213 Rof4	0.000000	0.000000	0.000000	0.000000	0.000000	01110000	000		
Bela	3 2	1 000000	0 246889	0 870496	0 470083				
0,008280	0.017171	0.011088	0.005632	-0.002418-	-0.000267	0000111	111		The molecular header
F21a	4 2	1.000000	0.257669	0.925575	0.330705				(coo page 165) and
0.022625	0.029282	0.008272	-0.004914	-0.003285	0.000824	0111111	111		(See page 105) and
F11a	4 2	1.000000	0.277380	0.963096	0.575194				atomic parameters of
0.040734	0.011777	0.019152	-0.010180	-0.000190-	-0.005892	0111111	111		the model miecule.
F31a	4 2	1.000000	0.280730	0.735286	0.488883				
0.033603	0.025845	0.048385	0.023503	-0.011240-	0.003297	0111111	111		
F41a	42	1.000000	0.171727	0.850744	0.498849				
0.016242	0.036662	0.049694	-0.003854	0.017564	-0.001100	0111111	111		
pos#1	1	1.000000				000 0	0	0	Parameters of the 1st
0.000	0.000	0.000	0.000000	0.000000	0.00000	0000111			molecular position
0.00000	0.000000	0.000000	0.000000	0.000000	0.00000				(see page 167)
pos#2	1	1.000000				000 0	0	0	
-0.850	8.618	3.720	0.495332	-0.005604	0.011052	0111111			Parameters of the 2 nd
0.000000	0.000000	0.000000	0.000000	0.000000	0.00000				molecular position
pos#3	1	1.000000				000 0	0	0	Development and the Ord
-20.359	6.838	165.405	0.742645	-0.247409	0.069336	0111111			Parameters of the 3 rd
0.000000	1	1.000000	0.000000	0.000000	0.00000	000 0	•	^	molecular position
pos#4	10 000	176 001	0 240200	0 220261	0 052167	000 0	U	0	
0 000000	0 000000	0 000000	0.000000	0 000000	0.000000	UTTTTT			
DOS#5	1	1.000000	0.000000	0.000000	0.000000	000 0	0	0	
91,206	- 5.801	93.885	-0.133621	-0.122569	0.402071	0111111	Ū	Ŭ	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000				
pos#6	1	1.000000				000 0	0	0	
112.014	-17.302	91.133	0.365095	-0.131409	0.409956	0111111			
0.00000	0.000000	0.000000	0.000000	0.000000	0.000000				
pos#7	1	1.000000				000 0	0	0	
-102.659	-2.041	-93.460	0.617538	-0.097104-	0.336053	0111111			
0.000000	0.000000	0.000000	0.000000	0.000000	0.00000				
pos#8	1	1.000000				000 0	0	0	
-107.375	16.955	-83.677	0.109664	-0.108406-	-0.351159	0111111			
0.000000	0.000000	0.000000	0.000000	0.000000	0.00000				
pos#9	1	1.000000				000 0	0	0	
-46.987	-76.955	-60.251	0.573501	-0.412600	0.282860	0111111			
0.000000	1	1 000000	0.000000	0.000000	0.000000	000 0	0	0	
145 021	T 05 030	122 420	0 050020	0 107022	0 269402	000 0	0	0	
0 000000	0 000000	0 000000	0.0000000	0 000000	0.200403	UTTTTT			
pos#11	1	1.000000	5.000000	5.000000	0.00000	000 0	0	0	
44.286	62.153	137.005	-0.178527	-0.822657-	0.208536	0111111			
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000				
pos#12	1	1.000000				000 0	0	0	
-6.281	77.758	70.412	0.324230	-0.827545-	0.203915	0111111			
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000				

Using the model molecule file m45

Another possibility is to create a molecule from atoms given in m45. This file contains a user-defined model molecule in arbitrary crystal coordinate system. *EDITM40* reads the molecule, verifies the chemical types of atoms and offers creating of molecular positions (see Figure 101).

Figure 100 An Example of the m45 File. It is used in Figure 101.

Cell parameters in a free format. They can be different from the cell parameters in m50.

111	90 90	90		
Ac1	2	1	0.083333 0.433000 0.0	000000 0.000000
Ah11	3	1	0.166667 1.010000 0.8	816000 0.000000
Ac2	2	1	0.166667-0.433000 0.0	000000 1.225000
Ah21	3	1	0.166667-1.010000 0.8	816000 1.225000
Ah22	3	1	0.166667-1.010000-0.8	816000 1.225000
Ac3	2	1	0.166667 0.433000 0.0	000000 2.450000
Ah31	3	1	0.166667 1.010000 0.8	816000 2.450000
Ah32	3	1	0.166667 1.010000-0.8	816000 2.450000
Ac4	2	1	0.166667-0.433000 0.0	000000 3.675000
Ah41	3	1	0.166667-1.010000 0.8	816000 3.675000
Ah42	3	1	0.166667-1.010000-0.8	816000 3.675000
Ac5	2	1	0.166667 0.433000 0.0	000000 4.900000
Ah51	3	1	0.166667 1.010000 0.8	816000 4.900000
Ah52	3	1	0.166667 1.010000-0.8	816000 4.900000
Ac6	2	1	0.166667-0.433000 0.0	000000 6.125000
Ah61	3	1	0.166667-1.010000 0.8	816000 6.125000
Ah62	3	1	0.166667-1.010000-0.8	816000 6.125000
Ac7	2	1	0.166667 0.433000 0.0	000000 7.350000
Ah71	3	1	0.166667 1.010000 0.8	816000 7.350000
Ah72	3	1	0.166667 1.010000-0.8	816000 7.350000
Ac8	2	1	0.166667-0.433000 0.0	000000 8.575000
Ah81	3	1	0.166667-1.010000 0.8	816000 8.575000
Ah82	3	1	0.166667-1.010000-0.8	816000 8.575000
Ac9	2	1	0.166667 0.433000 0.0	000000 9.800000
Ah91	3	1	0.166667 1.010000 0.8	816000 9.800000
Ah92	3	1	0.166667 1.010000-0.8	816000 9.800000
Ac10	2	1	0.166667-0.433000 0.0	0000011.025000
Ah101	3	1	0.166667-1.010000 0.8	81600011.025000
Ah102	3	1	0.166667-1.010000-0.8	81600011.025000
			0	
	1		▼ Occupancy	a condition to conf
	lom			coordinates of
▼ n	ame		Temperature	★ model atoms
			parameter type	
		★	(Not relevant)	
		•	(
			Chemical type	
	↓	(se	e Chtype, page 134)	

Figure 101 Inserting a molecule from m45 (see Figure 100)

Figure 102 M40 with a molecule added from m45 (see Figure 101)

0 1	10	1	
29 3	1		
1.000000	0.000000	0.000000 0.000000 0.000000 0.000000	000000
0.000000			
0.000000	0.000000	0.000000 0.000000 0.000000 0.000000	000000
0.00000	0.000000	0.000000 0.000000 0.000000 0.000000	000000
Alk	1	0.00000 0.00000 0.00000	
Ac1	- 2 1	0 083333 0 052666 0 000000 0 000000	
ACT 0.02700E	2 1		000000000
0.03/995	0.000000		00000000000
Anii	3 I	0.166667 0.180147 0.114604 0.000000	
0.037995	0.000000	0.000000 0.000000 0.000000 0.000000	00000000000
Ac2	2 1	0.166667-0.052666 0.000000 0.111322	
0.037995	0.000000	0.000000 0.000000 0.000000 0.000000	0000000000
Ah21	31	0.166667-0.065544 0.114604 0.111322	
0.037995	0.000000	0.000000 0.000000 0.000000 0.000000	0000000000
Ah22	31	0.166667-0.180147-0.114604 0.111322	
0.037995	0.000000	0.000000 0.000000 0.000000 0.000000	0000000000
Ac3	2 1	0.166667 0.052665 0.000000 0.222644	
0.037995	0.000000	0.000000 0.000000 0.000000 0.000000	0000000000
Ah31	3 1	0.166667 0.180147 0.114603 0.222644	
0 037995	0 000000		000000000
AP30	2 1		0000000000
AIL52	0 000000		000000000
0.03/995	0.000000		00000000000
AC4	2 I	0.166667-0.052666 0.000000 0.333966	
0.037995	0.000000	0.000000 0.000000 0.000000 0.000000	0000000000
Ah41	31	0.166667-0.065544 0.114603 0.333966	
0.037995	0.000000	0.000000 0.000000 0.000000 0.000000	0000000000
Ah42	31	0.166667-0.180147-0.114604 0.333966	
0. Ac5	2 1	0.166667 0.052665 0.000000 0.445289	
		••=••••	
037995 0.0	000000 0.0	000000 0.000000 0.000000 0.000000 00	0000000
037995 0.0 Ac7	000000 0.0 2 1	000000 0.000000 0.000000 0.000000 00 0.166667 0.052665 0.000000 0.667933	0000000
037995 0.0 Ac7 0.037995	000000 0.0 2 1 0.000000	000000 0.000000 0.000000 0.000000 00 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000	00000000
037995 0.0 Ac7 0.037995 Ah71	000000 0.0 2 1 0.000000 3 1	000000 0.000000 0.000000 0.000000 00 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933	00000000 0000000000
037995 0.0 Ac7 0.037995 Ah71 0.037995	000000 0.0 2 1 0.000000 3 1 0.000000	000000 0.000000 0.000000 0.000000 00 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.000000 0.000000 0.000000 0.000000	00000000 0000000000 0000000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72	000000 0.0 2 1 0.000000 3 1 0.000000 3 1	000000 0.000000 0.000000 0.000000 00 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.000000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933	00000000 0000000000 0000000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995	000000 0.0 2 1 0.000000 3 1 0.000000 3 1 0.000000	000000 0.000000 0.000000 0.000000 00 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.000000 0.000000 0.000000	00000000 0000000000 0000000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8	2 1 0.000000 3 1 0.000000 3 1 0.000000 2 1	000000 0.000000 0.000000 0.000000 00 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255	00000000 0000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995	000000 0.0 2 1 0.000000 3 1 0.000000 3 1 0.000000 2 1 0.000000	000000 0.000000 0.000000 0.000000 00 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.000000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.000000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.000000 0.000000	00000000 0000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995	000000 0.0 2 1 0.000000 3 1 0.000000 3 1 0.000000 2 1 0.000000	000000 0.000000 0.000000 0.000000 00 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.000000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.000000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.000000 0.000000 0.000000	00000000 0000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81	000000 0.0 2 1 0.000000 3 1 0.000000 3 1 0.000000 2 1 0.000000 3 1 0.000000 3 2	000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.000000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.000000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.000000 0.000000 0.166667-0.065544 0.114603 0.779255 0.000000 0.000000 0.000000	00000000 0000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995	000000 0.0 2 1 0.000000 3 1 0.000000 3 1 0.000000 2 1 0.000000 3 1 0.000000	000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.00000 0.000000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.000000 0.000000 0.166667-0.065544 0.114603 0.779255 0.000000 0.000000 0.000000	00000000 0000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah81	000000 0.0 2 1 0.000000 3 1 0.000000 2 1 0.000000 3 1 0.000000 3 1 0.000000 3 1	000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.00000 0.000000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.00000 0.000000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.000000 0.000000 0.166667-0.065544 0.114603 0.779255 0.000000 0.000000 0.000000 0.166667-0.180147-0.114604 0.779255	00000000 0000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah82 0.037995	000000 0.0 2 1 0.000000 3 1 0.000000 2 1 0.000000 3 1 0.000000 3 1 0.000000 3 1 0.000000	000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.00000 0.000000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667-0.065544 0.114603 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667-0.180147-0.114604 0.779255 0.000000 0.000000 0.000000	00000000 0000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah82 0.037995 Ac9	000000 0.0 2 1 0.000000 3 1 0.000000 2 1 0.000000 3 1 0.000000 3 1 0.000000 3 1 0.000000 2 1	000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667-0.065544 0.114603 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667-0.180147-0.114604 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.890577	00000000 0000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah82 0.037995 Ac9 0.037995	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667-0.065544 0.114603 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667-0.180147-0.114604 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.890577 0.000000 0.000000 0.000000 0.000000	00000000 0000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah82 0.037995 Ac9 0.037995 Ah91	000000 0.0 2 1 0.000000 3 1 0.000000 2 1 0.000000 3 1 0.000000 3 1 0.000000 2 1 0.000000 3 1 0.000000 3 1	000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.00000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.00000 0.000000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.00000 0.000000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667-0.065544 0.114603 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667-0.180147-0.114604 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.890577 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.890577	00000000 0000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah82 0.037995 Ac9 0.037995 Ah91 0.037995	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.00000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.00000 0.00000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.00000 0.00000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.00000 0.000000 0.000000 0.166667-0.065544 0.114603 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667-0.180147-0.114604 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667 0.052655 0.000000 0.890577 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.890577 0.000000 0.000000 0.000000 0.000000	00000000 0000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah82 0.037995 Ah91 0.037995 Ah91 0.037995 Ah92	2 1 0.00000 0.0 2 1 0.000000 3 1 0.000000 2 1 0.000000 3 1 0.000000 3 1 0.000000 2 1 0.000000 3 1 0.0000000 3 1 0.000000 3 1 0.000000 3 1 0.0000000 3 1 0.000000 3 1 0.000000 3 1 0.0000000 3 1 0.0000000 0 3 1 0.00000000 0 3 1 0.00000000000000000000000000000000000	000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.00000 0.00000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.00000 0.000000 0.000000 0.166667-0.065544 0.114603 0.779255 0.000000 0.00000 0.000000 0.000000 0.166667-0.180147-0.114604 0.779255 0.000000 0.00000 0.000000 0.000000 0.166667 0.052665 0.000000 0.890577 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.890577 0.00000 0.00000 0.000000 0.000000 0.166667 0.180147 0.114603 0.890577	00000000 0000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah82 0.037995 Ac9 0.037995 Ah91 0.037995 Ah91 0.037995 Ah92 0.037995	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.00000 0.00000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.00000 0.00000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.00000 0.000000 0.000000 0.166667-0.065544 0.114603 0.779255 0.000000 0.00000 0.000000 0.000000 0.166667-0.180147-0.114604 0.779255 0.000000 0.00000 0.000000 0.000000 0.166667 0.052655 0.000000 0.890577 0.000000 0.00000 0.000000 0.000000 0.166667 0.180147 0.114603 0.890577 0.00000 0.00000 0.00000 0.000000 0.166667 0.065544-0.114604 0.890577 0.00000 0.00000 0.000000 0.000000	00000000 0000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah82 0.037995 Ac9 0.037995 Ah91 0.037995 Ah92 0.037995 Ac10	2 1 0.00000 0.0 2 1 0.000000 3 1 0.000000 2 1 0.000000 3 1 0.000000 2 1 0.000000 3 1 0.000000 3 1 0.000000 3 1 0.000000 2 1	000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667-0.180147-0.114603 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147-0.114604 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.890577 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.890577 0.000000 0.000000 0.000000 0.000000 0.166667 0.05544-0.114604 0.890577 0.000000 0.000000 0.000000 0.000000 0.166667 0.05544-0.114604 0.890577 0.000000 0.000000 0.000000 0.000000	00000000 0000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah91 0.037995 Ah91 0.037995 Ah92 0.037995 Ac10 0.037995	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 0.00000 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 0.00000 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 0.00000 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 0.00000 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 0.00000 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 0.00000 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 0.00000 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 0.00000 \\ \end{array} $ \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0.00000 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array}	000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667-0.065544 0.114603 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667-0.180147-0.114604 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.890577 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.890577 0.000000 0.000000 0.000000 0.000000 0.166667 0.05544-0.114604 0.890577 0.000000 0.000000 0.000000 0.000000 0.166677-0.52666 0.000000 0.000000 0.166677-0.52666 0.000000 0.000000	
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah82 0.037995 Ah91 0.037995 Ah91 0.037995 Ah92 0.037995 Ac10 0.037995 Ac10	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	000000 0.000000 0.000000 0.000000 0.000000	00000000 0000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah82 0.037995 Ah91 0.037995 Ah91 0.037995 Ah92 0.037995 Ac10 0.037995 Ac10	$\begin{array}{c} 000000 & 0.0\\ 2 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 2 & 1\\ 0.000000\\ 2 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 2 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 2 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 3 & 0\\ 0.000000\\ 3 & 1\\ 0.000000\\ 3 & 0\\ 0.000000\\ 3 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 3 & 0\\ 0.000000\\ 3 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 0 & 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0& $	000000 0.000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.000000 0.00	00000000 000000000 000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah82 0.037995 Ah91 0.037995 Ah91 0.037995 Ah92 0.037995 Ah92 0.037995 Ah101 0.037995	000000 0.0 2 1 0.000000 3 1 0.000000 3 1 0.000000 2 1 0.000000 3 1 0.000000 3 1 0.000000 3 1 0.000000 3 1 0.000000 3 1 0.000000 3 1 0.000000 3 1 0.000000 2 1 0.000000 3 1 0.000000 3 1 0.000000 3 1 0.000000 3 1 0.000000 3 1 0.000000 3 1 0.000000 3 1 0.000000 3 1 0.000000 3 1 0.0000000 3 1 0.0000000 2 1 0.0000000 0 2 1 0.00000000 0 2 1 0.00000000 0 2 1 0.00000000000000000000000000000000000	000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.000000 0.000000 0.000000 0.000000 0.166667 0.065544 0.114604 0.667933 0.000000 0.000000 0.000000 0.000000 0.166677 0.052666 0.000000 0.000000 0.166677 0.05544 0.114603 0.779255 0.000000 0.000000 0.000000 0.000000 0.16667 0.052665 0.000000 0.000000 0.16667 0.052665 0.000000 0.000000 0.16667 0.180147 0.114604 0.890577 0.000000 0.000000 0.000000 0.000000 0.166667 0.052666 0.0000000	00000000 000000000 0000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah82 0.037995 Ah91 0.037995 Ah91 0.037995 Ah92 0.037995 Ah92 0.037995 Ah101 0.037995 Ah101	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	000000 0.000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.00000 0.000000 0.166667 0.180147 0.114603 0.667933 0.00000 0.00000 0.00000 0.166667 0.065544 0.114604 0.667933 0.00000 0.00000 0.00000 0.166667 0.065544 0.114604 0.667933 0.000000 0.00000 0.166667 0.052666 0.00000 0.00000 0.00000 0.166667 0.05544 0.114603 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114604 0.79255 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114604 0.890577 0.000000 0.000000 0.000000 0.000000 0.166667 0.052666 0.000000 <	00000000 0000000000 0000000000 000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah82 0.037995 Ah91 0.037995 Ah91 0.037995 Ah92 0.037995 Ac10 0.037995 Ah101 0.037995 Ah102 0.037995	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	000000 0.000000 <	00000000 000000000 000000000 00000000
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah82 0.037995 Ah91 0.037995 Ah91 0.037995 Ah92 0.037995 Ah101 0.037995 Ah101 0.037995 Ah102 0.037995 pos#1	$\begin{array}{c} 000000 & 0.0\\ 2 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 2 & 1\\ 0.000000\\ 2 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 2 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 3 & 1\\ 0.000000\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	000000 0.000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.00000 0.000000 0.166667 0.180147 0.114603 0.667933 0.00000 0.000000 0.166667 0.065544 0.114604 0.667933 0.000000 0.000000 0.166667 0.05544 0.114604 0.667933 0.000000 0.000000 0.166667 0.052666 0.000000 0.000000 0.000000 0.000000 0.166667 0.05544 0.114603 0.779255 0.000000 0.000000 0.000000 0.166667 0.180147 0.114604 0.779255 0.000000 0.000000 0.166667 0.052665 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.890577 0.000000 0.000000 0.000000 0.000000 0.166667 0.052666 0.00000	
037995 0.0 Ac7 0.037995 Ah71 0.037995 Ah72 0.037995 Ac8 0.037995 Ah81 0.037995 Ah82 0.037995 Ah91 0.037995 Ah91 0.037995 Ah92 0.037995 Ac10 0.037995 Ah101 0.037995 Ah101 0.037995 Ah102 0.037995 pos#1 125.258	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	000000 0.000000 0.000000 0.000000 0.166667 0.052665 0.000000 0.667933 0.00000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.667933 0.00000 0.00000 0.000000 0.000000 0.166667 0.065544-0.114604 0.667933 0.00000 0.00000 0.000000 0.000000 0.166667-0.052666 0.000000 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667-0.065544 0.114603 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667-0.180147-0.114604 0.779255 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.890577 0.000000 0.000000 0.000000 0.000000 0.166667 0.180147 0.114603 0.890577 0.000000 0.000000 0.000000 0.000000 0.166667 0.05544-0.114604 0.890577 0.000000 0.000000 0.000000 0.000000 0.166667-0.052666 0.000000 1.001899 0.000000 0.000000 0.000000 0.000000 0.166667-0.180147-0.114604 1.001899 0.000000 0.000000 0.000000 0.000000 0.166667-0.180147-0.114604 1.001899 0.000000 0.000000 0.000000 0.000000 0.166667-0.180147-0.114604 1.001899 0.000000 0.000000 0.000000 0.000000 0.16667-0.180147-0.114604 1.001899 0.000000 0.000000 0.000000 0.000000 0.000000	

Placing the model molecule

The molecular position is defined by the relationship between three atoms A1,A2 and A3 of the model molecule and corresponding three points P1,P2 and P3 in actual positions. If the triangles defined by the model atoms and the three points are the same (i.e. with the same distances and angles) the three model atoms are simply transformed to the new positions. If the triangles are different the program places the three model atoms by the following rules:

- A1 coincides with P1

- The vector A1A2 has the same direction as P1P2

- The plane A1A2A3 coincides with P1P2P3

See examples in Figure 103.

Figure 103 Placing a model molecule according to Figure 101

(a) The actual positions of three atoms Ac1, Ac2 and Ac3 of the model molecule are defined by three points P1=(0,0,0), $P2=(\frac{1}{2},0,0)$ and $P3=(0,\frac{1}{2},0)$. The plane of the alkane string in the actual position is parallel with the **ab** plane.

(b) The actual positions of three atoms Ac1, Ac2 and Ac3 of the model molecule are defined by three points P1=(0,0,0), $P2=(\frac{1}{2},0,0)$ and $P3=(\frac{1}{2},0,\frac{1}{2})$. The plane of the alkane string in the actual position is parallel with the **ac** plane.

(c) Figure 103b viewed along the b axis

Setting the rotation axis

The basic molecular parameters (see page 142) contain also the definition of the rotation axis in the model molecule and in the molecular position. Usually the parameters are set to zeroes meaning that they are not used. If the vectors are defined, the program refines rotations around them. The details about this procedure are in page 144.

The rotation axis can be defined through the tool "Transformation of molecular parameters". The following example illustrates the usage of a predefined rotation axis for refinement of terminal CH_3 groups.

The *model molecule* (see Figure 105 page 182) consists of three hydrogen atoms and two carbon atoms. The occupation of carbons is set to zero so that they don't contribute to structure factors. The rotation axis of the model molecule is defined by vector C1m-C2m. The z axis in the actual position is defined respectively by the center to which the hydrogen atoms are bound and the atom to which the methyl group is attached.

The rotational z axis can be set with help of the "Molecular transformation" form. The vector defining the direction of the axis can be entered by coordinates or by pair of atom names from the atomic part of the m40 file. In the latter case the vector coordinates are calculated as the difference of the second and the first atom position. In Figure 104 - Figure 111 the whole process is illustrated for a molecule with two CH_3 groups (the molecule is shown in Figure 107, page 185).

Figure 104 M40 before introducing CH₃ molecules

Atoms C11,O11,....,H113 form the molecule shown in Figure 107. The methyl hydrogens bounded to C14 and C15 are not yet present (they will be added with the CH3 molecule from m45)

90 (0 0	1				
1.803017	0.00000	0.000000	0.000000	0.000000	0.000000	100000
0.000000	0 000000	0 000000	0 000000	0 00000	0 00000	000000
1 141670	0.000000	0.000000	0.000000	0.000000	0.000000	100000
1.1410/8	0.000000	0.000000	0.000000	0.000000	0.000000	100000
011	1 0	1 000000	0.00000			
		1.000000	0.869038	0.451124	0.212041	011111111
0.010098	0.01/315	0.015663-	0.002421	0.00/412-	-0.001486	011111111
011	4 2	1.000000	0.727352	0.471339	0.188297	
0.018301	0.041113	0.026374	0.007646	0.015376	0.010597	011111111
012	4 2	1.000000	0.956563	0.418208	0.311352	
0.022078	0.024367	0.015739-	0.000031	0.007045	0.004846	011111111
C12	12	1.000000	0.911684	0.477184	0.098719	
0.009718	0.020383	0.012069	0.001083	0.003577	0.000915	011111111
N11	32	1.000000	1.031733	0.428122	0.089096	
0.012458	0.017874	0.012092-	0.000285	0.003915	0.000004	011111111
C13	12	1.000000	0.958955	0.558687	0.118413	
0.016140	0.016664	0.017376	0.002629	0.007401	0.002030	011111111
C14	12	1.000000	0.963531	0.591615-	0.010491	
0.034990	0.021687	0.024710-	0.000779	0.013778	0.007109	011111111
C15	12	1.000000	1.109120	0.572727	0.242523	
0.024076	0.018183	0.025583-	0.003187	0.005030-	-0.001383	011111111
H11	2 1	1.000000	0.686709	0.460450	0.243979	
0.033046	0.000000	0.000000	0.000000	0.000000	0.00000	0111100000
H12	2 1	1.000000	0.824757	0.467027	0.021842	
0.017337	0.000000	0.000000	0.000000	0.000000	0.000000	0111100000
H13	2 1	1.000000	0.877679	0.582610	0.137760	
0.007300	0.000000	0.000000	0.000000	0.000000	0.000000	0111100000
H111	2 1	1.000000	0.996344	0.382553	0.079640	
0.022602	0.000000	0.000000	0.000000	0.000000	0.000000	0111100000
H112	2 1	1.000000	1.059544	0.438538	0.019206	
0.031130	0.000000	0.000000	0.000000	0.000000	0.000000	0111100000
H113	2 1	1.000000	1.119485	0.429011	0.163605	
0.036050	0.000000	0.000000	0.000000	0.000000	0.000000	0111100000
H452	2 1	1.000000	1,608403	0.085468	0.939454	
0.054029	0.000000	0.000000	0.000000	0.000000	0.000000	0111100000
H453	2 1	1.000000	1.521280	0.132241	0.810674	
0.072232	0.000000	0.000000	0.000000	0.000000	0.000000	0111100000

Figure 105 M45 with a CH₃ molecule

Note that C1m and C2m have zero occupation

1.000	1.000	1.000	90. 90. 120.
Clm	1	1	0.000000 0.000000 0.000000 0.000000
C2m	1	1	0.000000 0.000000 0.000000 1.400000
Hlm	2	1	1.000000 0.942804 0.000000-0.333333
H2m	2	1	1.000000 0.000000 0.942804-0.333333
H3m	2	1	1.000000-0.942804-0.942804-0.333333

Figure 106 Adding CH_3 molecule from m45 and defining its molecular positions This procedure is commented in Figure 101. The m45 with CH3 molecules is shown in Figure 105.

As the occupation of carbons in the model molecule is zero their superposition with the ones in the atomic structure is possible. The resulting structure is shown in Figure 107. Figure 108 shows the corresponding m40.

The new m40 still contains molecular positions with default rotation axes. The next step, i.e. setting the rotation axes along vectors C13-C14 and C13-C15, is shown in Figure 109. Figure 110 shows m40 file with new definition of rotation axis. In Figure 111 a part of the listing of *REFINE* is presented showing refinement of the rotation angle along these rotation axes.

Figure 108 M40 after adding CH₃ molecule

This file is the result of a procedure shown in Figure 106, page 183 applied to m40 from Figure 104, page 182.

90 1	L 0	1					
52	2						
1.803017 0.000000	0.000000	0.000000 0.00	00000 0.000	0000	0.000000	100000	
0.000000	0.000000	0.000000 0.00	00000 0.000	0000	0.00000	000000	
1.141678	0.000000	0.000000 0.00	00000 0.000	0000	0.00000	100000	
C11	1 2	1.000000 0.80	59038 0.451	1124 (0.212041		
0.016098	0.017315	0.015663-0.00	02421 0.007	7412-0	0.001486	0111111111	
011	4 2	1.000000 0.72	27352 0.471	1339 (0.188297		
0.018301	0.041113	0.026374 0.00	07646 0.015	5376 (0.010597	0111111111	
012	4 2	1.000000 0.9	56563 0.418	8208 (0.311352		
0.022078	0.024367	0.015739-0.00	00031 0.007	7045 (0.004846	0111111111	
C12	12	1.000000 0.93	L1684 0.477	7184 (0.098719		
0.009718	0.020383	0.012069 0.00	01083 0.003	3577 (0.000915	0111111111	
N11	32	1.000000 1.03	31733 0.428	8122 (0.089096		
0.012458	0.017874	0.012092-0.00	00285 0.003	3915 (0.000004	0111111111	
C13	12	1.000000 0.9	58955 0.558	8687 (0.118413		
0.016140	0.016664	0.017376 0.00	02629 0.007	7401 (0.002030	0111111111	
C14	12	1.000000 0.90	53531 0.591	1615-0	0.010491		
0.034990	0.021687	0.024710-0.00	0779 0.013	3778 (0.007109	0111111111	
C15	12	1.000000 1.10	09120 0.572	2727 (0.242523		
0.024076	0.018183	0.025583-0.00	03187 0.005	5030-0	0.001383	0111111111	
H11	2 1	1.000000 0.68	36709 0.460	0450 (0.243979		
0.033046	0.000000	0.000000 0.00	00000 0.000	0000	0.00000	0111100000	
H12	21	1.000000 0.82	24757 0.467	7027 (0.021842		
0.017337	0.000000	0.000000 0.00	00000 0.000	0000	0.00000	0111100000	
H13	21	1.000000 0.8	77679 0.582	2610 (0.137760		
0.007300	0.000000	0.000000 0.00	00000 0.000	0000	0.00000	0111100000	
H111	2 1	1.000000 0.99	96344 0.382	2553 (0.079640		
0.022602	0.000000	0.000000 0.00	00000 0.000	0000	0.00000	0111100000	
H112	2 1	1.000000 1.0	59544 0.438	8538 (0.019206		
0.031130	0.000000	0.000000 0.00	00000 0.000	0000	0.00000	0111100000	
H113	2 1	1.000000 1.13	19485 0.429	9011 (0.163605		
0.036050	0.000000	0.000000 0.00	00000 0.000	0000	0.000000	0111100000	
• • •							
H452	2 1	1.000000 1.60	08403 0.085	5468 (0.939454		
0.054029	0.000000	0.000000 0.00	00000 0.000	0000	0.00000	0111100000	
H453	2 1	1.000000 1.5	21280 0.132	2241 (0.810674		
0.072232	0.000000	0.000000 0.00	00000 0.000	0000	0.000000	0111100000	
Methyl	0	Cim					
CIM		0.000000 0.00			0.000000		
0.037995	0.000000	0.000000 0.00			0.000000	0000000000	
C2m		0.000000 0.00	5138 0.000		0.142150		
0.03/995	0.000000	0.000000 0.00			0.000000	0000000000	
HIM	2 I	1.000000 0.08	33901 0.000		0.033845		
0.03/995	0.000000	1 000000 0.00		4701	0.000000	0000000000	
	2 I	1.000000-0.00	5214 0.044	±/91-0	0.033845	000000000	
U.U.S / 995	2 1			1701 (0.000000	0000000000	
0 027005	4 L	1.000000-0.00		±/91-0	0.033645	000000000	
nos#1	1	1 000000		0000 1	0.00000		0
-160 127	- 31 202	-13 596 0 94	53531 0 501	1615.0	0 010491	0000000	U III
0 000000	0 000000	0 000000 0 00		1000	0 000000	000000	
nos#2	1	1.000000				000 0 0	0
-141 760	-34 920	166,910 1 10	09120 0 573	2727	0.242523	0000000	U C
0 000000	0 000000	0 000000 0 0			0 000000		
3.000000		0.000000 0.00					

Figure 109 Definition of a rotation axis for a molecule

This procedure defines rotation axes for CH_3 groups. The groups were previously set through a procedure shown in Figure 106, page 183.

 \ldots the same for Methyl#2.

Figure 110 M40 after redefinition of rotation axes for CH₃ groups

This file is the result of a procedure shown in Figure 109 page 187 applied to m40 from

Figure 108 page 186.

90 1	L 0	1				
1 803017	<u>,</u> 0 000000	0 00000 0 000	000 0 000000	0 00000	100000	
0.000000	0.000000	0.000000 0.000		0.000000	100000	
0.00000	0.000000	0.000000 0.000	000 0.000000	0.00000	000000	
1.141678	0.000000	0.000000 0.000	000 0.000000	0.00000	100000	
C11	12	1.000000 0.869	038 0.451124	0.212041		
0.016098	0.017315	0.015663-0.002	421 0.007412-	0.001486	0111111111	
011	42	1.000000 0.727	352 0.471339	0.188297		
0.018301	0.041113	0.026374 0.007	646 0.015376	0.010597	0111111111	
012	42	1.000000 0.956	563 0.418208	0.311352		
0.022078	0.024367	0.015739-0.000	031 0.007045	0.004846	0111111111	
C12	12	1.000000 0.911	684 0.477184	0.098719		
0.009718	0.020383	0.012069 0.001	083 0.003577	0.000915	0111111111	
N11	32	1.000000 1.031	733 0.428122	0.089096		
0.012458	0.017874	0.012092-0.000	285 0.003915	0.000004	0111111111	
C13	12	1.000000 0.958	955 0.558687	0.118413		
0.016140	0.016664	0.017376 0.002	629 0.007401	0.002030	0111111111	
C14	12	1.000000 0.963	531 0.591615-	0.010491		
0.034990	0.021687	0.024710-0.000	779 0.013778	0.007109	0111111111	
C15	1 2	1.000000 1.109	120 0.572727	0.242523		
0.024076	0.018183	0.025583-0.003	187 0.005030-	0.001383	0111111111	
H11	2 1	1.000000 0.686	709 0.460450	0.243979		
0.033046	0.000000	0.000000 0.000	000 0.000000	0.000000	0111100000	
H12	2 1	1.000000 0.824	757 0.467027	0.021842		
0.017337	0.000000	0.000000 0.000		0.000000	0111100000	
HT3	2 I	1.000000 0.8//	6/9 0.582610	0.137760	0111100000	
0.007300	0.000000	0.000000 0.000	000 0.000000	0.000000	0111100000	
HITT	2 I	1.000000 0.996	344 0.382553	0.079640	0111100000	
0.022602	0.000000	1 000000 1 050		0.000000	0111100000	
0 021120	2 I 0 000000	1.000000 1.059	000 0 000000	0.019206	0111100000	
U.USIISU	2 1	1 000000 1 110	495 0 420011	0.163605	0111100000	
0 036050	A 000000			0.103003	0111100000	
0.030030	0.000000	0.000000 0.000	000 0.000000	0.000000	01111000000	
н452	2 1	1 000000 1 608	403 0 085468	0 939454		
0.054029	0.000000	0.000000 0.000	000 0.000000	0.000000	0111100000	
H453	2 1	1.000000 1.521	280 0.132241	0.810674	0111100000	
0.072232	0.000000	0.000000 0.000	000 0.000000	0.000000	0111100000	
Methvl	0	Clm				
Clm	1 1	0.000000 0.000	000 0.000000	0.00000		
0.037995	0.000000	0.000000 0.000	000 0.000000	0.000000	000000000	
C2m	1 1	0.000000 0.065	138 0.000000	0.142150		
0.037995	0.000000	0.000000 0.000	000 0.000000	0.00000	000000000	
Hlm	2 1	1.000000 0.083	901 0.000000-	0.033845		
0.037995	0.000000	0.000000 0.000	000 0.000000	0.00000	000000000	
H2m	2 1	1.000000-0.065	214 0.044791-	0.033845		
0.037995	0.000000	0.000000 0.000	000 0.000000	0.00000	000000000	
H3m	2 1	1.000000-0.065	214-0.044791-	0.033845		
0.037995	0.000000	0.000000 0.000	000 0.000000	0.00000	000000000	
pos#1	1	1.000000			000 0 0	0
-156.303	0.000	0.000 0.963	531 0.591615-	0.010491	0000000	
C2m C1m		C13 C	14			
pos#2	1	1.000000			000 0 0	0
-1.841	0.000	0.000 1.109	120 0.572727	0.242523	0000000	
C2m C1m		C13 C	15			

Methyl#1	ai	phi	chi	psi	x-trans	y-trans	z-trans	ch/esd
0	1.000000	-156.3030	0.000000	0.000000	0.963531	0.591615	-0.010491	* -6.01
1	1.000000	-157.1601	0.000000	0.000000	0.959992	0.589178	-0.015414	* 0.14
2	1.000000	-157.2108	0.000000	0.000000	0.959964	0.589132	-0.015307	* -0.04
3	1.000000	-157.2137	0.000000	0.000000	0.959955	0.589119	-0.015340	
esd	0.000000	0.4850	0.000000	0.000000	0.000914	0.000461	0.000769	
======================================	 ai	 phi	 chi	======= psi	x-trans	y-trans	z-trans	ch/esd
======================================	ai 1.000000	phi -1.841000	chi 0.000000	psi 0.000000		y-trans 0.572727*	z-trans 0.242523	ch/esd 5.17
======== Methyl#2 0 1	ai 1.000000 1.000000	phi -1.841000 -3.379539	chi 0.000000 0.000000	psi 0.000000 0.000000	x-trans 1.109120 1.111795	y-trans 0.572727* 0.575330*	z-trans 0.242523 0.242049	ch/esd 5.17 -0.31
====== Methyl#2 0 1 2	ai 1.000000 1.000000 1.000000	phi -1.841000 -3.379539 -3.473298*	chi 0.000000 0.000000 0.000000	psi 0.000000 0.000000 0.000000	x-trans 1.109120 1.111795 1.111667	y-trans 0.572727* 0.575330* 0.575181	z-trans 0.242523 0.242049 0.242014	ch/esd 5.17 -0.31 -0.07
 Methyl#2 0 1 2 3	ai 1.000000 1.000000 1.000000 1.000000	phi -1.841000 -3.379539 -3.473298* -3.505554	chi 0.000000 0.000000 0.000000 0.000000	psi 0.000000 0.000000 0.000000 0.000000	x-trans 1.109120 1.111795 1.111667 1.111650	y-trans 0.572727* 0.575330* 0.575181 0.575211	z-trans 0.242523 0.242049 0.242014 0.242032	ch/esd 5.17 -0.31 -0.07

Figure 111 The refinement listing showing refinement of CH₃ groups The angles chi and psi are not refined because of redefinition of rotation axes.

Reference point, symmetry restrictions and refinement keys

The basic information about the reference point is given in page 141.

Symmetry restrictions of molecular parameters (i.e. setting of the refinement keys, see page 223 for details) are calculated from the site symmetry of the reference point in the first molecular position. For example in Figure 114, page197, the molecular position modulation parameters are restricted because the reference point $(0,y,\frac{1}{4})$ (equal to the position of As in the model molecule) falls into a special position when transformed to the first molecular position. On the other hand the TLS parameters of the molecule shown in Figure 120(c), page 214 are not restricted because the reference point (0,0,0) is transformed to the general position in the first molecular position.

Symmetry restrictions of atomic parameters of the model molecule are derived from the site symmetry of the points to which the model atoms are transformed for the first molecular position. Therefore, in Figure 114, page197, the atomic temperature modulation parameters are restricted for atom As but not for the remaining atoms of the model molecule. The exception is the case when a local symmetry is applied to the model molecule. Then the symmetry restrictions of atomic model parameters result also from the given point group symmetry.

The basic assumption is that all molecular positions have the same site symmetry.

In the refinement using the automatic mode for setting of refinement keys (see page 223) the position of the first atom of the model molecule is always fixed in order to prevent shifts of the whole molecule during the refinement. The shifts are refined for each molecular position through the translation parameters x-trans, y-trans and z-trans (see page 142).

The rotation parameters phi, chi and psi of the first molecular position are also automatically fixed because refinement of coordinates of the model atoms can cause rotation of the model molecule which may conflict with the rotation of the first molecular position. This automatic fixation may cause difficulties in case when rotation of the molecule through the refinement of coordinates is impossible - see footnote in page 214.

Transferring of atoms of molecule to the atomic part

The tool "Move atoms from molecule to atomic part" can be used for moving part of atoms or all atoms of a model molecule. Each molecular position originates a new atom in the atomic part with a name combined from its name in the model molecule and "a", "b", "c", extension for the 1^{st} , 2^{nd} , 3^{rd} , position. If all toms of the model molecular parameters concerning molecular positions and also the molecular header are automatically removed from the file. A useful test of a successful transferring of atoms is that the R value resulting from the zero cycle of the refinement carried out after the transformation should be the same as the one before the transformation.

Transformation of molecular parameters

This tool has been already presented in Figure 109 in page 187 where it is used for redefinition of the molecular rotation axis. Another option is "Change the axial angles to Eulerian". This changes the parameter lrot in the header of m40 (see page 107) defining the type of molecular rotations. See page 143 for underlying theory.

If in the Eulerian setting the angle $\chi \approx 0$, the remaining angles ϕ and ψ are strongly correlated and the refinement can crash on the singularity. This is the case when the Eulerian angles should be transformed to the axial ones. On the other hand the refinement of the axial rotations can fail for some angles, too.

3.2.8 Choosing between molecular and atomic model parameters

Each atom of a model molecule has refinable atomic parameters. They define the shape of the model molecule, its temperature and modulation parameters. These parameters are transformed to all molecular positions.

A common question when introducing a molecule is whether some atomic parameters of the model molecule have rigid body behaviour, i.e. if they can be refined for all model atoms together and for each molecular position independently. The relationship between atomic and molecular parameters is shown in Table 12.

 Table 12
 Atomic and corresponding molecular parameters

Atomic parameters	Corresponding molecular parameters
position modulation (page 123)	molecular position modulation (page 148)
temperature modulation (page 131)	modulation of TLS tensors (page 150)

A structure having a molecule with only one position and with all parameters refined as atomic parameters is equivalent to a structure without molecule. A maximum rigidity exhibits a molecule with rigid body temperature and modulation parameters having more than one position. An intermediate case often occurs in practice.

In case of modulations *JANA98* combines atomic and molecular contributions to the modulation function. Therefore for pure atomic modulations the number of modulation waves in the atomic header has to be positive (see page 116, parameters w_i) and the corresponding number in the basic molecular parameters (see page 142, parameters w_i) has to be less or equal to zero. If the number of modulation waves in the atomic header is less or equal to zero and the corresponding number in the basic molecular parameters (rigid body). With both numbers positive the contributions are combined.

This feature can be used for instance for testing if modulations of some atom behave within the rigid body approximation given by some existing (sufficiently large) molecule. The modulations of all atoms of the molecule except the one in question are refined in the molecular part. The modulations of the atom therefore consist of the contribution from the molecule and from its own atomic contributions. If the latter are below the 3σ limit the modulations of this atom can be refined in the rigid body approximation.

The modulation waves for atoms of the model molecule and for molecular positions are added or deleted with the same tool (Setting or deleting modulation waves) like for atoms in the atomic part - see page 168.

The transformation between atomic and molecular modulation parameters is not possible¹. The individual modulations are usually changed to molecular ones by deleting individual modulation parameters (by setting number of waves to 0), setting initial molecular waves and refinement. The same procedure is used for changing molecular modulations to atomic ones. Refinement of molecular and individual

¹ *EDITM40* can only transform atoms from a molecule to the atomic part of m40. This tool transforms also modulations and makes the transformations separately for each molecular position.

position parameters together is also possible but only for a small fragment of the molecule (see Figure 117, page 205).

The change of atomic temperature parameters to TLS tensors can be done with a tool called "Temperature parameters" (see page 164). By this transformation the Ttype parameter (see page 116) is set to zero, the individual temperature parameters are deleted and the TLS parameters are set to **initial** values. The transformation of TLS tensors back to individual temperature parameters transforms TLS to individual temperature parameters (i.e. the temperature parameters are not lost).

The following examples show the basic type of changes between atomic and molecular parameters:

- Change from individual to molecular position modulation (Figure 113 page 194)
- Change from molecular to individual position modulation
- Change from individual temperature parameters to TLS tensors
- Introducing TLS modulation
- Change from TLS to individual temperature modulation
- Refinement of individual and molecular modulation together

Figure 112 File m50 used for examples in Figure 113 - Figure 117.

The keywords in m50 are explained in §0, page 77.

```
title iris
cell 4.818 16.001 6.374 90 99.36 90
lambda 0.56087
ndim 4
ncomp 1
qi 0.8607 0 0.5585
qr 0 0 0
spgroup C2/c(a0g) 0
lattice C
centro
symmetry
           x1 x2
                      x3
                              x4
          -x1 x2 1/2-x3
symmetry
                             -x4
unitsnumb 4
atom As
atweight 74.922 dmax 3 formula 1
f' 0.276 f" 1.331
formtab 32
  32.983 32.278 30.491 28.301 26.218 24.386 22.739
                                                         21.196
                                                         11.552
  19.722 18.313 16.976 15.717 14.540 13.451 12.454
          10.0309.4038.8588.3867.9787.6266.8176.6066.4156.2396.0765.922
  10.744
                                                         7.320
   7.053
                                                          5.774
atom K
atweight 39.098 dmax 0 formula 1
f' 0.14 f" 0.156
formtab 32
         18.206 16.732 15.244 13.726 12.269 10.980
  18.999
                                                          9.909
   9.057
                 7.888 7.480 7.134 6.823 6.528
          8.398
                                                          6.241
          5.674
                  5.395 5.120
   5.956
                                  4.851
                                          4.589 4.336
                                                          4.093
   3.861 3.640 3.431 3.235 3.052 2.882 2.724
                                                          2.579
atom F
atweight 18.998 dmax 0 formula 4
f' 0.01 f" 0.006
formtab 32
   8.999
           8.815 8.303 7.561 6.709
                                          5.851 5.054
                                                          4.353
   3.760
           3.270 2.873 2.558 2.309
                                          2.112 1.957
                                                          1.834
   1.735
           1.654
                   1.587
                          1.531
                                  1.482
                                          1.438
                                                  1.398
                                                          1.360
                                          1.153
                  1.255
                                  1.187
   1.324
           1.289
                          1.221
                                                  1.120
                                                          1.087
atom O
atweight 15.999 dmax 0 formula 2
f' 0.006 f" 0.004
formtab 32
   7.999
           7.798 7.246
                          6.472
                                  5.623
                                          4.808
                                                  4.089
                                                          3.489
           2.628
                   2.337
                          2.115
                                  1.946
   3,006
                                          1.816
                                                  1.715
                                                          1.634
          1.512 1.463 1.419
   1.568
                                  1.377
                                          1.337
                                                          1.260
                                                 1.298
   1.221 1.183 1.145 1.108 1.070 1.033
                                                  0.997
                                                          0.961
atom H
atweight 1.008 dmax 0 formula 2
f' 0 f" 0
formtab 32
           0.960 0.854
                          0.713 0.568
                                          0.438
                                                  0.331
   1.000
                                                          0.248
          0.138 0.103
                          0.078 0.060
   0.184
                                          0.046
                                                  0.036
                                                          0.028
                 0.014
                          0.011
                                          0.007
   0.022
           0.018
                                  0.009
                                                  0.006
                                                          0.005
   0.005
                   0.004
                          0.003
                                  0.003
                                          0.003
                                                  0.003
           0.004
                                                          0.003
noofref 4351
slimits 0.362376 0.453337 0.520919 0.575227 0.622421 0.665302 0.71257 0.91344
flimits 41 65.8 112.2 177.7 294.3 515.7 1068.1 53554
end
```

Figure 113 Change from individual to molecular position modulation.

(a) The input m40 with molecule "Ir". All atoms of the molecule have individual temperature parameters, position and temperature modulation. The molecule has only one position, which is almost identical with location of the model molecule.

```
1
         1
              1
                   1
    4
         1
 1.233500 0.000000 0.000000 0.000000 0.000000
                                                             100000
 0.000000
 0.003581 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000
                                                             100000
 000000
          2 2
                   0.500000 0.500000 0.590911 0.750000
                                                             000 0 2 2
к
 0.029016 \ 0.002668 \ 0.013575 \ 0.000000 \ 0.004220 \ 0.000000
                                                             0010111010
 0.008186 0.000000-0.013280 0.000000 0.017287 0.000000
                                                             101010
-0.012223 0.000000-0.007032 0.000000-0.003230 0.000000
                                                             101010
 0.000000 0.000000 0.000000-0.000954 0.000000 0.000345
                                                             000101
-0.000173-0.000513 0.002312 0.000000 0.000230 0.000000
                                                             111010
 0.000000 0.000000 0.000000-0.000181 0.000000 0.000177
                                                             000101
 0.000704-0.000519 0.001394 0.000000 0.001072 0.000000
                                                             111010
 0.00000
                                                             0
Ir
          1
                            As
          1 2
                   0.500000 0.000000 0.631034 0.250000
                                                             000 -1 2 2
As
 0.014251 0.001482 0.009415 0.000000 0.002167 0.000000
                                                             0000111010
-0.011066 0.000000-0.026381 0.000000 0.013900 0.000000
                                                             101010
-0.001408 0.000000 0.003936 0.000000 0.001399 0.000000
                                                             101010
 0.000000 0.000000 0.000000-0.000377 0.000000 0.000315
                                                             000101
 0.001454 \ 0.000006 \ 0.000200 \ 0.000000 - 0.000069 \ 0.000000
                                                             111010
 0.000000 0.000000 0.000000 0.000072 0.000000 0.000396
                                                             000101
 0.000324-0.000073-0.000110 0.000000 0.000559 0.000000
                                                             111010
 0.00000
                                                             0
F1
          3 2
                   1.000000-0.099442 0.627230 0.499285
                                                             000 -1 2 2
 0.032724 0.003663 0.011853-0.000583 0.008286 0.000649
                                                             0111111111
-0.008156 0.010790-0.024354-0.016899 0.014180-0.005781
                                                             111111
-0.001976-0.000100 0.003576 0.009636 0.001480 0.004834
                                                             111111
                                                                           This is the model
 0.003985 \hbox{-} 0.000299 \hbox{-} 0.000034 \hbox{-} 0.001854 \ 0.001382 \hbox{-} 0.000983
                                                             111111
 0.003638-0.000413 0.001057-0.000696 0.001299-0.000550
                                                             111111
                                                                           molecule. This
 0.003214 \hbox{-} 0.000586 \ 0.000844 \hbox{-} 0.000326 \ 0.002304 \hbox{-} 0.000025
                                                             111111
                                                                           structure model is
-0.004434-0.000095-0.000701 0.001984-0.001166-0.000102
                                                             111111
                                                                          equivalent to a
 0.000000
                                                             0
                                                                          structure without
                                                             000 -1 2 2
                   1.000000 0.237615 0.551939 0.331419
F2
          3 2
                                                                          molecule as the
 0.033182 0.002964 0.022325 0.004083 0.001742 0.001384
                                                             0111111111
                                                                           molecule has only
 0.029160 0.013699 0.008396-0.004471 0.013626 0.008757
                                                             111111
                                                                           one position and all
 0.004339 0.001515 0.006794 0.002461 0.000564-0.003003
                                                             111111
                                                                           model parameters
-0.004358 0.000807 0.001764 0.000156-0.002772 0.001099
                                                             111111
 0.004291 0.000048-0.003561 0.000222-0.001914-0.000122
                                                             111111
                                                                          are refined
 0.000010-0.000582-0.000682-0.001011 0.000806-0.000342
                                                             111111
 0.000869 0.000063 0.000758 0.001514 0.000612-0.000221
                                                             111111
 0.00000
                                                             0
                   1.000000 0.259402 0.704245 0.334580
                                                             000 -1 2 2
03
          4 2
 0.029668 0.003528 0.025195-0.004808 0.012403-0.004559
                                                             0111111111
-0.048999 0.016093-0.062066-0.004630 0.014305 0.006973
                                                             111111
-0.007971 0.001982 0.000713 0.002482 0.003071-0.003983
                                                             111111
 0.007049-0.000319-0.002709-0.001257 0.001678 0.001388
                                                             111111
 0.002403 \ 0.000256 \ 0.002174 \text{-} 0.000508 \ 0.000980 \text{-} 0.000301
                                                             111111
 0.001099-0.001438-0.003881 0.002401-0.001474 0.003273
                                                             111111
 0.004224 0.000760 0.008087-0.003033 0.009431-0.002921
                                                             111111
 0.000000
                                                             0
pos#1
                   1.000000
                                                             000 0 0 0
          1
    0.000
             0.000
                      0.000 0.000000 0.000000 0.000000
                                                             0000010
```

Figure 113(b) The procedure to change individual position parameters to molecular ones.

Figure 113 (c) The resulting m40 with initial parameters set for the first molecular modulation wave. The file with two molecular position modulation waves refined is used as the input file in the next example.

1 1	1	1	1						
4 :	1								
1.233500	0.0	000000	0.000000	0.000000	0.000000	0.000000	100000		
0.00000									
0.003581	0.	000000	0.000000	0.000000	0.000000	0.000000	100000		
0.00000	0.	000000	0.000000	0.000000	0.000000	0.000000	000000		
ĸ	2	2	0 500000	0 500000	0 590911	0 750000	000 0 2	2	
0 029016	0	002668	0.013575	0.000000	0 004220	0.00000	0010111010	-	
0.0023010	0.0	000000	0.013280	0.000000	0 017297	0.000000	101010		
0.000100	0.1	000000-	0.013200	0.000000	0.017207	0.000000	101010		
-0.012223	0.0	000000-	0.007032	0.000000-	-0.003230	0.000000	101010		
0.000000	0.0		0.000000-	-0.000954	0.000000	0.000345	111010		
-0.0001/3	-0.	000513	0.002312	0.000000	0.000230	0.000000	111010		
0.000000	0.0	000000	0.000000-	-0.000181	0.000000	0.000177	000101		
0.000704	-0.	000519	0.001394	0.000000	0.001072	0.000000	111010		
0.000000							0		
Ir	1			As					
As	1	2	0.500000	0.000000	0.631034	0.250000	000 -1 0	2	
0.014251	0.	001482	0.009415	0.000000	0.002167	0.00000	0000111010		
0.00000	0.0	000000	0.000000-	-0.000377	0.000000	0.000315	000101		
0.001454	0.0	000006	0.000200	0.000000-	-0.000069	0.000000	111010		
0.00000	0.	000000	0.000000	0.000072	0.000000	0.000396	000101		
0.000324	-0.	000073-	-0.000110	0.000000	0.000559	0.000000	111010	,	
0.00000							0		Number of position
F1	3	2	1.000000-	-0.099442	0.627230	0.499285	000 -1 0	2	modulation waves for
0.032724	0.	003663	0.011853-	-0.000583	0.008286	0.000649	0111111111		atoma of the model
0.003985	-0.	000299-	-0.000034-	-0.001854	0.001382	-0.000983	111111		
0.003638	-0.0	000413	0.001057	-0.000696	0.001299-	-0.000550	111111		molecule is 0
0.003214	_0	000586	0.0002037	-0 000326	0 002304.	0.000025	111111		meaning that the
_0 004434	_0	0000000	0.000701	0 001984	-0.001166.	0.000102	111111		modulations are
0.000000	-0.	0000000	0.000701	0.001004-	-0.001100-	0.000102	0		calculated in
E2	2	2	1 000000	0 237615	0 551030	0 331419	000 -1 0	2	molecular part within
FZ 022102	5	4	1.000000	0.237013	0.001740	0.001204	000 -1 0	4	the visid bedy
0.033162	0.0	002904	0.022325	0.004085	0.001742	0.001364	111111		the rigid body
-0.004358	0.0	000807	0.001/64	0.000156-	-0.002/72	0.001099			approximation
0.004291	0.0	000048-	-0.003561	0.000222-	-0.001914-	-0.000122		l	
0.000010	-0.	000582-	-0.000682-	-0.001011	0.000806-	-0.000342			
0.000869	0.0	000063	0.000758	0.001514	0.000612-	-0.000221	111111		
0.000000							0		
03	4	2	1.000000	0.259402	0.704245	0.334580	000 -1 0	2	
0.029668	0.	003528	0.025195-	-0.004808	0.012403-	-0.004559	0111111111		
0.007049	-0.	000319-	-0.002709-	-0.001257	0.001678	0.001388	111111		
0.002403	0.	000256	0.002174-	-0.000508	0.000980-	-0.000301	111111		
0.001099	-0.	001438-	-0.003881	0.002401-	-0.001474	0.003273	111111		
0.004224	0.0	000760	0.008087-	-0.003033	0.009431-	-0.002921	111111		
0.00000							0		
pos#1	1		1.000000				000 0 1	0	
0.000		0.000	0.000	0.000000	0.000000	0.000000	0000010		
0.00000	0.	000000	0.000000	0.000000	0.000000	0.000000		Th	is is the 1 st molecular
0.000100	0.	000100	0.000100	0.000100	0.000100	0.000100	111111	200	eition modulation
0.000100	0.	000100	0.000100	0.000100	0.000100	0.000100	111111	ho	
0.000000								wa	ve with initial
								pa	rameters and
								ref	inement keys.

Figure 114 Change from individual to TLS temperature parameters.

(a) The input m40 with molecule "Ir". Atoms of the molecule have individual temperature parameters and their modulations. The position modulation parameters are refined in the molecular part. The file results from the procedure shown in Figure 113, followed by adding of another position modulation wave and refinement.

```
1
       1
            1
                 1
   4
        1
 100000
 0.000000
100000
000000
к
         2 2
                0.500000 0.500000 0.590934 0.750000
                                                       000 0 2 2
 0.028994 0.002669 0.013609 0.000000 0.004210 0.000000
                                                       0010111010
 0.008041 0.000000-0.013254 0.000000 0.017274 0.000000
                                                       101010
-0.012682 0.000000-0.006921 0.000000-0.003292 0.000000
                                                       101010
 0.000000 0.000000 0.000000-0.000918 0.000000 0.000315
                                                       000101
-0.000070-0.000510 0.002317 0.000000 0.000158 0.000000
                                                       111010
 0.000000 0.000000 0.000000-0.000250 0.000000 0.000203
                                                       000101
 0.000460-0.000517 0.001334 0.000000 0.000804 0.000000
                                                       111010
 0.000000
Ir
         1
                         As
         1 2
                 0.500000 0.000000 0.631034 0.250000
                                                       000 -1 0 2
As
 0.014290 0.001484 0.009401 0.000000 0.002176 0.000000
                                                       0000111010
 0.000000 0.000000 0.000000-0.000397 0.000000 0.000311
                                                       000101
 0.001495 0.000006 0.000184 0.000000-0.000056 0.000000
                                                       111010
 0.000000 0.000000 0.000000 0.000075 0.000000 0.000380
                                                       000101
 0.000304-0.000075-0.000129 0.000000 0.000586 0.000000
                                                       111010
 0.000000
                                                       0
                                                       000 -1 0 2
F1
         3 2
                 1.000000-0.099958 0.627151 0.499018
 0.033016 0.003687 0.011917-0.000542 0.008448 0.000632
                                                       0111111111
 0.004425-0.000378 0.000617-0.002000 0.001744-0.001087
                                                       111111
 0.003334-0.000347 0.000943-0.000668 0.001176-0.000463
                                                       111111
                                                                   This is the model
 0.003765-0.000670 0.001541-0.000568 0.002360 0.000007
                                                       111111
                                                                  molecule.
-0.005254-0.000199-0.000573 0.001926-0.001478-0.000148
                                                       111111
 0.000000
                                                       0
                                                       000 -1 0 2
F2
         3 2
                 1.000000 0.237807 0.552021 0.331383
 0.033284 0.002918 0.022232 0.004092 0.001943 0.001228
                                                       0111111111
-0.004573 0.000856 0.001148 0.000105-0.003033 0.000978
                                                       111111
 0.003627 0.000006-0.003438 0.000156-0.001996-0.000212
                                                       111111
 0.000784-0.000442-0.000062-0.000935 0.000625 0.000062
                                                       111111
 0.000568 0.000061 0.001199 0.001439 0.000748-0.000172
                                                       111111
 0.000000
                                                       000 -1 0 2
                 1.000000 0.259747 0.704321 0.334748
03
         4 2
 0.029854 0.003628 0.025478-0.004927 0.012509-0.004698
                                                       0111111111
 0.007986-0.000453-0.002356-0.001169 0.002582 0.001678
                                                       111111
 0.003601 0.000404 0.003345-0.000755 0.001754-0.000521
                                                       111111
-0.000017-0.001508-0.003817 0.002362-0.001954 0.003239
                                                       111111
 0.004407 0.000668 0.008726-0.002768 0.008894-0.003002
                                                       111111
 0.000000
                                                       0
                 1.000000
                                                       000 0 2 0
pos#1
         1
           0.000 0.000 0.000000-0.000003 0.000000
                                                       0000010
   0.000
 -0.011060 0.000000-0.026436 0.000000 0.013900 0.000000
                                                       101010
-0.001300 0.000000 0.003941 0.000000 0.001395 0.000000
                                                       101010
-0.032081 0.000000 0.020306 0.000000-0.003041 0.000000
                                                       101010
-0.001761 0.000000 0.003223 0.000000 0.001533 0.000000
                                                       101010
 0.000000
```

Figure 114 (b) The procedure to change individual temperature parameters to TLS tensors

Figure 114(c) The resulting m40 with initial parameters set for the TLS tensors refinement.

1 1	L 1	1						
4]	L 000000	0 00000 0		0 000000	0.00000	100000		
0 000000	0.000000	0.000000 (0.000000	0.00000	100000		
-0.001334	0.00000	0.00000 0	0.00000	0.00000	0.00000	100000		
0.000000	0.000000	0.000000 0	0.000000	0.000000	0.000000	000000		
к	2 2	0.500000 0	500000	0.590934	0.750000	000 0 2	2	
0.028994	0.002669	0.013609 0	0.000000	0.004210	0.000000	0010111010	_	
0.008041	0.000000-	-0.013254 0	0.000000	0.017274	0.00000	101010		
-0.012682	0.000000-	-0.006921 0	.000000-	0.003292	0.000000	101010		
0.000000	0.000000	0.00000-0	0.000918	0.000000	0.000315	000101		
-0.000070-	-0.000510	0.002317 0	0.000000	0.000158	0.000000	111010		
0.000000	0.000000	0.00000-0	0.000250	0.000000	0.000203	000101		
0.000460-	-0.000517	0.001334 0	0.000000	0.000804	0.00000	111010		
0.000000						0		
Ir	1	7	4s				_	
As	1 0	0.500000 0	0.000000	0.631034	0.250000	000 -1 0	2	
0.000000	0.000000	0.000000 (0.000000	0.000000	0000111010		
0.000000	0.000000	0.000000-0	0000397	0.000000	0.000311	111010	ſ	
0.001495	0.000006	0.000184 (000000-	0.000000	0.000000	111010		The parameter Ttype
0.000000	0.000000			0.000000	0.000380	111010		(see page 134) is set
0.000000	-0.000075-	-0.000129 (0.000500	0.000000	0		to zero meaning that
F1	3 0	1.00000-0	0,099958	0.627151	0.499018	000 -1 0	2	the temperature
0.000000	0.000000	0.000000 0	0.000000	0.000000	0.000000	0111111111	_	parameters are
0.004425-	-0.000378	0.000617-0	0.002000	0.001744-	-0.001087	111111		refined in the
0.003334-	-0.000347	0.000943-0	0.000668	0.001176-	-0.000463	111111		molecular part like
0.003765-	-0.000670	0.001541-0	0.000568	0.002360	0.00007	111111		TI S tensors The
-0.005254-	-0.000199-	-0.000573 0	0.001926-	0.001478-	-0.000148	111111		individual
0.000000						0		temperature
F2	30	1.000000 0	.237807	0.552021	0.331383	000 -1 0	2	noromotore II. oro
0.000000	0.000000	0.000000 0	0.000000	0.000000	0.00000	0111111111	.	parameters Og are
-0.004573	0.000856	0.001148 0	0.000105-	0.003033	0.000978	111111		set to zero, too.
0.003627	0.000006-	-0.003438 0	0.000156-	0.001996-	-0.000212	111111	L	
0.000/84-	-0.000442-	-0.000062-0	001420	0.000625	0.000062			
0.000568	0.000061	0.001199 (0.001439	0.000/48-	-0.0001/2	0		
0.000000	4 0	1 000000 0	259747	0 704321	0 334748	000 -1 0	2	
0.00000	0.000000	0.000000 0	0.000000	0.000000	0.000000	0111111111	2	
0.007986-	-0.000453-	-0.002356-0	0.001169	0.002582	0.001678	111111		
0.003601	0.000404	0.003345-0	0.000755	0.001754-	0.000521	111111		
-0.000017-	-0.001508-	-0.003817 0	0.002362-	0.001954	0.003239	111111		
0.004407	0.000668	0.008726-0	0.002768	0.008894-	0.003002	111111		
0.000000						0		
pos#1	1	1.000000				000 0 2	0	
0.000	0.000	0.000 0	0.00000-	0.00003	0.000000	0000010		
0.000000	0.000000	0.000000 0	0.000000	0.000000	0.00000			
0.010000	0.010000	0.010000 0	0.000000	0.000000	0.000000	111111	TLS	S tensors: initial
0.000000	0.000000	0.000000 0	0.000000	0.000000	0.000000	111111	val	ues and refinement
0.000000	0.000000	0.000000 0	000000	0.000000	0.000000	111111	kev	'S.
0.000000	0.000000	0.000000	000000	0 012000	0.000000	101010		
-0.011300	0.000000	0.020430 (0.002041 0		0.01300	0.000000	101010		
-0.032081	0.000000	0.020306 0	0.000000	0.003041	0.000000	101010		
-0.001761	0.000000	0.003223	0,000000	0.001533	0.000000	101010		
0.000000								

Figure 115 Introducing TLS modulation

(a) The input m40 with molecule "Ir". The temperature parameters are refined like TLS tensors but modulations of temperature parameters are still individual. The position modulation parameters are refined in the molecular part. The file results from the procedure shown in Figure 114, followed by refinement of the initial TLS parameters¹.

```
1
        1
            1
                 1
   4
        1
 100000
 0.000000
 0.017930 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000
                                                     100000
 000000
                0.500000 0.500000 0.590943 0.750000
                                                     000 0 2 2
к
        2 2
 0.029000 0.002672 0.013612 0.000000 0.004203 0.000000
                                                     0010111010
 0.008053 0.000000-0.013250 0.000000 0.017274 0.000000
                                                     101010
-0.012674 0.000000-0.006933 0.000000-0.003295 0.000000
                                                     101010
 0.000000 0.000000 0.000000-0.000945 0.000000 0.000304
                                                     000101
-0.000146-0.000510 0.002324 0.000000 0.000154 0.000000
                                                     111010
 0.000000 0.000000 0.000000-0.000257 0.000000 0.000209
                                                     000101
 0.000435-0.000516 0.001311 0.000000 0.000777 0.000000
                                                     111010
 0.00000
                                                     0
Ir
        1
                         As
        1 0
                0.500000 0.000000 0.631034 0.250000
                                                     000 -1 0 2
As
 000000000
 0.000000 0.000000 0.000000-0.000397 0.000000 0.000311
                                                     000000
 0.001495 0.000006 0.000184 0.000000-0.000056 0.000000
                                                     000000
 0.000000 0.000000 0.000000 0.000075 0.000000 0.000380
                                                      000000
 0.000304-0.000075-0.000129 0.000000 0.000586 0.000000
                                                     000000
 0.000000
                                                      0
F1
        3 0
                 1.000000-0.099982 0.627143 0.498994
                                                     000 -1 0
                                                               2
 0111000000
 0.004425-0.000378 0.000617-0.002000 0.001744-0.001087
                                                      000000
 0.003334-0.000347 0.000943-0.000668 0.001176-0.000463
                                                     000000
 0.003765-0.000670 0.001541-0.000568 0.002360 0.000007
                                                     000000
-0.005254-0.000199-0.000573 0.001926-0.001478-0.000148
                                                     000000
0.00000
                                                      0
. . . .
                 1.000000 0.259792 0.704290 0.334738
                                                     000 -1 0 2
03
         4 0
 0111000000
 0.007986\text{-}0.000453\text{-}0.002356\text{-}0.001169\ 0.002582\ 0.001678
                                                     000000
 0.003601 0.000404 0.003345-0.000755 0.001754-0.000521
                                                      000000
-0.000017-0.001508-0.003817 0.002362-0.001954 0.003239
                                                      000000
 0.004407 0.000668 0.008726-0.002768 0.008894-0.003002
                                                     000000
 0.000000
                                                     0
                1.000000
                                                      000 0 2 0
pos#1
        1
          0.000
   0.000
                                                     0000010
                   0.000 0.000000 0.000001 0.000000
 0.014375 0.001490 0.009421 0.000000 0.002205 0.000000
                                                     111010
                                                                 TLS tensors: refined
 0.010616 0.000608 0.005178 0.000000-0.002004 0.000000
                                                     111010
                                                                 values
 0.002297 0.000000 0.000650 0.000000 0.000123 0.000000
                                                     101010
 0.000298 0.000000-0.002420
                                                     100
-0.011055 0.000000-0.026441 0.000000 0.013895 0.000000
                                                     101010
-0.001313 0.000000 0.003937 0.000000 0.001393 0.000000
                                                     101010
                                                               Molecular position
-0.032074 0.000000 0.020323 0.000000-0.003045 0.000000
                                                     101010
                                                               modulation parameters
-0.001787 0.000000 0.003258 0.000000 0.001527 0.000000
                                                     101010
0.00000
                                                      0
```

¹ It should be noted that combination of TLS tensors with atomic temperature modulation is an artificial case used only for the purpose of this manual. The refinement of individual temperature modulation parameters together with TLS tensors cannot work well. For this reason the relevant refinement keys are set to zero.

Figure 115(c) The resulting m40 with initial parameters prepared for the refinement of TLS tensors modulations.

1 4	1 1	1	1					
1.2347	94 O.	000000	0.000000	0.000000	0.000000	0.000000	100000	
0.0000	00							
0.01793	30 0.	000000	0.000000	0.000000	0.000000	0.00000	100000	
0.0000	00 0.	000000	0.000000	0.000000	0.000000	0.00000	000000	
К	2	2	0.500000	0.500000	0.590943	0.750000	000 0 2	2
0.0290	00 0.	002672	0.013612	0.000000	0.004203	0.00000	001011101	D
0.0080	53 0.	000000-	-0.013250	0.000000	0.017274	0.00000	101010	
-0.0126	74 0.	000000-	-0.006933	0.000000-	-0.003295	0.00000	101010	
0.0000	00 0.	000000	0.000000-	0.000945	0.000000	0.000304	000101	
-0.00014	46-0.	000510	0.002324	0.000000	0.000154	0.00000	111010	
0.0000	00 0.	000000	0.000000-	0.000257	0.000000	0.000209	000101	
0.00043	35-0.	000516	0.001311	0.000000	0.000777	0.00000	111010	
0.0000	00						0	
Ir	1			As				
As	1	0	0.500000	0.000000	0.631034	0.250000	000 -1 0	0
0.0000	00 0.	000000	0.000000	0.000000	0.000000	0.00000	00000000	0
F1	3	0	1.000000-	0.099982	0.627143	0.498994	000 -1 0	0
0.0000	00 0.	000000	0.000000	0.000000	0.000000	0.00000	011100000	0
F2	3	0	1.000000	0.237892	0.552001	0.331404	000 -1 0	0
0.0000	00 0.	000000	0.000000	0.000000	0.000000	0.00000	011100000	0
03	4	0	1.000000	0.259792	0.704290	0.334738	000 -1 0	0
0.0000	00 0.	000000	0.000000	0.000000	0.000000	0.00000	011100000	0
pos#1	1		1.000000				000 0 2	1
0.0	00	0.000	0.000	0.000000	0.000001	0.000000	0000010	
0.0000	00 0.	000000	0.000000	0.000000	0.000000	0.000000		
0.0143	75 0.	001490	0.009421	0.000000	0.002205	0.000000	111010	
0.0106	16 0.	000608	0.005178	0.000000-	-0.002004	0.000000	111010	
0.0022	9/0.	000000	0.000650	0.000000	0.000123	0.000000	101010	
0.0002	98 U.	000000-	-0.002420		0 012005	0.00000	101010	
-0.0110	55 U.	000000-	-0.026441	0.000000	0.013895	0.000000	101010	
-0.0013	13 U.	000000	0.003937	0.000000	0.001393	0.000000	101010	
-0.0320	/4 U.	000000	0.020323	0.000000-	0.003045	0.000000	101010	
-0.001/0	8/0.	000000	0.003258	0.000000	0.001527	0.000000	111111	
0.0000	10 0. 10 0	000010	0.000010	0.000010	0.000010	0.000010	111111	TLS modulation
0.0000	10 0. 10 0	000010	0.000010	0.000010	0.000010	0.000010	111111	parameters (the 1 st
0.0000	10 0.	000010	0.000010	0.000010	0.000010	0.000010	111111	modulation wave) with
0.0000	10 0.	000010	0.000010	0.000010	0.000010	0.000010	111111	initial values and
0.0000	10 0.	000010	0.000010	0.000010	0.000010	0.000010	110	rofinoment keye
0.0000	10 0.	000010	0.000020	0 000010	0 000010	0 000010	111111	rennement keys.
0.0000	10 0.	000010	-0 000010	0.000010	0.000010	0.000010	110	
0 0000	00	000010.	0.000020				0	
0.0000							•	

Figure 116 Change from TLS to individual temperature modulation

(a) The input m40 with molecule "Ir" is shown in Figure 115(a), page 200. The temperature parameters of the model molecule are refined like TLS tensors.

(b) The procedure to transform TLS tensors to individual temperature modulation.

Figure 116(c) The resulting m40 with TLS tensors transformed to atomic temperature parameters.

Figure 117 Refinement of individual and molecular modulation together

(a) The input m40 with molecule "Ir" is shown in Figure 114(a), page 197. The position modulations of the model molecule are refined in the molecular part.

(b) The procedure to add one individual position modulation wave to atom O3 of the model molecule.

Figure 117(c) The resulting m40 with position modulation parameters of atom O3 calculated like combination of molecular (2 waves) and individual atomic (1 wave) contributions. The comparison of the individual position modulation parameters with their estimated standard deviations can be used as a measure how far is the position modulation of O3 from the rigid body approximation.

1 1	L 1	1					
4 1	L						
1.233062	0.000000	0.000000	0.000000	0.000000	0.000000	100000	
0.00000							
-0.003372	0.000000	0.000000	0.000000	0.000000	0.000000	100000	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	000000	
к	22	0.500000	0.500000	0.590927	0.750000	000 0	2 2
0.028974	0.002661	0.013591	0.000000	0.004226	0.000000	00101110	10
0.008163	0.000000-	-0.013260	0.000000	0.017298	0.000000	101010	
-0.012632	0.000000-	-0.006926	0.000000-	0.003274	0.000000	101010	
0 000000	0 000000	0 000000-	0 000923	0 000000	0 000311	000101	
_0_000144.	-0 000511	0 002318	0 000000	0 000166	0 000000	111010	
0.0000144	0.0000011	0.002310	0.000000	0.000100	0.000101	000101	
0.000000	0.000000	0.000000-	0.000233	0.000000	0.000191	111010	
0.000313	-0.000491	0.001401	0.000000	0.000897	0.000000	111010	
_0.000000	-		_			0	
lr	1 1		AS				
As	1 2	0.500000	0.000000	0.631034	0.250000	000 -1	0 2
0.014260	0.001484	0.009398	0.000000	0.002167	0.000000	00001110	10
0.000000	0.000000	0.000000-	0.000392	0.000000	0.000311	000101	
0.001473	0.00007	0.000200	0.00000-	0.000042	0.000000	111010	
0.000000	0.000000	0.000000	0.000082	0.000000	0.000395	000101	
0.000317	-0.000080-	-0.000096	0.000000	0.000600	0.000000	111010	
0.00000						0	
F2	3 2	1,000000	0.237793	0.551952	0.331451	000 -1	0 2
0.033107	0.002941	0.022301	0.004062	0.001804	0.001302	01111111	11
-0 004765	0 000856	0 001537	0 000078-	0 003154	0 001045	111111	
0 004140	0 000040.	-0 003533	0 000282	0.003151	0.00111	111111	
0.004117	0.0000409	0.0000075	0.000202-	0.001030	0.000111	111111	
0.000417	-0.000498-	-0.000275-	0.000943	0.000839-	0.000108	111111	
0.001132	0.000075	0.001248	0.001467	0.000/10-	-0.000163		
0.000000						0	
03	4 2	1.000000	0.259432	0.704225	0.334598	000 -1	1 2
0.029636	0.003572	0.024700-	0.004798	0.011995-	-0.004461	01111111	11
-0.001022	0.001363	-0.004077-	0.001334	0.000398-	-0.002854	111111	The individual position
0.007401	-0.000459-	-0.002404-	0.001127	0.002128	0.001734	111111	
0.003866	0.000433	0.002873-	0.000778	0.001948-	-0.000513	111111	modulation parameters of
0.001029	-0.001433-	-0.003246	0.002369-	0.001507	0.002928	111111	03
0.004260	0.000676	0.007157-	0.002878	0.008940-	-0.002886	111111	
0.00000						0	
pos#1	1	1.000000				000 0	2 0
0.000	0.000	0.000	0.000000	0.000003	0.000000	0000010	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		
-0.011043	0.000000	-0.026361	0.000000	0.013892	0.000000	101010	
-0.001271	0.000000	0.003932	0.000000	0.001400	0.000000	101010	The molecular position
-0 031089	0,000000	0 019840	0.000000-	0.003164	0.000000	101010	modulation parameters.
-0.001732	0.000000	0.010000	0.000000-	0.001535	0.000000	101010	
-0.001732	0.000000	0.003092	0.000000	0.001555	0.000000	101010	
0.000000						0	
• • • •							
03		0.000000	0.000430	0.000131	0.000332		
0.000934	0.000096	0.000677	0.000245	0.000655	0.000210		
0.000683	0.000210	0.000534	0.000581	0.000200	0.000543		The e c d's of the
0.001184	0.000115	0.000785	0.000296	0.000732	0.000233		
0.001348	0.000130	0.000991	0.000346	0.000918	0.000288		individual position
0.001651	0.000157	0.001036	0.000405	0.001035	0.000333		modulation parameters of
0.001732	0.000157	0.001098	0.000420	0.001093	0.000327		03.
0.00000							

3.2.9 Using local symmetry for molecules

In *JANA98* symmetry of the model molecule can be defined through a point group symbol (see page 141). Both Hermann-Mauguin and international symbols are allowed.

The local symmetry is defined with respect to the Cartesian axes related to the current crystal axis by matrix given in equation E 43, page 143. If the Cartesian system is redefined with help of the redefinition of the rotation z axis (see page 144) the local symmetry is based on the new coordinate system.

The examples that follow concern a structure containing three symmetry independent AsF_6 octahedrons. Changing from free atomic model to molecular models with various local symmetry enables to check rigidity and regularity of the octahedrons.

In the given example the symmetry considerations are simplified by the fact that molecular positions have general symmetry. If they would have its own local symmetry (for instance a mirror plane) the local symmetry of the model molecule would combine with a local symmetry of the molecular position.

Figure 118 M50 for examples concerning the local symmetry

The keywords in m50 are explained in page 77.

```
title JAJA in the supercell
cell 9.391 11.336 28.173 90 90 90
lambda 0.5609
spgroup Pnab 60
lattice P
centro
symmetry
            х
                 У
                        z
symmetry 1/2-x 1/2+y 1/2+z
symmetry
         x 1/2+y 1/2-z
symmetry 1/2-x y -z
unitsnumb 24
atom As
atweight 74.922 dmax 3 formula 1
f' 0.196 f" 1.332
formtab 32
   32.983 32.278 30.491 28.301 26.218 24.386 22.739 21.196
   19.722 18.313 16.976 15.717 14.540 13.451 12.454 11.552
  10.74410.0309.4038.8588.3867.9787.6267.0536.8176.6060.0000.0000.0000.000
                                                            7.320
0.000
atom K
atweight 39.098 dmax 0 formula 1
f' 0.118 f" 0.156
formtab 32
  18.99918.20616.73215.24413.72612.26910.9809.0578.3987.8887.4807.1346.8236.5285.9565.6745.3955.1204.8514.5894.336
                                                              9.909
                                                              6.241
          5.674
                                                            4.093
   3.861 3.640 3.431 0.000 0.000 0.000 0.000
                                                            0.000
atom F
atweight 18.998 dmax 0 formula 5
f' 0.006 f" 0.006
formtab 32
   8.999
          8.815
                  8.303 7.561
                                     6.709
                                           5.851
                                                      5.054
                                                              4.353
   3.760 3.270 2.873 2.558 2.309 2.112 1.957
                                                            1.834
                  1.5871.5311.4821.4381.3981.2550.0000.0000.0000.000
                                                             1.360
          1.654
   1.735
   1.324
           1.289
                                                              0.000
atom O
atweight 15.999 dmax 0 formula 1
f' 0.003 f" 0.004
formtab 32
          7.798
                   7.246
                           6.472
                                            4.808
   7.999
                                     5.623
                                                      4.089
                                                              3.489
   3.006
            2.628
                    2.337
                             2.115
                                     1.946
                                             1.816
                                                      1.715
                                                              1.634
   1.568
            1.512
                    1.463
                             1.419
                                     1.377
                                             1.337
                                                      1.298
                                                              1.260
                           0.000 0.000 0.000 0.000
   1.221
                  1.145
                                                            0.000
           1.183
atom H
atweight 1.008 dmax 0 formula 1
f' 0 f" 0
formtab 32
   1.000 0.960 0.854
                           0.713
                                     0.568
                                             0.438
                                                      0.331
                                                              0.248
          0.138 0.103 0.078
                                                              0.028
   0.184
                                     0.060
                                             0.046
                                                      0.036
   0.022
          0.018 0.014
                             0.011
                                     0.009
                                             0.007
                                                      0.006
                                                              0.005
   0.005
            0.004
                    0.004
                             0.000
                                     0.000
                                             0.000
                                                      0.000
                                                              0.000
noofref 5375
slimits 0.347273 0.442088 0.514002 0.572307 0.622045 0.667085 0.711857 0.753508
flimits 66.6 116.7 201.5 349 584.2 1141.4 2586.7 197781.8
end
```

Figure 119 Setting a molecular model without local symmetry

(a) Input m40 containing atomic model of the structure. The R value from the refinement of this structure was 4.91% for observed reflections.

25 (0 0	0		
0.553924	0.000000	0.000000 0.000000 0.000000 0.000000	100000	
0.421884	0.000000	0.000000 0.000000 0.000000 0.000000	100000	
0.000000	0.000000	0.000000 0.000000 0.000000 0.000000	000000	
Ka	22	0.500000 0.250000 0.341885 0.000000		
0.036739	0.039739	0.041075 0.000000 0.007541 0.000000	0010111010	
Kb	2 2	1.000000 0.230410 0.338262 0.165883		
0.030894	0.036062	0.030158-0.003391-0.001207 0.001991	0111111111	
Kc	2 2	1.000000 0.251236 0.322547 0.331665		
0.031621	0.030560	0.031993 0.002891 0.001232 0.001123	0111111111	
Kd	2 2	0.500000 0.250000 0.318335 0.500000		
0.031541	0.028024	0.030752 0.000000 0.001138 0.000000	0010111010	
Asa	1 2	1.000000 0.076569 0.104506 0.080828		
0.018308	0.017954	0.025836-0.000324-0.000520-0.000353	0111111111	
Fla	32	1.000000-0.096404 0.049983 0.080027		
0.024560	0.040997	0.075323-0.012229-0.001312 0.002634	0111111111	
F2a	32	1.000000 0.244947 0.168418 0.081473		The first AsF ₆
0.028301	0.041054	0.075391-0.004800 0.000596 0.000527	0111111111	octahedron
F3a	32	1.000000 0.017405 0.203467 0.122918		
0.039527	0.043393	0.053351 0.003039 0.010724-0.022492	0111111111	
F4a	3 2	1.000000 0.116884 0.003183 0.124304		
0.047890	0.046066	0.055105 0.002702-0.002904 0.029093	0111111111	
F5a	3 2	1.000000 0.022328 0.203062 0.037616		
0.035212	0.044062	0.048320 0.001257-0.008604 0.017990	0111111111	
F6a	3 2	1.000000 0.120183 0.003191 0.038150		
0.051513	0.045645	0.053383 0.007023 0.000484-0.027526	0111111111	
Asb	1 2	1.000000 0.106961 0.093846 0.415836		
0.026233	0.019125	0.024413-0.001530 0.000201-0.001199	0111111111	
F1b	3 2	1.000000 0.128467 0.245043 0.413639	•	
0.098775	0.021216	0.049971-0.010923 0.015824-0.001388	0111111111	
F2b	3 2	1.000000 0.092824-0.059064 0.418986		
0.073228	0.029393	0.080465-0.001935 0.009063 0.002165	0111111111	
F3b	3 2	1.000000 0.187436 0.085393 0.361604	-	The second AsF ₆
0.123808	0.045358	0.043183-0.005468 0.038849-0.002239	0111111111	octahedron
F4b	32	1.000000-0.055691 0.110869 0.390266		
0.071723	0.070229	0.115648 0.015041-0.057738 0.000030	0111111111	
F5b	3 2	1.000000 0.031585 0.115491 0.470551		
0.088945	0.047566	0.052497 0.003379 0.031311-0.004997	0111111111	
F6b	32	1.000000 0.271597 0.086981 0.443235		
0.038769	0.082243	0.090329-0.000936-0.026437-0.014413	0111111111	
Asc	1 2	1.000000 0.082771 0.107473 0.757335		
0.018084	0.021286	0.027039-0.001343 0.001200 0.000183	0111111111	
Flc	32	1.000000-0.092688 0.057732 0.759366		
0.023728	0.050100	0.073426-0.013932 0.010129-0.011077	0111111111	
F2c	3 2	1.000000 0.252783 0.166664 0.755343		
0.028795	0.043461	0.079426-0.002630 0.001123 0.001600	0111111111	
F3c	32	1.000000 0.029290 0.214849 0.796523		The third AsF ₆
0.035401	0.056236	0.091378-0.003754 0.009211-0.041658	0111111111	octahedron
F4c	3 2	1.000000 0.121184 0.015781 0.803403		
0.051938	0.095588	0.098611 0.017959 0.007636 0.071023	011111111	
F5c	3 2	1.000000 0.030651 0.196444 0.711747		
0.037782	0.129176	0.068125-0.000332-0.004932 0.059633	011111111	
F6c	3 2	1.000000 0.121874-0.005289 0.719188		
0.050470	0.087921	0.131062-0.017662 0.033382-0.080175	011111111	

Figure 119(b) Procedure to create a molecular model without specifying local symmetry. From two possible ways - creating from atoms already present in the atomic part (see Figure 98, page 173) and creating from m45 (see page 177)- the second one is used in order to have the model molecule in a coordinate system useful for later application of the local symmetry. Only important windows are shown - adding of a molecule from m45 is fully described in Figure 101, page 178.

Figure 119(c) The resulting m40 with a molecule "Oct" in three positions. The model octahedron is oriented along the *c* axis.

4 :	10 3	1					
0.553924	0.000000	0.000000	0.000000	0.000000	0.000000	100000	
0 421884	0 00000	0 000000	0 000000	0 00000	0 00000	100000	
0 000000	0.000000	0.000000	0 000000	0.000000	0.000000	000000	
Ka	2 2	0.500000	0.250000	0.341885	0.000000	000000	
0.036739	0.039739	0.041075	0.000000	0.007541	0.000000	0010111010	
Kb	2 2	1.000000	0.230410	0.338262	0.165883	••=====	
0.030894	0.036062	0.030158-	0.003391-	-0.001207	0.001991	0111111111	
Kc	2 2	1.000000	0.251236	0.322547	0.331665		
0.031621	0.030560	0.031993	0.002891	0.001232	0.001123	0111111111	
Kd	2 2	0.500000	0.250000	0.318335	0.500000		
0.031541	0.028024	0.030752	0.000000	0.001138	0.000000	0010111010	
Oct	0		As				
As	1 1	1.000000	0.000000	0.000000	0.000000		
0.037995	0.000000	0.000000	0.000000	0.000000	0.000000	000000000	
F1	31	1.000000	0.000000	0.000000	0.061690		
0.037995	0.000000	0.000000	0.000000	0.000000	0.00000	000000000	
F2	31	1.000000	0.000000	0.000000-	-0.061690		
0.037995	0.000000	0.000000	0.000000	0.000000	0.000000	000000000	The model
F3	31	1.000000	0.183154	0.000000	0.000000		molecule
0.037995	0.000000	0.000000	0.000000	0.000000	0.000000	000000000	
F4	31	1.000000-	0.183154	0.000000	0.00000		
0.037995	0.000000	0.000000	0.000000	0.000000	0.00000	000000000	
F5	31	1.000000	0.000000	0.151729	0.00000		
0.037995	0.000000	0.000000	0.000000	0.000000	0.000000	000000000	
F6	31	1.000000	0.000000-	-0.151729	0.00000		
0.037995	0.000000	0.000000	0.000000	0.000000	0.00000	000000000	
pos#1	1	1.000000				000 0 0	0
111.540	-43.611	-91.027	0.076569	0.104506	0.080828	000000	Three positions of
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		the model molecule
pos#2	1	1.000000				000 0 0	⁰ correspond to
-10.830	63.416	-94.594	0.106961	0.093846	0.415836	0000000	positions of
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		octahedrons in the
pos#3	1	1.000000				000 0 0	⁰ free atomic model
107.316	-39.923	-87.546	0.082771	0.107473	0.757335	0000000	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		

4 1	L 0	1					
0.548310	0.000000	0.000000	0.000000	0.000000	0.00000	100000	
0.247648	0.000000	0.000000	0.000000	0.000000	0.00000	100000	
0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	000000	
Ka	2 2	0.500000	0.250000	0.341796	0.000000	0010111010	
0.035935 Kh	2 2	1 000000	0.230401	0.007367	0.165874	0010111010	
0.030349	0.035855	0.029715-	-0.003354-	-0.001479	0.001819	0111111111	
Kc	2 2	1.000000	0.251256	0.322471	0.331663		
0.031699	0.029773	0.031780	0.002807	0.001166	0.001108	0111111111	
Kd	2 2	0.500000	0.250000	0.318375	0.500000		
0.031445	0.027776	0.030263	0.000000	0.001246	0.000000	0010111010	
OCT Ag	1 0	1 000000	AS	0 00000	0 00000		The model molecule
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	000000000	Note that the refined
F1	3 0	1.000000-	-0.001816-	-0.001824	0.061663		coordinates are not
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0111000000	far from the input
F2	30	1.000000	0.007185	0.004706-	-0.061636		coordinated from
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0111000000	Figure 119(c).
F3	3 0 00000	1.000000	0.182359-	0.0001421	0.003652	0111000000	J [*] • • (*)
F4	3 0	1.000000	-0.182270	0.001312	0.001710	0111000000	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0111000000	
F5	3 0	1.000000	0.003928	0.150906	0.003380		
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0111000000	
F6	3 0	1.000000-	-0.003286-	-0.151227	0.001236	0111000000	
0.000000	1	1 000000	0.000000	0.000000	0.000000	0111000000	
111.540	-43.611	-91.027	0.076523	0.104605	0.080819	0000111	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		
0.004777	0.003445	0.000440-	-0.000714	0.000044-	-0.000002	111111	
0.002448	0.001925	0.000401	0.000650	0.000145	0.000113	111111	
0.000089-	-0.000022-	-0.000110	0.000105-	-0.000094	0.000103	111111	
0.000058-	-0.000004	0.000005					
-14.739	64.584	-100.240	0.107172	0.093833	0.415891	0111111	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		Molecular positions
0.005414	0.004000	0.000472-	-0.000137	0.000095	0.000090	111111	with TIS parameters
0.005132	0.001751	0.000819-	-0.000091-	-0.000350	0.000045	111111	with TEO parameters.
0.000330-	-0.000706-	-0.000075-	-0.000393-	-0.000386	0.000023	111111	
-0.000436	0.000279	0.000056				110	
107 712	-39 297	-87 760	0 082771	0 107513	0 757349	0111111	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	VIIIII	
0.005251	0.003844	0.000432-	-0.000467-	-0.000044	0.000043	111111	
0.003392	0.001512	0.001107	0.000575	0.000889	0.000110	111111	
-0.000178-	-0.000384-	-0.000193-	-0.000285	0.000233	0.000049	111111	
-0.000168-	-0.000599-	-0.000055				110	

¹ The R value was 5.59 % (compare with 4.91% of the free atomic model). The refinement with anisotropic temperature parameters (i.e. without TLS tensors) converged with R=7.45%.

Figure 120 Setting the local symmetry D_{4h}

(a) Input m40 is in Figure 119(c). The refined m40 from Figure 119(d) cannot be used because the model coordinates already do not have the D_{4h} symmetry.

(b) Procedure to define the local symmetry D_{4h} . According to the International tables, Vol A, atoms F1 and F2 are in the symmetry position a, F3, F4, F5 and F6 are in the symmetry position c and As is not expanded.

4/mmm 4 2 2	D_{4h}			
ттт				
16	g	1	Ditetragonal dipyramid Edge-truncated tetragonal prism (u)	(hkl) $(\overline{h}\overline{k}l)$ $(\overline{k}hl)$ $(k\overline{h}l)$ $(\overline{h}kl)$ $(hk\overline{k}l)$ $(kh\overline{k}l)$ $(k\overline{h}l)$ $(\overline{h}\overline{k}l)$ $(hk\overline{k}l)$ $(k\overline{h}l)$ $(k\overline{h}l)$ $(\overline{h}\overline{k}l)$ $(\overline{k}h\overline{k}l)$ $(\overline{k}h\overline{k}l)$
8	f	. <i>m</i> .	Tetragonal dipyramid Tetragonal prism (s)	(h0l) $(h0l)$ $(h0l)$ $(0hl)$ $(0hl)(h0l)$ $(h0l)$ $(0hl)$ $(0hl)$
8	е	<i>m</i>	Tetragonal dipyramid Tetragonal prism (r)	(hhl) $(\overline{h}\overline{h}l)$ $(\overline{h}hl)$ $(h\overline{h}l)$ $(\overline{h}h\overline{l})$ $(h\overline{h}\overline{l})$ $(hh\overline{l})$ $(\overline{h}h\overline{l})$
8	d	<i>m</i>	Ditetragonal prism Truncated square through origin (p)	$(hk0)$ $(h\bar{k}0)$ $(k\bar{h}0)$ $(k\bar{h}0)$ $(h\bar{k}0)$ $(h\bar{k}0)$ $(kh0)$ $(k\bar{h}0)$
4	С	<i>m</i> 2 <i>m</i> .	Tetragonal prism Square through origin (1)	(100) $(\overline{1}00)$ (010) $(0\overline{1}0)$
4	b	<i>m.m</i> 2	Tetragonal prism Square through origin (j)	$(110) (\overline{1}\overline{1}0) (\overline{1}10) (1\overline{1}0)$
2	а	4 <i>mm</i>	Pinacoid or parallelohedron Line segment through origin (g)	(001) (001)
		4mm	2mm 2mm	
Editing of Fransformat Expansion b Merging of Replacing/in	the file m <u>4</u> 0 ion and/or o y symmetry op symmetry rela nserting ato	rigin shift peration(s) ated atoms ms		
dding of h Deleting of	ydrogen atom atoms	s	Select a	coms from molecular part
ſemperature <u>B</u> eta<->U	parameters	•	As F1 F5 F6	
dding or d Setting of	eleting a <u>n</u> ha refinement <u>k</u>	rmonic tensor eys	s Include - atom type	Include Include - atom <u>n</u> ame
reation of ove atoms :	new molecula from molecula	ar part e to atomic p	art	×
ransformat: ransformat:	ion of mo <u>l</u> ect ion of M40 at	ular paramete nd M <u>5</u> 0 to var	rs Select <u>all</u> ious formats	Esc Ok <u>R</u> efresh
diting of f Transformat Expansion by	the file m <u>4</u> 0 ion and/or o y symmetry oj	rigin shift peration(s)	Kd 2 2 0.50000 0.2 0.031541 0.028024 0.030752 0.0 0ct 0 D4h As	50000 0.318335 0.500000 00000 0.001138 0.000000 0010111010
ferging of s Replacing/in	symmetry relanserting atom	ated atoms ms	As 1 1 0.062500 0.0 0.037995 0.000000 0.000000 0.0	00000 0.000000 0.000000 00000 0.000000 0.000000 00000000
dding of hy eleting of	ydrogen atom atoms	5	F1 3 1 0,125000 0,0 0,037995 0,000000 0,000000 0,0 FZ Z 1 0 0,000000 0,0	00000 0.000000 0.061690 00000 0.000000 0.000000 000000000 83454 0.000000 0.000000
erature eta<->U dding or de	parameters eleting a <u>n</u> ham	rmonic tensor	s	00000 0.000000 0.000000 000000 0000 0.000000 0.000000 000 0 0 0 0000 0.000000 00000 0.000000 000000 0.000000 0000000 0000000 0000000 000000
Setting of p reation of	refinement <u>k</u> new molecula	eys ar part	pos#2 1 1.000000 -10.830 63.416 -94.594 0.1 0.000000 0.000000 0.000000 0.0	000 0 0 0 06961 0.093846 0.415836 0000000 00000 0.000000 0.000000

Creation of new molecular part Move atoms from molecule to atomic part

 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000

 107.316
 -39.323
 -87.546
 0.082771
 0.107473
 0.757335

 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000

 Ka
 0.000000
 0.000000
 0.000000
 0.000102
 0.000000

 0.0000537
 0.000538
 0.000708
 0.000000
 0.000000
 0.000000
 Transformation of molecular parameters Transformation of M40 and M50 to various formats Undo/Do command

> Here the user should enter the point group symbol and the site occupation factors for the model atoms. JANA98 does not offer a user interface for these operations.

000 0 0 0 0000000

Figure 120(c) Resulting m40 *after refinement of TLS parameters*¹.

4 2	103	1					
0 547455		0 00000	0 00000	0 00000	0 00000	100000	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	100000	
0.220582	0.000000	0.000000	0.000000	0.000000	0.00000	100000	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	000000	
Ka	22	0.500000	0.250000	0.341929	0.000000		
0.036498	0.040330	0.040841	0.000000	0.007473	0.000000	0010111010	
Kb	22	1.000000	0.230231	0.338285	0.165838		
0.030771	0.036116	0.029813-	-0.003109-	-0.001382	0.001712	0111111111	
Kc	22	1.000000	0.251189	0.322495	0.331615		
0.032286	0.029363	0.032024	0.002423	0.001334	0.000639	0111111111	
Kd	22	0.500000	0.250000	0.318449	0.500000		
0.032787	0.028146	0.029984	0.000000	0.001005	0.000000	0010111010	
Oct	0 D4h		As				
As	1 0	0.062500	0.000000	0.000000	0.000000		
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	000000000	
F1	30	0.125000	0.000000	0.000000	0.061602		
0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0001000000	
F3	30	0.250000	0.182469	0.000000	0.000000		
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	010000000	
pos#1	1	1.000000				000 0 0	0
113.607	-44.370	-91.078	0.076281	0.104629	0.080825	0111111	Pofinament keys of the
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		first male sular masition
0.004824	0.003379	0.000439-	-0.000724	0.000044-	-0.00003	111111	first molecular position
0.002619	0.002190	0.000410	0.000559	0.000088	0.000127	111111	- see footnote.
0.000079	0.00001-	-0.000154	0.000242-	-0.000101	0.000140	111111	
0.000051	0.000001	0.000022				110	
pos#2	1	1.000000				000 0 0	0
-11.950	63.764	-96.713	0.107186	0.094014	0.415867	0111111	
0.00000	0.00000	0.000000	0.000000	0.000000	0.000000		
0.005402	0.004019	0.000469-	-0.000143	0.000095	0.000071	111111	
0.005245	0.001936	0.000831	0.000114-	-0.000234	0.000110	111111	
0.000167	-0.000640	0.000000-	-0.000368-	-0.000238	0.000037	111111	
-0.000389	0.000175	0.000070				110	
pos#3	1	1.000000				000 0 0	0
109.615	-40.498	-87.568	0.082541	0.107527	0.757354	0111111	
0.00000	0.00000	0.000000	0.000000	0.000000	0.00000		
0.005220	0.003850	0.000433-	-0.000441-	-0.000051	0.000041	111111	
0.003563	0.001680	0.001071	0.000618	0.000774	0.000213	111111	
-0.000230-	-0.000450-	-0.000179-	-0.000277	0.000215	0.000071	111111	
-0.000156	-0.000623	0.000016				110	

¹ The R value was 6.84 % (compare with 5.59% of the molecular model without applying of the local symmetry). The symmetry restrictions of the model molecule coordinates are calculated from the point group D_{4h} . Refinement of restricted coordinates can influence the size of the molecule but not rotation. Therefore the rotation angles of the first molecular position cannot be fixed in order to allow proper orienting of the first molecular position. For this the automatic refinement mode has to be disabled because in the automatic mode the rotation parameters of the first molecular position are always fixed for the reasons explained in page 189.

Figure 121 Setting the local symmetry T

(a) Input m40 is in Figure 119(c). The refined m40 from Figure 119(d) cannot be used because the model coordinates already do not have the D_{4h} symmetry.

(b) Procedure to define the local symmetry D_{4h} . In the point group T all atoms F are equivalent.

Figure 121(c) The resulting m40 after refinement of TLS parameters¹

4 2	10 3	1				
0.546634	0.000000	0.000000	0.000000	0.000000	0.00000	100000
0.197213	0.000000	0.000000	0.000000	0.000000	0.000000	100000
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	000000
Ka	2 2	0.500000	0.250000	0.341944	0.000000	
0.036588	0.040202	0.040786	0.000000	0.007372	0.000000	0010111010
Kb	2 2	1.000000	0.230215	0.338273	0.165834	
0.030899	0.035915	0.029662-	-0.003056-	0.001376	0.001772	011111111
Kc	2 2	1.000000	0.251195	0.322492	0.331625	
0.032421	0.029257	0.031823	0.002401	0.001330	0.000610	011111111
Kd	2 2	0.500000	0.250000	0.318460	0.500000	
0.032805	0.028173	0.029868	0.000000	0.000881	0.00000	0010111010
Oct	0 т		As			
As	1 0	0.083333	0.000000	0.000000	0.00000	
0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	000000000
F1	3 0	0.500000	0.000000	0.000000	0.061109	
0.00000	0.000000	0.000000	0.000000	0.000000	0.00000	0001000000
pos#1	1	1.000000				000 0 0 0
113.539	-44.382	-91.068	0.076274	0.104628	0.080821	0111111
0.00000	0.000000	0.000000	0.000000	0.000000	0.00000	
0.004813	0.003370	0.000440-	-0.000716	0.000044-	0.00003	111111
0.002620	0.002209	0.000405	0.000566	0.000089	0.000128	111111
0.000087	0.000007-	-0.000158	0.000240-	0.000108	0.000140	111111
0.000035	0.000005	0.000022				110
pos#2	1	1.000000				000 0 0 0
-11.863	63.719	-96.690	0.107210	0.093985	0.415869	0111111
0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	
0.005388	0.004010	0.000470-	-0.000145	0.000094	0.000071	111111
0.005246	0.001930	0.000816	0.000112-	0.000200	0.000105	111111
0.000214	-0.000672	0.000006-	-0.000336-	0.000271	0.000035	111111
-0.000387	0.000176	0.000056				110
pos#3	1	1.000000				000 0 0 0
109.554	-40.526	-87.535	0.082537	0.107516	0.757358	0111111
0.00000	0.000000	0.000000	0.000000	0.000000	0.00000	
0.005202	0.003839	0.000433-	-0.000437-	0.000048	0.000043	111111
0.003613	0.001674	0.001056	0.000629	0.000762	0.000198	111111
-0.000230-	-0.000440-	-0.000180-	-0.000263	0.000209	0.000077	111111
-0.000160	-0.000596	0.000021				110

¹The R value was 6.92% (compare with 6.84% for the local symmetry D_{4h}). The rotation angles of the first molecular position were not be fixed - see footnote on page 214 for explanation.
Figure 122 The shape of AsF_6 octahedron.

This figure contains AsF_6 octahedrons refined in a free atomic model, in a molecular model without applying a local symmetry (see Figure 119, page 209), in a molecular model with local symmetry D4h (see Figure 120, page 213) and in a molecular model with local symmetry T (see Figure 121, page 215). The octahedrons are overlayed and viewed along **b** axis. The red circles denote superimposed positions with the local symmetry T and D_{4h} .

3.3 Program REFINE

Input: m50,m91,[m40] Output: m40,m80,ref M50 control keywords: the section between the keywords refine and end

3.3.1 Description of REFINE

Figure 123 The Basic Window of REFINE

REFINE	
REFINE Overall R factors : [2725=2725+0/182] R(obs) = 5.48 Rw(obs) = 7.19 R(all) = 5.48 Rw(all) = 7.19 R factors for main reflection : [728=728+0] R(obs) = 4.33 Rw(obs) = 5.95 R(all) = 4.33 Rw(all) = 5.95 R factors for satellite of order 1 : [1374=1374+0] R(obs) = 5.36 Rw(obs) = 6.69 R(all) = 5.36 Rw(all) = 6.69	Quit Break Save Next
R factors for satellite of order 2 : [623=623+0] R(obs) = 11.37 Rw(obs) = 12.41 R(all) = 11.37 Rw(all) = 12.41 Maximum change/e.s.d. : -0.0315 for As Beta22cos1	Back Go to
Refining procedure - cycle 1/3	Menu Options
testa Refining - wait	

REFINE is a program for refinement of structure models. It needs as an input three files:

- m40 with parameters of the structure model and refinement keys, indicating parameters to be refined
- m50 with basic crystal information and with refinement commands (number of refinement cycles etc)
- m91 with reflections for the refinement

The scheme in the next page shows REFINE in the framework of JANA98.

Figure 124 The Scheme of the Refinement Run

The weighting scheme, minimised function and statistical quantities

The reflection file contains for each independent reflection the intensity I and its estimated standard deviation $\sigma(I)$. The sigma's are strictly taken as a measure of accuracy of the corresponding intensity. The weight of a reflection is based by default on this value and the program doesn't make any optimisation of the weighting scheme.

For the refinement based of F and for the default weighting scheme (see §3.3.7, page 241 for details) the weight is defined by expression

$$w = \frac{1}{\sigma^2 \left(\left| F_o \right| \right) + \left(u F_o \right)^2}$$
 E57

and the minimised function is

$$P = \sum w \left(\left| F_c \right| - \left| F_o \right| \right)^2.$$
 E58

The coefficient u in the equation E57 is the instability factor, which can be changed by the user but it is not further changed by the program. The proper value of the instability factor should be adjusted for a given diffractometer and should not be changed for different structures measured under the same conditions. This approach make easier a comparison of different structures - for instance comparison of their goodness of fit, see later in this paragraph. The typical value of u is about 0.01.

For the refinement based on F^2 the weight is defined by expression

$$w' = \frac{w}{4F_o^2},$$
 E59

where w is the weight from equation E57. The minimised function is

$$P = w' \left(F_o^2 - F_c^2 \right)^2.$$
 E60

Goodness of fit is defined as

$$S = \sqrt{\frac{\sum w(F_o - F_c)^2}{m - n}},$$
E61

where *m* is number of reflections and *n* is number of parameters refined. If the refinement is based on F^2 the goodness of fit is defined by expression

$$S = \sqrt{\frac{\sum w (F_o^2 - F_c^2)^2}{m - n}}.$$
 E62

Goodness of fit can be understood as a measure of the fit between the distribution expected from the weights used in the refinement and the distribution of $|F_c| - |F_o|$. If the weights are correctly estimated, errors in the data are random and the structure model is statistically correct, i.e. the value of S is 1.

JANA98 does not make any adjustement of the weighting scheme to force S to 1. S between 2-4 does not necessarily mean that the structure model is wrong or that there are systematic errors in the data set. For the data measured with a high accuracy and to a high θ angle large S can mean that the model does not describe all details of the structure like anharmonic displacements, lone-pair and bonding electrons etc. On the other hand S less than 1 indicates that the accuracy of data is not high enough to prove the model.

The estimated standard deviations of refined parameters are calculated from diagonal elements of the normal matrix and normalised to ideal goodness of fit S=1. The differences about 5 e.s.d. are already visible in the difference Fourier.

Related chapters

This chapter focuses only on the topics related immediately to the refinement program. Here are another sources of information:

- § 3.1, page 93 describes structure parameters and the structure of the refinement parameter file m40.
- § 3.2, page 153 describes *EDITM40*, the program which is used for building and modifications of the structure model.

3.3.2 Structure parameters

The structure parameters are listed in Table 10, page 98. Their names can be used in the refinement control commands (see later).

3.3.3 Refinement keys

Each refinable parameter of a structure model has the corresponding refinement key. It key indicates whether the parameter will be refined. Only the parameters with positive refinement keys are refined.

The automatic and special refinement keys.

The structure parameters can be divided to two groups with respect to the refinement keys:

- *Parameters with automatic refinement keys*. The refinement keys of these parameters can be automatically set up by *REFINE*. Optionally *REFINE* can also derive the symmetry restrictions of these parameters and make corresponding changes of their initial values.
- *Parameters with special refinement keys*. The setting of their refinement keys is not fully automatic and need assistance of the user. Only several parameters have special refinement keys. They are listed in Table 13, page 226.

The Manual and Automatic mode

The user can run the refinement program in manual or automatic mode for setting of refinement keys.

- In the *manual mode* the setting of refinement keys is done by the user. *REFINE* does not check the correctness of these keys. The keys read from the input m40 are not changed by *REFINE* except there are user constraints defined by refinement commands.
- In the *automatic mode REFINE* resets part of or all automatic refinement keys read from the input m40. The level of automatization depends on autkeys and autspec commands. It should be noted that the special refinement keys (see Table 13) are not set by *REFINE* even in the automatic mode or they are changed only under special conditions.

Autkeys and Autspec commands

These two commands are part of the Basic commands (page 231). They are applicable to parameters with automatic refinement keys. The combination of both commands influences which keys are set automatically and which are left under the user control. *The authors recommend to use the highest (default) automatic mode whenever it is possible.*

- *Autkeys command* turns on/off the automatic initialization of the refinement keys. If the autkeys mode is activated *REFINE* sets at the beginning of the run all refinable parameters to 1. All refinement keys in input m40 except the special ones are ignored. With autkeys *REFINE* also sets refinement keys in response to settings in the Modulation commands (see page 253). For instance if we select only main reflection for the refinement the refinement keys of modulation parameters are automatically set to "0". It also works for refinement of composites: if we select only reflections of one subsystem the parameters pertaining to atoms of other subsystems are fixed. In Autkeys mode *REFINE* also make fixation of the origin where necessary¹.
- *Autspec command* turns on/off automatic symmetry restrictions following from the site symmetry. In case when the restriction means that a certain parameters has to have a fixed value the program makes an initialization and fixes its values by setting of the relevant refinement key to 0. In case when the restriction means some relationship between more than one parameter the program generates an equation.

User constraints

Refinement of some parameters in automatic mode and the others in manual mode is not possible. However, the user can define user constraints by equation, restric and fixed commands - see page 224 for details. These commands are used for making various constraints for user-defined groups of parameters and/or modify settings done by autkeys and autspec commands.

¹ In three dimensions only. The remaining axes must be fixed by the user - see page 245.

The setting order for refinement keys

Usage of the button Break

The refinement can be interrupted by button Break. At the moment the button Break is pushed the actual parameters and its refinement keys are saved in m40. This can be used for the checking of the refinement keys before finishing of the zero refinement cycle. Another possible usage of Break is to start *REFINE*, break it immediately, turn off the autkeys or autspec mode, set manually some keys and restart the refinement.

Initial values of modulation parameters

Modulation parameters of a structure model usually cannot be refined from zero amplitudes as the normal matrix is becoming singular. Therefore *EDITM40* sets new modulation parameters to small positive values. *REFINE* changes the initial values only if it is necessary during application of symmetry restrictions and user constraints. This means for example that if the initial value of some parameter is not zero but this parameter should be zero because of symmetry restriction or user constraints *REFINE* sets its value to zero.

EDITM40 doesn't check the symmetry restrictions and sets the initial values to all new parameters. In the case the autspec mode is disabled the user should set not only refinement keys but also their initial values.

In the case of manual parameters (see Table 13) the non-zero initial value sometimes causes that the parameter will be refined.

Symbol and name	Initial value	Refinement key if the autkey mode is turned on
ai site occupation	usually set by EDITM40	set by user
o constant term of occupation wave	usually set by <i>EDITM4</i> 0	set by user
o, osin1 width and center of crenel function (see page 128)	set by user	set by user
scale6, scale5 etc. twin domain scales (see page 108)	set by user	set by user
<pre>xsin\$, ysin\$, zsin\$, xcos\$ and ycos\$ slope (the 1st three parameters), center and width of sawtooth function (see page 124)</pre>	set by user	set by user
scale 1 scale factor of the first data set (see page 108)	usually set by <i>EDITM40</i>	1
scale2, scale3 etc. scale factor of the 2nd, 3rd etc. data sets (see page 108)	set by user	1 if the initial value is not 0
phason, phasonm (see page 139 and 151)	set by user	1 if the initial value is not 0

 Table 13
 The parameters without automatic refinement keys

Interactive commands

Break

This button cancels immediately the refinement. After the break the refinement listing is incomplete and the file m80 is not created or it is incomplete. Break can be used for checking of refinement keys (see page 226).

This button causes *REFINE* finishes the current cycle, then calculates the last cycle, creates m80, completes the listing from scratch files and exits.

Options

This button can be used for changing of the number of the cycles or of the damping factor during the refinement run. It is often used if the results printed to the screen during the refinement indicate that the refinement needs to be damped, the number of cycles needs to be enlarged etc. If *REFINE* ends regularly, i.e. if it is not cancelled by Break button, the changes are written to m50 after the last cycle is finished. If the refinement runs with the refinement repeat (see page 231 for details) the changes are written to m50 after the last cycle of each refinement repeat.

Figure 126 The Refinement Options

Change parameters	if r	necess	ary
<u>D</u> amping factor	0	. 5	
<u>N</u> umber of cycles		18	•
Esc	Ok		

Backup copy of m40

REFINE saves the input m40 as s40. This can be recovered by Recover m40 file of the Tools menu, which is accessible from the basic window of *JANA98*. If the refinement runs with the refinement repeat (see page 231 for details) s40 is created at the beginning of each repeat. The initial m40 is therefore definitively lost at the beginning of the second refinement repeat.

The screen output of the refinement

The following figure shows the output *REFINE* writes to the screen after each refinement cycle. The expression

[16826 = 12766 + 4060/497]

means that the total number of reflections used for the refinement if 16826, from which 12766 is observed and 4060 is unobserved. The number of refined parameters is 497. Reflection is considered observed if its intensity is larger than $k\sigma(I)$. The value k and the fact if the unobserved reflections will or will not be used in the refinement can be defined by the user - see page 237.

The expression [1964=1746+218]

has the same meaning main reflections, another one is for the 1st order satellites etc.

The most important value of the R factors for checking the convergence of the refinement is Rw(all), because the minimised function is the nominator of Rw(all). The Rw(obs) and Rw(all) are calculated from observed reflections and all reflections, respectively.

Figure 127 The Screen Output of REFINE

```
Overall R factors : [16826=12766+4060/497]
            9.04 \text{ Rw(obs)} = 10.74 \text{ R(all)} = 11.12 \text{ Rw(all)} =
R(obs) =
                                                                 10.86
R factors for main reflection : [1964=1746+218]
R(obs) =
            5.04 \text{ Rw(obs)} =
                              8.04 \text{ R(all)} =
                                                5.56 \text{ Rw(all)} =
                                                                  8.09
R factors for satellite of order 1 : [3499=2978+521]
            6.61 \, \text{Rw(obs)} =
                              8.38 R(all) =
                                                7.57 \text{ Rw(all)} =
R(obs) =
                                                                  8.44
R factors for satellite of order 2 : [3867=3020+847]
R(obs) = 11.16 Rw(obs) = 10.75 R(all) = 13.56 Rw(all) =
                                                                 10.87
R factors for satellite of order 3 : [3572=2575+997]
R(obs) = 20.00 Rw(obs) = 17.52 R(all) = 23.96 Rw(all) =
                                                                 17.69
R factors for satellite of order 4 or higher : [3924=2447+1477]
R(obs) = 27.09 Rw(obs) = 22.71 R(all) = 32.40 Rw(all) =
                                                                 23.14
Maximum change/e.s.d. : -0.6806 for Ca
                                                       ycos3
```

Singular Refinement

In case the normal matrix cannot be inverted because its determinant is zero *REFINE* exits with message

Fatal - the normal matrix is singular Element # 11 : Na1ab U22 Ok In the case showed in this example the parameter responsible for singularity is U22 of atom Na1ab (alone or in interaction with other parameters).

Singularity is often caused by some general problem in the structure model. The following list shows several possible reasons:

- Some atom is too close to a special position (either by user mistake or due to existence of a split position).
- Some atom is too close to a special position of the former/higher space group after transforming to a subgroup structure. Such models cannot be often refined without atom being moved from former special positions (by a text editor in m40 file).
- Incorrect or incomplete symmetry restrictions of atoms or molecules located at special positions. This can happened only if the automatic procedure for setting them is switched off.
- The space group origin is incorrectly or incompletely fixed. This can happened only if the automatic procedure for setting of refinement keys is switched off.
- Large change of orthogonalization parameters for existing orthogonalized waves.
- Zero or too small initial values of phason, twin scales etc. see Table 13.
- Non-zero refinement key corresponding to a non-existing scale. It may happen for instance if the twinning option has been removed in *PRELIM* but the twin scales still exist in m40.
- Improper parameter used for fixing of origin in the superspace (see Fixed command option "x4 axis", page 245). The simplest case is if the chosen parameter is fixed to 0 by symmetry or if its modulation is very small.
- Inappropriate shape (planar, linear molecule) of a molecule with TLS description of the thermal motion. In this case the TLS components are to be restricted to account for the special shape by using equation commands (page 247).

Checking of the Results

This is list of the most important results the user should check during and after the refinement:

- **Convergence**. The Rw values in the screen output of the refinement show whether the refinement is convergent. The change/e.s.d value shows if the refinement is already converged is is typically less then 0.1 in this case. See the example in page 228.
- *Temperature parameters*. Their values should not be too large (m40) and they must positive definite (see the end of the refinement listing).
- *Correlations*. See the end of the refinement listing.
- *R-statistics* (in the listing).
- **Refined values** in m40.
- *Ratio between values and e.s.d's*. for refined parameters (m40, but the e.s.d.'s are not listed together with parameters, or the listing). In the case of modulation waves it can be an indication if contribution of some wave is significant.

3.3.4 The SetCommands tool for REFINE

The description of the SetCommands interface is in page39. The following menu can be opened also by clicking of the right mouse button on the icon of *REFINE*.

Figure 128 The Main Menu of the Refinement Commands

Basic commands
\underline{S} elect reflections
Weighting scheme
Extinction
$\underline{\mathbf{R}}$ estrictions
Equations
Fixed commands
Dontuse command
Scale command
Modulation commands

Commands entered through the SetCommands interface are save in m50. Their syntax and meaning is explained in the tables following the description of single forms of the SetCommands tool. In Table 14 the commands are listed alphabetically.

Autkeys 236	Diff254	ltype 244	Selcomp 254	Unstab242
Autspec236	Dontuse 240	Method 254	Selsat 254	Useunobs239
Badref 239	Equation252	Omdif 259	Siglevel 239	Weight242
Checkran259	Fixed 250	Overlap 254	Skipbad 239	Yomax242
Chidif259	Fofc236	Print 236	Skipflag 240	Yomin242
Corr237	Fsquare236	Radius 244	Snlmn 240	
Cycles 236	Grid254	Restric 251	Snlmx 240	
Damp 236	ldistr244	Repeat 236	Stat 237	
Dfoftw259	lext244	Scale 240	Thdif 259	

 Table 14
 The Index of the Refinement Control Commands

3.3.5 The Basic Commands

The Basic commands form is used for fundamental settings like number of refinement cycles and also for basic options of the refinement listing.

Basic commands
Title
Number of cycles 🚺 18 💌 Damping factor 0.5
Repeating factor 🔺 10 💌
Make F(obs)/F(calc) table
Automatic refinement keys
Automatic symmetry restrictions
Refinements on F(obs)**2
Print reflections
Suppresed First and last cycle Last cycle
Not matching All
Print <u>c</u> orrelation larger than 0.9 Print stat <u>i</u> stics \checkmark
Esc Ok

Figure 129 The Basic Commands for REFINE

The number of cycles, F_oF_c table and main features of the listing

The maximal number of refinement cycles is 18. Before the first cycle and after the last cycle *REFINE* can print to the listing either a list of all reflections or non-matching reflections. The criterion for "not matching" reflections can be set in the Select reflections form (see page 237). During the last cycle *REFINE* can create list of F_o and F_c (m83).

The number of refinement cycles is limited to 18 because the number of temporary files used for creation of the refinement listing depends on the number of refinement cycles. However, the refinement run can be repeated several times as defined by the repeating factor. The repeating factor 0 or 1 means that there is no refinement repeat and that refinement ends after the last cycle. Otherwise the whole process repeated and the output files such as s40, m80 and ref. are overwritten.

Refinement keys and symmetry restrictions

The automatic refinement keys and automatic symmetry restrictions are explained in page 223.

The minimised function

The minimised functions for the refinement based on F_{obs} and F_{obs}^2 are given in page 221.

The damping factor

REFINE calculates and applies the changes of refined parameters after each refinement cycle. The damping factor multiplies the changes by a factor given by the user before their application.

If the refinement converges well the damping factor should be 1. In case of oscillating refinement it should be $\frac{1}{2}$ or less. The oscillating refinement can be usually recognised from the last line of the screen output (see page 228): if the values of change/e.s.d. of the same parameter and the same atom are positive and negative in successive refinement cycles and their absolute value don't fall down. The values maximum and average of change/e.s.d. are not reduced by the damping factor and therefore you cannot reach satisfactory values only by selecting of "proper" damping factor.

Another example where the damping factor should be used is transformation of the space group to a lower one. At the beginning stage the parameters of the expanded structure are too close to the former higher symmetric ones. Therefore it is necessary to break down the symmetry by changing of some parameters (usually coordinates) but nevertheless the initial changes may be unrealistic due to strong non-linear character of such refinement and the reasonable damping factor for several first cycles is about 0.1 or less.

List of reflections in the refinement listing

The user can choose if the refinement listing will contain list of reflections. The list can be printed after the first or the last cycle and it can be the full list or only list of non-matching reflections. A non-matching reflection fulfils the equation $\sqrt{w_F |F_o - F_c|} > u$ or $\sqrt{w_{F^2} |F_o^2 - F_c^2|} > u$ for the refinement based on F², where *u* is defined by the user. The user limit can be changed *via* the Select reflections form (page 238).

The list of reflections contains

- indices, F_o, F_c, real(A) and the imaginary(B) part of the structure factor or indices , F_o, F_c, F_{c1}, F_{c2} for twinned structures. The last two items are cotributions of the first and second twin domain to the structure factor.
- the difference F_o - F_c and $\sigma(F_o)$
- the weighted difference, which is defined as $\sqrt{w_F |F_o F_c|}$ for the refinement based on F and $\sqrt{w_{F^2} |F_o^2 F_c^2|}$ for the refinement based on F².
- number of reflection (nref) in m91
- $\sin\frac{\theta}{2}$
- 7
- The flag (#) indicating non-matching reflections
- The flag (*) indicating unobserved reflections
- Number of the scale factor (iq). The scale factors can be assigned for different data sets (see page 74), for twin domains (see page 75) or for groups of reflections (see the Dontuse command, page 238).
- Extinction correction

Figure 130 FoFc List in the Refinement Listing

b/Fc]	list	af	ter i	last cycle											
h	k	1	m	Fo	Fc	A	в	Fo-Fc	sig(Fo)	sq(wdFq)	nref		sinthl	iq	ext
0 -1	10	0	0	11.1041	12.6891	-2.5916	-0.2236	-1.5850	0.2510	-6.3140	1	#	0.95327	1	0.99995
0 -1	10	0	4	6.3325	7.4273	1.5224	0.0206	-1.0948	0.1628	-6.7234	5	#	0.96099	1	0.99998
2 -	10	0	-2	1.7321	0.3126	0.0102	-0.0633	1.4195	0.2316	6.1293	8	#	0.95831	1	1.00000
2 -	10	0	-1	3.5777	4.3034	0.7815	0.4093	-0.7257	0.1852	-3.9188	9	#	0.95873	1	0.99999
2 -	10	0	1	1.9235	1.2077	0.2079	0.1345	0.7159	0.2347	3.0496	11	#	0.96246	1	1.00000
2 -	10	0	2	1.8708	3.6249	0.7422	0.0368	-1.7541	0.2413	-7.2705	12	#	0.96575	1	1.00000
2 -	10	0	3	2.5495	1.3884	0.2572	-0.1219	1.1611	0.2172	5.3452	13	#	0.96999	1	1.00000
2 -	10	0	4	1.6733	0.6879	0.1208	0.0727	0.9854	0.2694	3.6571	14	#	0.97516	1	1.00000
4 -	10	0	-4	2.5690	1.6557	-0.3253	0.0969	0.9133	0.1963	4.6524	15	#	0.97326	1	1.00000
4 -	10	0	-2	1.9494	0.5227	-0.0207	-0.1051	1.4267	0.2317	6.1584	17	#	0.97492	1	1.00000
4 -	10	0	4	2.5100	1.5820	-0.3103	0.0944	0.9280	0.2008	4.6219	23	#	1.00227	1	1.00000
6 -	10	0	-4	2.3664	1.4940	0.2996	0.0636	0.8724	0.2336	3.7344	24	#	0.99919	1	1.00000

R statistics

The R statistics shows the R factors for reflections distributed to approximately equally populated groups of $\sin\theta/\lambda$ or F. The intervals of $\sin\theta/\lambda$ and F for the groups are calculated by *PRELIM* during Creation of the refinement reflection file.

Information for each group of reflections in the listing:

- number + number of reflections with positive F_o-F_c •
- number number of reflections with negative F_0 - F_c
- the total number of reflections in a group • together
- average value of $w_F |F_o F_c|$ or $w_{F^2} |F_o^2 F_c^2|$. It is closely • average wdFq related to goodness of fit (see equation E62 page 222).
- numerator + sum of the positive differences $|F_0|$ - $|F_c|$ •
- sum of the negative differences $|F_0|$ - $|F_c|$ numerator -
- together sum of the differences $|F_{o}-F_{c}|$
- denominator sum of $|F_o|$

R factor $\frac{\sum_{hkl} ||F_o| - |F_c||}{\sum_{hkl} ||F_o||}$ for the group. It is always calculated • R factor

from F_o and F_c regardless if the refinement is based on F or F^2

Figure 131 R Statistics in the Refinement Listing

Statistics as a function of sin(th)/landa and structure factors after last cycle sin(th)/lambda

	limits	0.475724	0.605176	0.695316	0.772218	0.836332	0.895803	0.956070	1.016601	
	number +	533	553	561	584	608	570	559	575	
	-	527	503	498	480	449	495	510	490	
Origina hu	together	1060	1056	1059	1064	1057	1065	1069	1065	
Groups by	av.wdFq	164.8828	103.2551	59.0937	51.3011	42.4059	72.0328	71.2330	56.3355	
sin A/X	numerator +	477.1	455.4	417.5	506.2	530.8	603.1	652.5	654.3	
5111 0/76	-	-369.8	-301.3	-343.6	-342.8	-346.2	-407.9	-536.0	-608.4	
	together	846.9	756.7	761.0	849.1	876.9	1011.0	<u>11</u> 88.6	1262.6	
	denominator	21071.8	11292.5	8133.7	6502.1	5151.4	4996.6	4163.9	3425.2	
_	R factor	4.02	6.70	9.36	13.06	17.02	20.23	28.54	36.86	
struct. facto	nrs 									_
	limits	1.6	1.9	2.2	2.7	3.8	6.6	13.8	316.2	unobs
	number +	766	693	666	568	402	349	470	629	791
Groups by		427	339	385	466	625	707	578	425	716
	together	1193	1032	1051	1034	1027	1056	1048	1054	1507
F	av.wo⊮q	40.4421	36.638L	36.8782	46.0003	59.0602	124,1124	106.1652	T/3.9098	3.7307
	numerator +	506.8	590.4	606.8	569.6	419.1	397.8	406.3	800.2	612.8
	-	-310.3	-253.0	-311./	-421.4	-5/1.8	-611.5	-428.3	-34/.8	-883.0
	dener	81/.1 1/05 7	1050.0	2100 1	991.0 0FFC 1	990.9 221E 0	1009.4	10027.0	27020 4	1495.8 0160 F
	Denominator	1062./	1609.6	2190.1 41 04	∠000.⊥ 20.77	3312.0	52/2.8 10 14	10037.2	3/820.4	2109.5
	R Lactor	40.4/	43.33	41.94	30.11	29.09	19.14	0.31	5.04	00.95
		final c	heck		sin(th)/lambda	structu	re factors	ł	
			nun	ber +	4	543		4543		
				-	3	952		3952		
			tog	ether	8	495		8495		
	Overall infor	mation	nun	erator +	429	6.9	4	296.9		
			-		-325	5.9	-3	255.9		
			tog	ether	755	2.8	7	552.8		
			denominator		6473	64737.2 64		737.2		
			R-f	actor	11	67		11.67 🗲		
Statistics as	s a function of sa	tellite in	dex after	last cvcle	I				The o	verall R
satellite in	lex		0	1 or -	1 2	or -2	3 or	-3	4 or -4	
	number +		491	86	1	994	1	.050	1147	
	-		595	103	2	983		692	650	
	together		1086	189	3	1977	1	742	1797	
Groups by	av.wdFq	161	.1072	61.933	7	55.2984	82.4	671	63.1473	
4 . 11:4	numerator +		701.1	768.	6	809.6	100	1.2	1016.3	
satellites	-	-	684.0	-849.	6	-757.5	-47	0.2	-494.5	
	together	1	385.1	1618.	2	1567.1	147	1.4	1510.8	
	dam and makens	22	40F C	01.005	-	11105 6	EE4	E O	1 1000	
	dendilinator	44	483.0	21695.	/	11125.0	554	5.9	2004.4	

Correlations

The elements of the inverse matrix can be used as a measure of the interdependence of refined parameters. The quantity called *correlation coefficient* is defined by the following equation:

$$\delta_{ij} = \frac{b_{ij}}{\sqrt{b_{ii}}\sqrt{b_{jj}}},$$

where b_{ij} are elements of the inverse normal matrix.

The correlation coefficients can range from 0 to 1, the latter indicating completely dependent parameters. Correlation coefficients of standard structures are usually less than 0.2, but they can be much larger if, for example, some atomic positions are near to a special symmetric position (disordered structures) or if the structure has symmetry which is close to some supergroup.. The modulated structures can be understand as a perturbation of the regular structure and therefore it has necessarily larger correlation coefficients than standard structures. By our experience the values less than 0.9 are still acceptable for modulated structures.

Large correlations slow down the refinement and may cause an oscillation. For oscillating refinement the damping factor about 0.5 or less is necessary. The following example shows the typical output of a strongly correlated refinement. This output is located at the very end of the refinement listing.

There were 17 corr 0.946 correlation	relations larger than 0.900 in last refineme : x Nalba/z Nalba	nt cycle 0.908 correlation	: y Na2aa/y 013ab
0.945 correlation	: y Nalba/y Na2aa	0.907 correlation	: y Na2aa/y 013aa
0.939 correlation	: x Na2aa/z Na2aa	0.905 correlation	: y Nalba/y Ol3ab
0.925 correlation	: y Na2aa/y Na2ba.	0.905 correlation	: y 013aa/y 013db
-0.917 correlation	: xsin2 Nalaa/xsin2 Nalba	0.904 correlation	: y Nalba/y Ol3aa
0.916 correlation	: y 013aa/y 013ab	0.903 correlation	: y 013ab/y 013bb
0.915 correlation	: y Nalba/y Na2ba	-0.903 correlation	: ysinl Nalaa/ysinl Nalba
-0.914 correlation	: xsin2 Na2aa/xsin2 Na2ba	0.902 correlation	: y Na2aa/y O13bb
0.910 correlation	: y 013aa/y 013bb		

Name	Syntax and Description
cycles	cycles number Default value : cycle 1 Number of the refinement cycles. Can be changed interactively during the refinement (see page 227). If number = 0, <i>REFINE</i> calculates directly the last cycle without any change of refined parameters.
damp	 damp number Default value: damp 1 The damping factor multiplies the changes of refined parameters before their application after the refinement cycle. It can be changed interactively during the refinement (see page 227).
repeat	repeat number Default value: repeat 1 The refinement run will be performed number times.
fofc	fofc flag Default value: fofc 0 Key for creating of the F_0 - F_c table for publication. The table is written to m93. flag = 0 off flag = 1 on
autkeys	autkeys flagDefault value: autkeys 1Key for the automatic initialization of all refinement keys. See §3.3.3, page223 for details.flag = 0offflag = 1on
autspec	autspec flag Default value: autspec 1 Key for automatic application of the symmetry restrictions to the refinement keys and initial values of refined parameters. See §3.3.3, page 223 for details. flag = 0 off flag = 1 on
fsquare	fsquare numberDefault value:fsquare 0flag = 0the refinement will be carried out on F_o flag = 1the refinement on F_o^2 See §3.3.1, page 221 for details.
print	<pre>print flag Default value: print -2 Selects which reflections will be printed to the listing and when they will be printed. The selection is based on the limit for "non-matching reflections" (limit) and on the reflection weight (w). Limit can be modified by command badref - see §3.3.6, page 237, weight can be modified by command weight - see §3.3.7, page 241.</pre>

Table 15The Basic Commands of REFINE in the m50 File

	flag =-2	only structure factors with $ F_o-F_c > \text{limit}$ will be printed
		in the last cycle of the refinement.
	flag = -1	only structure factors with $ F_o-F_c > limit$ will be printed
		in the first and in the last cycle of the refinement
	flag=0	no reflections will be printed
	flag=1	all structure factors used in the refinement will be printed
		in the first and the last cycle of the refinement
	flag=2	all structure factors used in the refinement will be printed
		in the last cycle of the refinement
corr	corr number	
	Default value: c	orr 0.9
	The key for the	printing of the correlations to the refinement listing. All
	correlations larg	er than number will be printed
stat	stat flag	
	Default value: s	tat 1
	key for the printir	ng the R statistics to the refinement listing (See page 233
	for details).	
	flag=0	off
	flag=1	on

3.3.6 Modifying of the input reflection set

In this part the user makes decision which reflections will be used in the refinement, assigns scale factors for groups of reflections and sets the "non-matching" criterion. All these settings work both for standard and modulated structures. The selection of reflections based on satellite indices or number of composite parts is special for modulated structures and is described in page 253.

Selecting reflections

The decision about reflections used for the refinement can be made by several ways. The exclusion of unobserved reflections suppresses influence of weak reflections. The exclusion of non-matching reflections suppresses influence of the reflections that are not properly described by the structure model. This option should be used only in well-founded cases or as a tool for finding some regularities between not-matching reflections. The exclusion of high angle reflections by setting of the upper $\sin(\theta)/\lambda$ limit suppresses anharmonic effects and can be useful in initial stages of the refinement. The exclusion of the reflection *via* the user flag in m91 is useful if only several reflections are to be excluded from the refinement. These are usually reflections having improper profiles or other indication that their intensity may be wrong. The last possibility is to exclude from the refinement a group defined by a condition on indices – see Dontuse command.

The limit for non-matching reflections influences also the refinement listing – see page 233.

Figure 132	The Select Reflect	ions Form
0	./	

Select reflections to be used in the refinement			
Unobserved reflections : I< 3 *sig(I)			
Not matching reflections F(obs)-F(calc) > 3 *sig(F(obs))			
Use unobserved reflections			
Skip not matching reflections			
Interval sin(th)/lambda			
minimum 0 maximum 10			
Skip reflection having user's <u>f</u> lag(s) 7			
Esc Ok			

The Dontuse command

The Dontuse command selects a group of the reflections, which will not be used in the refinement, on the basis of the Dontuse and Except conditions for the indices of the group. Here are the syntax rules for groups and conditions:

- The group is defined by hkl[mnp] letters. They can be replaced by zero but this is the only allowed change (i.e. h00 is allowed but hh0 causes the syntactic error).
- The left side of the Dontuse and Except conditions contains indices hkl[mnp] and integer numbers.
- The right side of the Dontuse and Except conditions contains integer numbers and the letter n as a symbol for arbitrary integer number. The indices cannot be in the right side.

Figure 133 The Dontuse Command Form

▼ 3	/3 dontuse command	
Group of reflection	hkl	
Don <u>t</u> use condition	h=2n+1	
Except condition	h-k=3n+1	
New	Make <u>c</u> lone	Add
Disa <u>b</u> le	Delete	Rewrite
	Esc Ok	

The Scale command

The Scale command assigns a scale factor to a specified group of reflections. Together with this assignment the user should add the corresponding non-zero scale factor to m40 (see page 108 for details about scale parameters). The rules for the definition of groups and conditions are the same like with the Dontuse command.

Figure 134 The Scale Command Form

	1/0 scale command	-		
<u>S</u> cale factor number	2			
Group of reflection	hkl			
Condition	1=3n_			
New	Make clone	Add		
Disable	Delete	Rewrite		
Esc Ok				

Table 16	The Select Reflections	Commands of REFINE	in the m50 File
	5	<i>.</i>	

Syntax and Description		
siglevel number		
Default value: siglevel 3		
The limit for observed reflections $I/\sigma(I)$.		
badref number		
Default value: badref 3		
Sets the limit for not-matching reflections. The reflections with $ FO-FC >$		
number will be marked in the listing by #. (A proper combination of badref		
and print makes possible to limit the output of the not-matching reflections.)		
useunobs flag		
Default value: useunobs 1		
Key for using of the unobserved reflections in the refinement. The selection		
which reflections are considered observed can be made by siglevel		
command.		
flag = 0 Ine unobserved reflections will be used		
flag = 1 the unobserved reflections will not be used		
SKIPDAD ±lag		
Letault value: Skippad U		
Key for deleting of the non-matching reflections from the refinement. The		
reflections with [Fo-Fc] > 11mit will be deleted. The predefined value of		
IIIIII IS 5 and can be changed by the badret command.		
tlag = 0 the non-matching reflections will not be skipped		
$r_{12}ag = r_{12}$ ine non-indicinity reflections will be skipped In case that the flag is equal 1 the not matching reflections will be still		
nresent in the listing to allow some analysis		

<i>Tuble</i> 10 (CO	ntinuea)
snlmn	snimn number
	Default value: snlmn 0
	Minimal value of $\sin \vartheta / \lambda$ for acceptance of the reflection into the refinement
snlmx	Syntax: snlmx number
	Default value: snimx 10
	Maximal value of $\sin \vartheta / \lambda$ for acceptance of the reflection into the refinement
skipflag	skipflag flag1 flag2
	Default value: none
	The reflections with the user key = flag will be skipped. See §2.2.10, page
	87 for details about the user flag.
dontuse	dontuse group: condition except condition
	(The colon must be separated by spaces)
	Defines the group of reflections which will not be used in the refinement
	Group denotes a class of reflections for which conditions will be tested
	The number of indices in the croppon must be the same as the dimension of
	the superspace (hkl hklm hklmn hklmnn). Some of the indices in group
	can be zeros. No other changes of <i>group</i> are permitted (i.e. h0) is allowed
	but hhl is forbidden). The syntax of condition is explained in the
	following examples.
	Examples:
	dontuse hklm : h-k+2l-m=5n+2
	dontuse hklm : h-k+2l-m=5n+2 except h=2n
	dontuse 00I : I=2n
	dontuse hhl : h=2n syntax error
scale	scale number for group : condition
	(The colon must be separated by spaces)
	Detault value: none Sets individual scale factor for a group of reflections fulfilling the condition
	Number is used for the scale flag in the file word (see \$2.2.10, near \$7) The
	without is used for the group and condition is the same as for the dentues key
	Symmax for the group and condition is the same as for the domuse key. Example: scale 5 for hklm \cdot h=2n

 Table 16 (Continued)

3.3.7 Weighting scheme

Weighting scheme				
Sigma Unit Cruikshanck's				
<u>I</u> nstability factor		Fmi <u>n</u>		
0.002				
		Fmi <u>x</u>		
	Esc Ok			

Figure 135 The Weighting Scheme Form

REFINE uses three types of weighting schemes. In the first one the *weight is based on sigma* - see equation E57, page 221. The coefficient u in the equation E57 is the the instability factor, which can be set by the user. The instability factor should be used as instrument constant and its value should not be changed for structures measured on the same diffractometer under the same conditions. The typical value of u is about 0.01. The coefficient is multiplied by 100 before it is saved to m50.

Another weighting scheme uses *unit weights*. It is useful in cases when the sigmas and not known or wrong.

The last one – the **Cruickshank's weight**, see equation E63, had been used for photographic data but it can be also used in cases when the sigmas and not known or wrong.

$$w = \left(2F_{o,\min} + F_o + \frac{2F_o^2}{F_{o,\max}}\right)^{-1}$$
 E63

Table 17	The Weighting	Scheme	Commands	of REFINE	in the m50 File

weight	weight flag Default value: weight 0 Sets the weighting scheme flag = 0 The weight based on sigma (see equation E57, page 221).
	This type of weight depends on unstab command.
	flag =2 Cruickshank's weight, see equation E63, page 241. This type of weight depends on yomin and yomax commands.
unstab	unstab number Default value : unstab 0 Coefficient of unstability used for the calculation of weight (, page 221). In m50 its value is multiplied by 100 so that the coefficient used in equation E57 is number*0.01.
yomin	yomin number Default value: yomin 5 Minimum value of F_o used for the calculation of Cruickshank's weight
yomax	yomax number Default value: yomax 200 Maximum value of F_o used for the calculation of Cruickshank's weight

3.3.8 Extinction correction

The underlying theory for extinction correction and explanation of extinction parameters in m40 is given in page 111. The Extinction form is used for definition of the extinction type. The corresponding changes of m40 (i.e. setting of refinement keys and initial values¹) is done automatically by *REFINE* before starting the refinement.

		Extinction		
None		Туре <u>1</u>	<u>G</u> aussian	
<u>I</u> sotropic		Туре <u>2</u>	<u>L</u> orentzian	
<u>A</u> nisotropic		Mixed		
<u>R</u> adius [mm]	0.025			
Esc Ok				

The radius is used for only for the case when \bar{t} is not recorded in the m91 file and when the equation *E13* is to be used.

JANA98 works with the following types of the secondary extinction:

- Isotropic Type I, Gaussian distribution.
- Isotropic Type I, Lorentzian distribution.
- Isotropic Type II
- Isotropic mixed types, Gaussian distribution.
- Isotropic mixed types, Lorentzian distribution.
- Anisotropic Type I, Gaussian distribution.
- Anisotropic Type I, Lorentzian distribution.
- Anisotropic Type II

The anisotropic extinction has not been completely finished and its use should be first consulted with the authors.

¹ The extinction parameters of type 1 and type 2 are written in different lines of m40. Therefore, after change of the distribution type, the old parameters in m40 must be deleted and replaced by zeroes. In JANA98 this is done automatically in the autkeys mode. Without autkeys mode the parameters are changed but the refinement keys are not.

iext	iext flag	0	
	Vev of the extinction correction		
	flag = 0	no extinction correction	
	flag = 1	isotropic extinction correction	
	flag = 2	anisotropic extinction correction	
itype	itype flag		
	Default value: ityp	be 1	
	The type of the extin	nction correction	
	flag = 1	extinction type I	
	flag = 2	extinction type II	
	flag = 3	general case (simultaneous refinement of both I and II)	
idistr	idistr flag		
	Default value: idis	str 1	
	Key of the statistica	I distribution of the mosaic domains	
	flag = 1	Gaussian distribution	
	flag = 2	Lorentzian distribution	
radius	radius number		
	Default value: rad	ius 0.01	
	The radius of a sphere	erical sample in cm	

Table 18The Extinction Commands of REFINE in the m50 File

3.3.9 User constraints

JANA98 uses three types of user constraints:

- *Fixed command* fixes some parameters to the values they currently have in m40.
- *Restriction command* defines that some parameters of a given group of atoms are identical or complementary.
- *Equation command* is used for setting of linear equations between parameters.

The user constraints are set in the following order ¹:

- 1. Equations defined by user
- 2. Equations defined following from the site symmetry
- 3. Restrictions

The Fixed commands are used just once in every refinement run during automatic set key procedure. In case that the autkyes is set to zero the fixed commands are ineffective.

The Fixed command

The Fixed command fixes parameters of one or more atoms to values they currently have in m40. The following figure shows its user interface. Very simple example of the Fixed command is fixing the whole structure except scale parameters - this is done by choosing "All parameters" and pressing "*" in the text box of the Fixed command form.

Figure 137 The Fixed Commands Form

▼	3/4 fixed comma	and			
A <u>l</u> l parameters	s	Origin			
Coordinates		x <u>4</u> axis			
<u>T</u> emperature pa	arameters 📃	Individual			
Modulation par	rameters				
	Atoms/parameters				
col La2	col La2				
New	Make <u>c</u> lone	Add			
Disable	Delete	Rewrite			
Esc Ok					

¹ The Restriction command generates in m50 one or more commads with the keyword **restric**. Similarly the Equation command generates lines with the keyword **equation**. The order of these lines in m50 is not important for the setting order of refinement keys, i.e. the Equation command has higher priority regardless of its position in m50.

The options *All parameters, Coordinates, Temperature parameters and Modulation parameters* are used for a group of atoms. The group has to be defined in the textbox by list of names separated by one or more spaces. Wildcards are permitted.

The options *Origin* is used for fixing of the three dimensional origin in case when needed. Usually there is no need to use this option because *REFINE* makes it automatically by fixing the relevant coordinates of the heaviest atom in the structure. Sometimes (for instance if the position of the heaviest atom is not fully occupied) the atom used for the origin fixing should be defined by fixed command. The textbox should contain the name of the atom used for the origin fixing.

The options *X4 axis* is used for fixing of the forth coordinate of the origin in case when needed. The fixing is necessary if the sign of x4 is positive for all symmetry operators it is done by fixing one modulation parameter of some atom. The textbox should therefore contain the name of this parameter followed by the name of the relevant atom in the square brackets, for example xsin1[C12].

REFINE never fixes x4 automatically because the selection may be ambiguous, but it tests whether x4 needs to be fixed and warns the user if it is necessary. The fixed parameter has to be sufficiently modulated but it can be hard to say which one it is at the beginning stage of the refinement. The possible strategy is to fix some parameter, run several cycles of refinement and look if there is some better choice. The usual way is to fix by this command xcos1 (or ycos1, or zcos1) of one atom and set its value to zero.

For *five and six dimensional structures* the origin fixing in x5 and x6 direction has to be done by Equation command.

Individual is an option for fixing single parameters. The textbox should contain a list of parameter names with relevant atom names in the square brackets. Wildcards for atom names are permitted but they are forbidden for parameter names. For example xsin1 [na*] means that the parameter xsin1 will be fixed for all atom names starting "na", while xsin* [na] is not allowed.

The Restriction command

The Restriction command defines that some parameters of a given group of atoms are identical or complementary. The priority of the Restriction command is lower than the one of the Equation command¹.

¹ The Restriction command generates in m50 one or more commads with the keyword **restric**. Similarly the Equation command generates lines with the keyword **equation**. The order of these lines in m50 is not important for the setting order of refinement keys, i.e. the Equation command has higher priority regardless of its position in m50.

Disabled 🔽	1/1 restriction	▲ Disabled
	Make identical :	
Coordinates	Modulations	Temp.parameters
=>	=>	
S	um of occupancies :	
Constant for any <u>t</u>	Con <u>s</u> tant	Not restricted
	Atoms	
col colx		
New	Make <u>c</u> lone	Add
Enable	Delete	Rewrite
	Esc Ok	

Figure 138 The Restriction Form

The restrictions selected in the form are defined for one or more atoms given in the textbox. The first atom of the group is used as a representative one for refining of equal or complementary parameters and therefore the relevant refinement keys of all other atoms are set to zero. The wildcards in atom names are permitted.

The parameters describing occupancy modulation of atoms can be set to have constant occupancy for each t. This allows so called substitutional modulation.

The Equation command

The Equation command is used for setting of linear equations between parameters¹.

The user can define two types of equations:

Internal equations define relations between parameters of one atom or molecule. In the example given in Figure 139 the equation "x = y" is applied first for coordinates of atom Fe1 and then for coordinates of atom Fe2. The Equation textbox should contain a linear equation for parameters without atom reference, i.e. *without* atom names in the square brackets.

Inter atomic/molecular equations can be used for relations between parameters of different atoms/molecules and/or other parameters. They are activated if the Single atom checkbox is cleared. In case of atomic or molecular parameters the Equation textbox should contain a linear equation for parameters *with* atom/molecule reference, i.e. with atom/molecule name in square brackets. The wildcards in atom names are *not* possible. In the example given in Figure 140 the x coordinate of atom Fe1 and Fe2 are equal.

¹ Parameters used in an equation can be part of a restriction or fixed command.

▼ Single atom	1/0 equation	
	<u>F</u> or atoms	
fel fel		
	Equation	
x= <u>y</u> _		
New	Make clone	<u>A</u> dd
Disable	Delete	Rewrite
	Esc Ok	

Figure 139 The Equation Form with an internal equation

Figure 140 The Equation form with an inter atomic/molecular equation.

Single atom	1/0 equation	٥
	<u>F</u> or atoms	
	Equation	
x[fe1]=y[fe2]		
New	Make clone	Add
Disable	Delete	Rewrite
	Esc Ok	

Syntax rules for structure parameters

The basic element of expressions used in user constraints is p[A] (meaning: parameter p of atom A), where p is one from parameter names from Table 10, page 98, and A is the relevant atom. The name of atom can contain an identifier of molecular or symmetry position (see page 27). The wildcards in atom names are usually allowed (except logical cases, like origin fixing by the Fixed command, and except the interatomic equations).

Instead of A we can sometimes use M#n, where M is name of a molecule and n is the sequence number of the molecular position in m40. M#n therefore define a group consisting of all atoms of the model molecule in the n-th molecular position.

Tip: if you are not sure with influence of a user constraint you can set the constraint, start *REFINE*, break it immediately by Break button and check the refinement keys in m40 and the refine listing where all equations are listed. In case the equation was not fulfilled the listing contains a warning.

The following table shows several examples of user constraints. The are given for a hypothetical structure consisting of

A1, A2, A3 individual atoms,

B1, B2, B3, B4 atoms in the model molecule M1 and

C1, C2, C3, C4 atoms in the model molecule M2.

Each molecule has several positions.

Command	Options	Textbox	Notes
fixed	origin	A2	The origin in 3 dimensions will be fixed by fixing atom A2. Refine automatically fixes only the coordinates of A2 which must be fixed.
fixed	x4 axis	xcos1[A2]	xcos component of the first positional modulation wave of A2 will be used for fixing of the origin in the superspace.
fixed	coordinates	B*	Fixes coordinates of model molecule M1.
fixed	modulation parameters	M1	Fixes molecular modulation parameters calculated for the first position of molecule M1.
fixed	modulation parameters	M1#1	The same as previous example.
fixed	modulation parameters	M1#2 M1#3	Fixes molecular modulation parameters calculated for the 2 nd and 3 rd position of molecule M1.
fixed	modulation parameters		
equation	for atoms M1#1 M2#1	S23 = 0	Fixes to zero the S23 component of the TLS tensor of the 1^{st} position of molecules M1, M2.

Table 19Examples of User Constraints

Table 20The Constraints Commands of REFINE in the m50 File

fixed	fixed flag at1 at2 .		
	fixed parameter[at1] parameter[at2]		
	Default value: none		
	Key for fixing groups	of parameters for atoms at1, at2 The	
	corresponding refinemer	It keys of these atoms are set to zero which causes	
	the selected parameters not to be refined.		
	This command doesn't work if the automatic setting of the refinement keys is disabled by autkeys 0 command. The wildcards in <i>atom names</i> are permitted.		
		'	
	flag = xyz	positional parameters	
	flag = all	all parameters	
	flag = beta ¹	thermal parameters	
	flag = u	thermal parameters	
	flag = mod	modulation parameters	
	flag = polthe origin will be fixed by atom at1		
	(Example: fixe	d pol C12)	
	flag = x4	fixing of the origin in the x4 direction. The name of	
		the atom is followed by the name of the fixed	
	(Example: fixed x4 C12 xsin1 the origin in the x4 direction will be fixed by means of the xsin1 parameter of atom		
		C12)	
	parameter[at]	is a name of a parameter [of atom at]	
	Examples:		
	fixed mod C1 c2 b*	fixes modulation of atoms C1,C2 and all atoms	
		with names from B	
	fixed all *	fixes all parameters for all atoms	
	fixed scale6 x[Sn1] (J12 [Sn3] fixes the 6th scale factor, x	
		coordinate of the atom Sn1 and the U12	
		temperature parameter of the atom Sn3.	

 $^{^{1}}$ The names Beta or U $\,$ can be used regardless of the temperature parameters type currently used in m40.

Table 20 (Continued)

(
restric	restric at1 flag at2 at3		
	Detault value: none		
	Sets restrictions on coordinates, thermal, modulation and occupancy		
	parameters for a group of atoms from $m40$. The type of restriction is defined		
	by flag. The restricted parameters are retined only for atom at1 and kept		
	the same for at2, at3 If at1 is missing, the restricted parameters are		
	The wildcards in <i>atom names</i> are permitted		
	In some cases flag can be negative, which means that the restriction is		
	defined for two substitutionally modulated atoms. The occupation		
	modulation waves of such atoms are complementary and the sum of		
	occupancies at each t is constant.		
	ci e e e e e e e e e e e e e e e e e e e		
	flag = 4 occupational sum		
	$f_{123} = -4$ complementary occupational waves (only for atom pairs)		
	o[at1] + o[at2] is constant		
	osin1[at2] = -osin1[at1]		
· · · · · · · ·			
	osin16[at2] = -osin16[at1]		
	ILag = 13 Ulerinial parameters in the group are equal		
	$f_{1} = 2$		
	The sum of occupancies in the group is constant. The thermal		
	parameters in the group are equal.		
	flag = -3 complementary occupational waves + thermal		
	parameters (only for pair of atoms)		
	Two atoms have complementary modulation waves and equal		
	thermal parameters.		
	flag = 12 thermal and modulation parameters		
	The thermal and modulation parameters in the group are equal.		
	flag = 2 occupational sum + thermal and modulation		
	parameters		
	Sum of occupancies in the group is constant, thermai and		
	floor		
	Ilag = -2 complementary occupational waves ' mermai and modulation narameters		
	(only for pairs of atoms)		
	Two atoms have complementary modulation waves and equal		
	thermal and modulation parameters.		
	flag = 11 positional, thermal and modulation parameters		
	Positional, thermal and modulation parameters in the group are		
	equal.		
	flag = 1 occupational sum + positional, thermal and modulation		
	parameters		
	Sum of the occupancies in the group is constant; positional,		
	thermal and modulation parameters in the group are equal.		

	flag = -1 compl therma (only for pairs Two atoms positio	ementary occupational waves + positional, al and modulation parameters s of atoms) have complementary modulation waves and equal nal, thermal and modulation parameters.
	Examples:	
	restric Cu1 11 Ag1 a restric h* 13 In this first ato	Lt* C? example the restricted parameters are refined for the form of the list h*.
equation	<pre>equation for atom at1 atn : parameter = expression equation : parameter[at] = expression (The colon must be separated by spaces) Default value: none</pre>	
	Setting of linear constration at 1 at n	aints to refined parameters. list of atoms from m40 for which the restriction is to be applied. The names of atoms are case insensitive. Wildcards are not permitted !
	parameter parameter[at] expression	name of the constrained parameter name of the constrained parameter of atom at linear expression composed from numbers, arithmetic signs "+", "-" ,"*" and names of the
		constrained parameters. Note that a parameter with direct reference to atom (parameter [at]) is only allowed in the second type of the equation command.
	<pre>Examples: equation for atoms cu1 cu2 Al3 : y = 0.2*x + 0.15 equation : ocos1[co2] = 0.0423 - 0.7*osin1[fe3] equation : ocos1[co*] = 0.0423 - 0.7*osin1[fe3] syntax error (wildcards are not permitted) equation : ocos1[co2] = 0.0423 - 0.7*osin1 syntax error (mixed parameter and parameter [at]) equation for atoms cu1 cu2 Al3 : y = 0.2*x[c25] + 0.15 syntax error (mixed parameter and parameter [at])</pre>	
3.3.10 Modulation commands

The Modulation commands are used for user options applicable only to modulated or composite structures. The following figure shows the user interface.

Modulation con	mmands				
Calculation of structure	factors based on				
Bessel function	Accuracy				
Gaussian integration	Grid 32				
FFT integration					
Reflections used in	refinement				
A <u>1</u> 1	Both subsytems				
Satellites	<u>1</u> subsystem				
Main	2 subsystem				
	Common part				
Take into account overlapping	✓ modulo 6				
(hklm) combined with (hklm) +-	(0,0,11,-6)				
Esc Ok					

Figure 141 The Modulation Commands Form

The first part of the form is used for choosing the calculation method for structure factors. The numerical Gaussian and FFT method work well in most cases and with the default grid 32 combine good accuracy with reasonable speed of the refinement. The analytical Bessel method is fast and accurate for one or two harmonic waves but the calculation time grows rapidly for more complex modulations. However for 5 and 6 dimensional structures the numerical methods are not implemented and the Bessel functions are the only possibility¹.

In the second part of the form there are selection rules for reflections that will be used in the refinement. The options for the composites are activated only for composite structures. In the autkeys mode *REFINE* sets refinement keys according to selected reflections - see page 224 for details.

If we select for the refinement all reflections including satellites but we do not refine any modulation parameters the contributions of calculated structure factors to satellite reflections will be zero and the relevant R values for satellites will be 100%. The refinement runs well, but selecting of Main instead of All will speed up the calculation. This is the way how to refine the basic and modulated structure with the same reflection file. For large data sets, however, the skipping of satellites may be time consuming.

¹ For this reason modulation of ADP parameters is not available for 5 and 6 dimensional structures.

The last point in the form concerns the overlapping of satellite reflections for cases when the structure is almost commensurate. In such cases the program combines intensities of closed satellites as for twinned structure.

method flag						
Default value: method 1						
Key for selection of the structure factors calculation method						
flag = 0 Bessel functions						
flag = 1 Gaussian method						
flag = 2 Fast Fourier transform method						
grid number						
Default value: grid 32						
The grid for the Gaussian method (see the command method)						
diff number						
Default value: diff 0.00001						
The accuracy of calculation of Bessel functions (see the command						
method)						
selsat flag						
Default value: selsat -2 Calastian hav for including antallity reflections into the refinement						
Selection key for including satellite reflections into the refinement.						
flag = -2 all reflections will be included						
flag = -1 Only satellite reflections will be included						
flag = 0 Only main reflections will be included						
flag = n only reflections with the satellite index $ m =n$ will be						
Seicomp flag						
Vev for the selection of reflections for composite structures						
$f_{122} = 0$ selects all reflections						
$f_{123} = 1$ selects reflections of the 1st composite						
$f_{123} = 2$ selects reflections of the 2 nd composite						
$f_{12} = 2$ selects reflections of the 3 rd composite						
$f_{123} = 4$ selects reflections of the 5^{12} composite						
$f_{120} = 5$ selects reflections common to the 1 st and 2 st composite						
$f_{123} = 6$ selects reflections common to the 2 rd and 3 rd composite						
$f_{12} = 7$ selects reflections common to all three composite parts						
overlan flog						
Key for testing of overlaps in the "almost" commensurate structures (see						
page 258 for the explanation)						

Table 21The Modulation Commands of REFINE in the m50 File

3.3.11 Twins and overlaps

This paragraph describes the way *REFINE* treats twinning. Another information concerning twins can be found in the chapter about *PRELIM* (page 67).

The simplest case are completely overlapped twins which can be refined using standard tools. If the twins are partially overlapped their refinement requires usage of special commands developed only for data from diffractometers with a classical point detector. The commands are rarely used and are not included in the SetCommands interface. They have to be written directly to m50 by a text editor.

Main assumptions

A twinned crystal fulfils the following rules:

- it is composed from several identical domains
- each domain is a 3 dimensional crystal
- the domains are diffracting independently and their diffracted intensities are additive
- effects of boundaries are negligible

Overlapping of twin lattices

The lattice vectors of the domains forming a twinned crystal are related by a set of twinning operators $\{\hat{E} \equiv \hat{T}_1, \hat{T}_2, \cdots \hat{T}_n\}$:

$$\begin{cases} \mathbf{a}_{1}^{*}, \mathbf{a}_{2}^{*}, \mathbf{a}_{3}^{*} \end{cases} \xrightarrow{\hat{E}} \\ \begin{cases} \mathbf{a}_{1}^{*}, \mathbf{a}_{2}^{*}, \mathbf{a}_{3}^{*} \end{cases} \xrightarrow{\hat{T}_{2}} \\ \begin{cases} \mathbf{a}_{1}^{*}, \mathbf{a}_{2}^{*}, \mathbf{a}_{3}^{*} \end{cases} \xrightarrow{\hat{T}_{2}} \\ \end{cases} \begin{bmatrix} \hat{T}_{2} \mathbf{a}_{1}^{*}, \hat{T}_{2} \mathbf{a}_{2}^{*}, \hat{T}_{2} \mathbf{a}_{3}^{*} \end{bmatrix}$$

$$\{\mathbf{a}_1^*, \mathbf{a}_2^*, \mathbf{a}_3^*\} \xrightarrow{\hat{T}_n} \{\hat{T}_n \mathbf{a}_1^*, \hat{T}_n \mathbf{a}_2^*, \hat{T}_n \mathbf{a}_3^*\}$$

The number m of independent vectors resulting from the transformations is important for classification of twins. The independent vectors define a common twin lattice. The twins can be divided to three basic groups:

- Completely overlapped twins having m=3
- Twins without overlapping¹ having m=3n
- Twins with partial overlapping having m between 3 and 3n.

complete overlapping $\leftarrow 3 \le m \le 3n \rightarrow$ *no overlapping*

¹ This case can be refined as a standard single crystal

Classification of twins based on their twinning matrices

The representation of a twin operator is a twinning matrix¹. Its type is important for the refinement as it implicitly defines which reflections of single twin domains overlaps. The twins can have three possible types of the twin matrices:

- Twins with integer twin matrix
- Twins with rational twin matrix²
- Twins with irrational twin matrix

In the case of integer twin matrices the reflections of single twin domains fully overlaps and cannot be distinguished. The twins with rational twin matrices usually contain groups of fully overlapped and fully separated reflections. Partially overlapped reflections are also possible if the denominators of some numbers in the matrices are large. The twins with irrational twin matrices contain with high probability partially overlapped reflections.

Refinement of completely overlapped twins

Refinement of completely overlapped twins requires only the information about number of twin domains and twin matrices which are entered by *PRELIM* during creation of the basic reflection file m50. The structure factor in the case of the complete overlapping is calculated as

$$F^{2}(\mathbf{H}) = v_{1}F^{2}(\mathbf{H}\mathbf{T}_{1}) + v_{2}F^{2}(\mathbf{H}\mathbf{T}_{2}) + \dots + v_{n}F^{2}(\mathbf{H}\mathbf{T}_{n})$$

where v_i is a volume fraction of i-th domain and T_i is matrix representation of i-th twinning operator.

Refinement of partially overlapped twins

The reflections in the case of partially overlapped twins can be

- fully separated
- fully overlapped
- partially overlapped.

The fully overlapped reflections of all domains can be indexed on the base of reciprocal axis of one of the domains. Separated reflections need special flag to specify to which domain they belong - the flag is entered in the Import tool of *PRELIM*.

¹ The twinning matrices in *JANA9*8 are defined with respect to the **row** indices.

² i.e. having diffraction pattern which can be described in a supercell

Refinement of twins having only fully separated or fully overlapping reflections

The basic assumption is that the twin does not contain any partially overlapped reflections. The flag of the checkran command (see Table 22) should be set to 0 in order to disable the test of random overlapping. For each reflection used in the refinement the expression

 $|h_{i1}-h_{ij}|,$

where h_{i1} is the i'th index of the reflection in the first twin domain and h_{ij} , j > 1, is the index of the same reflection transformed to the basis of the j'th domain, is evaluated to distinguish the two following cases:

- If $|h_{i1} h_{ij}| < l_i$, the reflection fully overlaps with the j'th one
- If $|h_{i1} h_{ii}| > l_i$, the reflections are fully separated.

The limiting value l_i is predefined as 0.01 and can be changed by the dfoftw command (see Table 22).

Note: by defining the l_i limits the decision can be made whether the reflections of a twin with non-integer twinning matrices will be considered to be fully or partially overlapped. If the l_i limits are set to such values that $|h_{i1} - h_{ij}|$ is always less than l_i all reflections of the twin are treated as fully overlapped.

Refinement of twins having partially overlapped reflections

The twins with random overlaps are refined with the checkran flag set to 1. In this case the twinning matrices defined in *PRELIM* cannot be used for the testing of the overlaps. The user should enter the orientation matrices¹ of the single twin domains to m50 file (see the checkran command, Table 22). For each the following steps are performed:

- the setting angles ϕ_1, χ_1, σ_1 and θ_1 are calculated from the corresponding orientation matrix
- the indices of the reflection are transformed to the basis of other twin domain through the twinning matrix and **rounded to the closest integer indices**.
- the setting angles $\phi_2 = \phi_1, \chi_2, \sigma_2$ and θ_2 are calculated for the transformed indices from the orientation matrix of the twin domain in question
- The differences $|\chi_1 \chi_2|$, $|\sigma_1 \sigma_2|$, $|\theta_1 \theta_2|$ are calculated and used for the test:

¹ The orientation matrices should correspond to the reciprocal indices defined as **column** vectors. This is a difference from the definition of twinning matrices in *PRELIM* which are defined with respect to the **row** indices.

Overlapped reflection: $|\chi_1 - \chi_2| < \text{chidifl and } |\sigma_1 - \sigma_2| < \text{omdifl and } |\theta_1 - \theta_2| < \text{thdifl}$

Discarded reflection:

 $\begin{array}{l} |\chi_1-\chi_2| \in < \texttt{chidif1},\texttt{chidif2} > \texttt{or} \mid \sigma_1 - \sigma_2 \mid \in < \texttt{omdif1},\texttt{omdif2} > \texttt{or} \\ \mid \theta_1-\theta_2 \mid \in < \texttt{thdif1},\texttt{thdif2} > \end{array}$

Separated reflection: $|\chi_1 - \chi_2| > \text{chidifl and } |\sigma_1 - \sigma_2| > \text{and } |\theta_1 - \theta_2| > \text{thdifl}$

The predefined limiting values in degrees

chidif1	=	0.1	chidif2	=	5.0
thdif1	=	0.1	thdif1=	0.5	
omdif1	=	0.1	omdif1=	0.5	

can be changed by means of the command chidif, thdif and omdif. The values for chidif correspond to $\theta = 10^{\circ}$. The testing for other values of θ takes into account the broadening of χ profiles.

Note: the testing for random overlaps can be only used for data measured by the equi-inclination method. In other case you should contact the authors.

Refinement of "almost" commensurate structures

The twinning is not the only source of overlaps. Another type of overlapping occurs in incommensurate structures with \mathbf{q} vector near to the commensurate one. If the satellites have significant intensity up to high order there is probability of overlapping between the satellites of two neighbouring main reflections or between the satellites and main reflections.

The overlapping command defines the denominator of the closed fraction. For example if the modulation vector is (0.123, 0.252) the overlap command can have the following form:

overlap 8

causing the program will combine the intensity of the reflection (h,k,l,m) with the intensity of one reflections (h-1,k,l-2,m+8) or (h+1,k,l+2,m-8) having lower satellite index.

checkran	chackran number (number of origination matrices)
CHECKIAN	
	rll rl2 rl3
	r21 r22 r23
	r31 r32 r33
	Default value: checkran 0
	Command for the checking of overlaps.
dfoftw	dfoftw number (Ndim values)
aioitti	dfoffur manber (Nami Valdoo)
	ulouw number
	dfoftw 0.01 (Ndim values)
	dfoftw 0.01
	Key for testing of the overlaps for meroedric or rational twins.
omdif	omdif number1 number2
thdif	thdif number1 number2
chidif	chidif rumbers
oman	
	Default value: omdif 0.1 0.5
	thdif 0.1 0.5
	chidif 0.5 5.0
	The limits in degrees for the testing of random overlaps.

Table 22The Overlap Commands of REFINE in the m50 File

3.3.12 Refinement listing

REFINE creates listing ref containing information about refinement. It can be viewed and printed by Listing viewer (see page 41). The listing is built at the end of the refinement from temporary files. If the refinement is interrupted by Break button the listing is incomplete.

Refinement program structure : Testa			page = 1 12:51:54 28-Feb-97
The following lines were read as a control data :	The copy of the refin	nement commands	
=>unstab 3<= =>cycles 5<=			
=>enok= Centrosymmetric super-space group : C2/c(alfa0gamma)	Basic Crystal inform	nation	
Wave length: 0.56090 Cell parameters: 4.8180 16.0010 6.3740 Modulation vector q(1): 0.86070 0.00000 0.55850	90.00 99.36 90.00	Volume : 484.8	
List of centring vectors : 0.000000 0.000000 0.000000 0.000000 0.500000 0.500000 0.000000 0.000000			
Symmetry operators: x1 x2 x3 x4 w1 x2 1/2 x2 x4			
-XI XZ 1/2-X3 -X4			
Atomic scattering tables : $\lambda_{re} = 1,000, 0,275, 1,221, 22,092, 22,279$	20 401 29 201 26 219	24 296 22 729 21 196	
AS 1.000 0.270 1.331 32.303 32.270 19 722 18 313	16 976 15 717 14 540	13 451 12 454 11 552	
10.744 10.030	9.403 8.858 8.386	7.978 7.626 7.320	
7.053 6.817	6.606 6.415 6.239	6.076 5.922 5.774	
K 1.000 0.140 0.156 18.999 18.206	16.732 15.244 13.726	12.269 10.980 9.909	
9.057 8.398	7.888 7.480 7.134	6.823 6.528 6.241	
5.956 5.674	5.395 5.120 4.851	4.589 4.336 4.093	
3.861 3.640	3.431 3.235 3.052	2.882 2.724 2.579	
Structure factors calculated by Gaussian integration; Up to 16 following harmonic waves can be used to descr	number of grids : 32 ribe modulation		
Refinement based on F Weight 1/sig(Fo)**2 coefficient of unstability is	3.00 I	Interpretation of refinem	nent commands
Reflections with Fo-Fc > 3.00*sig(Fo) will be symbolic	ized in output by #		
sin(th)/lambda limits for acceptance of reflection (0.06000 10.00000		
Only reflections symbolised by # (see above) will be p	printed		
Print of reflections after last cycle of refinement			
Correlations larger than 0.9 will be printed			
The following waves will be used to describe the modul	lations		
wave#1: $q(1)$ wave#2: $2q(1)$	wave#3: 3q(1) v	wave#4: 4q(1)	wave definitions
Wave = 0	$wave{#7: /q(L) v}$	wave#8: 80(L)	
wavens: 54(1) waven14.14.14.(1)	wave===::::::::::::::::::::::::::::::::::	wave=== $12 \cdot 12 \cdot$	
Temperature parameters are II		March10, 10(1)	
Automatic procedure for setting of refinement keys wil	l be applied		
Automatic procedure for setting of restrictions on at	ms/molecules at special post	itions will be applied	
F(000) = 416.	Part Part		
Refinement program			page = 2
structure : Testa			12:51:54 28-Feb-97

Figure 142 The refinement listing (Continued)

The $F_{\rm o}\,F_{\rm c}$ list (see page R-24 for details)

Fo/Fc	list	aft	er i	last cycle											
h	k	1	m	Fo	Fc	А	в	Fo-Fc	sig(Fo)	sq (wdFq)	nref		sinthl	iq	ext
0	0	0	1	12.3450	15.7346	12,4442	0.4000	-3.3895	0.5140	-6.5944	1	#	0.10712	1	1.00000
2	0	0	0	89.6599	103.8744	82.0102	5.5075	-14.2145	2.8811	-4.9338	5	#	0.21036	1	1.00000
-2	0	2	0	99.2779	109.3761	-86.3814	-5.3737	-10.0982	3.1147	-3.2421	30	#	0.24218	1	1.00000
-2	0	2	1	42.4464	48.5305	-38.3900	-0.9506	-6.0841	1.5559	-3.9103	31	#	0.21864	1	1.00000
0	0	2	0	174.9028	195.3544	-154.4822	-5.5626	-20.4516	5.3036	-3.8562	34	#	0.15900	1	1.00000
3	1	0	1	4.3359	1.6931	1.2902	-0.3607	2.6428	0.6927	3.8153	144	#	0.41677	1	1.00000
-3	1	1	0	50.0500	55.4644	43.7360	3.6552	-5.4144	1.6705	-3.2411	165	#	0.31416	1	1.00000
-3	1	1	1	12.8180	14.3273	11.3305	0.3861	-1.5093	0.4716	-3.2003	166	#	0.24060	1	1.00000
-1	1	1	1	23.1236	28.5633	22.5919	0.6742	-5.4398	0.8175	-6.6544	171	#	0.12630	1	1.00000
3	1	1	2	5.0892	2.2491	1.7721	0.1644	2.8401	0.7237	3.9246	182	#	0.55053	1	1.00000
-1	1	3	1	28.7958	31.9580	-25.2603	-1.1856	-3.1622	1.0034	-3.1514	241	#	0.28263	1	1.00000

.

The R statistics (see page R-24 for details)

Statistics as a function of sin(th)/lambda and structure factors after last cycle sin(th)/lambda

		limits	0.362376	0.453337	0.520215	0.574811	0.622404	0.665116	0.712413	0.913440	
		number +	150	209	202	201	199	174	151	178	
		-	189	132	138	141	142	166	190	163	
	- ·	together	339	341	340	342	341	340	341	341	
	Groups by	average wdF	4.1316	1.9763	1.5413	2.1087	1.7240	1.9284	2.5051	3.7307	
	ain 0/2	numerator +	335.6	259.3	196.6	191.4	173.3	150.9	137.7	260.1	
	sin θ∕λ	-	-318.8	-128.7	-95.9	-94.7	-106.6	-137.2	-186.6	-171.0	
		together	654.4	388.0	292.6	286.1	279.9	288.1	324.3	431.2	
		denominator	11593.3	8974.7	7072.8	6167.1	5890.6	5168.8	4815.1	4047.4	
		R factor	5.64	4.32	4.14	4.64	4.75	5.57	6.73	10.65	
str	ruct. factors										
		limits	6.6	8.4	10.9	13.7	17.6	23.3	33.7	237.0	undos
		number +	188	161	167	159	165	204	197	223	0
	Groups by	-	157	176	173	181	176	136	144	118	0
	Groups by	together	345	337	340	340	341	340	341	341	0
	F	average wdF	4.0408	3.3492	2.2453	2.2732	2.4738	1.7427	1.4425	2.0607	0.0000
	1	numerator +	262.9	205.8	133.6	108.7	128.0	146.9	176.5	542.7	0.0
		-	-132.2	-155.5	-147.7	-142.7	-140.9	-110.3	-135.8	-274.5	0.0
		together	395.2	361.3	281.3	251.3	268.9	257.2	312.3	817.2	0.0
		denominator	1945.5	2517.0	3248.0	4177.7	5319.3	6962.5	9386.3	20173.5	0.0
		R factor	20.31	14.35	8.66	6.02	5.05	3.69	3.33	4.05	0.00
			final che	ck		sin(th)/lan	ibda sta	ructure fac	tors		
				nunber	c +	1464		1464			
					-	1261		1261			
				the second se							
		Overall inf	formation	togeu		2725		2725	•		
		Overall in	formation	numera	ator +	2725 1705.0		2725 1705.0	This is the second s	ne total nu	mber of ref-
		Overall in	formation	numera	ator + -	2725 1705.0 -1239.5		2725 1705.0 -1239.5	This is the	ne total nu	mber of ref-
		Overall in	formation	toget	ator + - ner	2725 1705.0 -1239.5 2944.6		2725 1705.0 -1239.5 2944.6	This is the lections u	ne total nu ised for the	mber of ref- refinement
		Overall inf	formation	togeti denom	ator + - ner inator	2725 1705.0 -1239.5 2944.6 53729.8		2725 1705.0 -1239.5 2944.6 53729.8	This is the lections u	ne total nu ised for the	mber of ref- refinement
		Overall inf	formation	toget denom R-fact	ier ator + - ner inator tor	2725 1705.0 -1239.5 2944.6 53729.8 5.48		2725 1705.0 -1239.5 2944.6 53729.8 5.48	This is the lections u	ne total nu ised for the	mber of ref- refinement
Sta	atistics as a f	Overall ini	formation	toged numera togeti denom R-fact x after las	ator + - inator for st cycle	2725 1705.0 -1239.5 2944.6 53729.8 5.48		2725 1705.0 -1239.5 2944.6 53729.8 5.48	This is the lections of this is the This is the This is the test of te	ne total nu ised for the e overall R	mber of ref- refinement factor
Sta	atistics as a f tellite index	Overall inf	formation	toget numera toget denom R-fact x after las 0 :	ator + - inator for st cycle L or -1	2725 1705.0 -1239.5 2944.6 53729.8 5.48 2 or	-2 3	2725 1705.0 -1239.5 2944.6 53729.8 5.48 or -3	This is the lections up this is the determined of the determined o	ne total nu ised for the e overall R -4	mber of ref- refinement
Sta	atistics as a f tellite index	Overall int	formation	togeti numera togeti denom R-fact x after las 0 : 400	ator + - ner inator cor st cycle L or -1 728	2725 1705.0 -1239.5 2944.6 53729.8 5.48 2 or	-2 3 336	2725 1705.0 -1239.5 2944.6 53729.8 5.48 or -3 0	This is th lections u This is th 4 or	ne total nu ised for the e overall R -4	mber of ref- refinement factor
Sta	atistics as a f tellite index Groups by	Overall int	formation	togeti nımera denom R-fact x after lar 0 : 400	er ator + - - inator cor st cycle L or -1 728 646	2725 1705.0 -1239.5 2944.6 53729.8 5.48 2 cm	-2 3 336 287	2725 1705.0 -1239.5 2944.6 53729.8 5.48 0 cr -3 0 0	This is th lections u This is th 4 or	ne total nu ised for the e overall R -4 o	mber of ref- refinement factor
Sta sat	atistics as a f bellite index Groups by	Overall int	formation	togeti nımera denom R-fact x after lar 0 : 400 328 728	er ator + - - inator cor st cycle 1 or -1 728 646 1374	2725 1705.0 -1239.5 2944.6 53729.8 5.48 2 cm 3 2 cm	-2 3 336 287 523	2725 1705.0 -1239.5 2944.6 53729.8 5.48 0 0 0	This is th lections u This is th 4 or	ne total nu ised for the e overall R -4 0 0	mber of ref- refinement factor
Sta	atistics as a f tellite index Groups by satellites	Overall int	formation cellite inde 2.2	toget numera denom R-fact x after lau 0 : 400 328 728 909	her - - - - - - - - - - - - - - - - - - -	2725 1705.0 -1239.5 2944.6 53729.8 5.48 2 or 3 2 6 3.01	-2 3 336 387 523 152	2725 1705.0 -1239.5 2944.6 53729.8 5.48 0 0 0 0 0 0 0.0000	This is th lections u This is th 4 or 0.00	ne total nu ised for the e overall R -4 0 0 0 00	mber of ref- refinement factor
Sta	atistics as a f tellite index Groups by satellites	Overall int	formation cellite inde 2.2 60	togeti nımera denom R-fact x after lar 400 328 728 909 5.0	her - - - - - - - - - - - - - - - - - - -	2725 1705.0 -1239.5 2944.6 53729.8 5.48 2 or 3 2 6 3.00 382	-2 3 336 387 323 152 2.6	2725 1705.00 -1239.5 2944.6 53729.8 5.48 0 0 0 0 0.0000 0.0	This is th lections u This is th 4 or 0.000	ne total nu ised for the e overall R -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mber of ref- refinement factor
Sta	atistics as a f tellite index Groups by satellites	Overall int	formation cellite inde 2.2 60 -44	togeti nımera togeti denom R-fact x after laı 0 : 400 328 909 5.0 3.1	er - - - - - - - - - - - - - - - - - - -	2725 1705.0 -1239.5 2944.6 53729.8 5.48 2 or 3 2 or 6 3.00 382 -211	-2 3 336 287 223 152 2.6 1.5	2725 1705.00 -1239.5 2944.6 53729.8 5.48 0 0 0 0.0000 0.0 0.0000 0.0	This is the lections of the lections of the lections of the lection of the lectio	ne total nu used for the e overall R -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mber of ref- refinement factor
Sta sat	atistics as a f tellite index Groups by satellites	Overall int	formation cellite inde 2.2 60 -44 104	toget numera toget denom R-fac x after las 0 : 400 328 728 909 5.0 3.1 8.1	ter - - - - - - - - - - - - -	2725 1705.0 -1239.5 2944.6 53729.8 5.48 2 or 3 2 or 6 3.00 382 -211 594	-2 3 336 287 523 52 2.6 1.5 4.2	2725 1705.0 -1239.5 2944.6 53729.8 5.48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	This is the lections of the lections of the lections of the lection of the lectio	ne total nu used for the e overall R -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mber of ref- refinement factor
Sta	atistics as a f rellite index Groups by satellites	Overall int	formation cellite inde 2.2 60 -44 104 2420	toget nimera toget denom R-fac x after las 0 : 400 328 909 5.0 3.1 8.1 4.9	er ator + - per inator cor st cycle L or -1 728 646 1374 2.2878 717.4 -584.9 1302.3 24302.0	2725 1705.0 -1239.5 2944.6 53729.8 5.48 2 cr 3 2 6 3.00 380 -211 594 5222	-2 3 336 287 523 552 2.6 1.5 4.2 2.8	2725 1705.0 -1239.5 2944.6 53729.8 5.48 0 0 0.0000 0.0000 0.0000 0.0 0.0 0.0 0	This is the lections of the lections of the lections of the lection of the lectio	ne total nu ised for the e overall R -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mber of ref- refinement factor

Figure 142 The refinement listing (Continued)

Figure 142 The refinement listing (Continued)

As	Ullsin1	U22sin1	U33sin1	Ul2sin1	Ul3sin1	U23sin1	max ch/esc	l	
0	0.000000	0.000000	0.000000	-0.001399*	0.000000	0.001612	0.00		As: 1 st temperature wave
1	0.000000	0.000000	0.000000	-0.001399	0.000000	0.001612*	0.00		
2	0.000000	0.000000	0.000000	-0.001399	0.000000	0.001612*	0.00		
3	0.000000	0.000000	0.000000	-0.001399*	0.000000	0.001612	0.00		
4	0.000000	0.000000	0.000000	-0.001399	0.000000	0.001612*	0.00		
5	0.000000	0.000000	0.000000	-0.001399	0.000000	0.001612			
esd	0.000000	0.000000	0.000000	0.000172	0.000000	0.000175			
_									
As	Ullcosi	0220051	U33cosl	UL2COS1	UL3COSI	U23cos1 :	max ch/esc	L	
0	0.001689	-0.000003	0.000386	0.000000	-0.000072*	0.000000	0.00		As: 1 st temperature wave
1 Q	0.001689	-0.000003*	0.000386	0.000000	-0.000072	0.000000	0.00		
2	0.001689	-0.000003*	0.000386	0.000000	-0.0000/2	0.000000	0.00		
3	0.001689	-0.000003*	0.000386	0.000000	-0.0000/2	0.000000	0.00		
4	0.001689	-0.000003*	0.000386	0.000000	-0.0000/2	0.000000	0.00		
5	0.001689	-0.000003	0.000386	0.000000	-0.0000/2	0.000000			
esd.	0.000206	0.000238	0.000215	0.000000	0.000164	0.000000			
As	Ullsin2	U22sin2	U33sin2	Ul2sin2	U13sin2	U23sin2	max ch/esc	1	
0	0.000000	0.000000	0.000000	0.000264*	0.000000	0.001977	0.00	-	As: 2 nd temperature wave
1	0.000000	0.000000	0.000000	0.000264*	0.000000	0.001977	0.00		
2	0.000000	0.000000	0.000000	0.000264	0.000000	0.001977*	0.00		
3	0.000000	0.000000	0.000000	0.000264	0.000000	0.001977*	0.00		
4	0.000000	0.000000	0.000000	0.000264	0.000000	0.001977*	0.00		
5	0.000000	0.000000	0.000000	0.000264	0.000000	0.001977	0.00		
eed	0.000000	0.000000	0.000000	0 000201	0.000000	0.000217			
Refinement	program								page = 7
structure :	: Testa								12:51:54 28-Feb-97
_								., .	A Out (
As	U11cos2	0220052	0330052	0120052	UL3cos2	0230052	phason	max ch/esd	As: 2 nd temperature wave
0	0.000283	-0.000805	-0.000181	0.000000	0.000856*	0.000000	0.000000	0.00	
1	0.000283	-0.000805	-0.000181*	• 0.000000	0.000856	0.000000	0.000000	0.00	
2	0.000283	-0.000805*	-0.000181	0.000000	0.000856	0.000000	0.000000	0.00	
3	0.000283	-0.000805	-0.000181	0.000000	0.000856*	0.000000	0.000000	0.00	
4	0.000283*	-0.000805	-0.000181	0.000000	0.000856	0.000000	0.000000	0.00	
5	0.000283	-0.000805	-0.000181	0.000000	0.000856	0.000000	0.000000		
esd	0.000343	0.000272	0.000294	0.000000	0.000236	0.000000	0.000000		
					••				
03	Ullcos2	U22cos2	U33cos2	U12cos2	U1.3cos2	U23cos2	phason	max ch/esd	
0	-0.003972	-0.014366	-0.017415	0.013567	-0.014126	0.018702*	0.000000	0.00	
1	-0.003972	-0.014366*	-0.017415	0.013567	-0.014126	0.018703	0.000000	0.00	
2	-0.003972	-0.014366	-0.017415	0.013567	-0.014126	0.018702*	0.000000	0.00	
3	-0.003972	-0.014366	-0.017415*	• 0.013567	-0.014126	0.018702	0.000000	0.00	
4	-0.003972	-0.014366	-0.017415*	• 0.013567	-0.014126	0.018702	0.000000	0.00	
5	-0.003972	-0.014366	-0.017415	0.013566	-0.014126	0.018702	0.000000		
esd	0.002550	0.002628	0.002897	0.002092	0.002125	0.002218	0.000000		

There were no correlations larger than 0.900 in last refinement cycle Program started at 12:51:58 ended at 12:53:59 cpu time : 1.47

Final information

List of the correlations (see page R-26 for details)

3.4 Program FOURIER

Input: m40,m50,m80, [m81]
Output: m81,m47,m48,fou
M50 control keywords: the section between the keywords fourier and end

Figure 143 The basic window of FOURIER

3.4.1 Description of FOURIER

FOURIER performs a Fourier synthesis of coefficients defined at points of the (3+d) dimensional reciprocal lattice. These coefficients are complex numbers usually expressed as amplitudes and phases. The resulting map is a (3+d) dimensional periodic function in the direct space and its character depends on the used coefficients (Patterson, Fourier based on Fobs, etc).

The maps are stored as two-dimensional sections through the chosen (3+d) dimensional parallelepiped with edges along (3+d) basic vectors $A_1, A_2, ..., A_{3+d}$. Its volume is defined by the scope parameters (see §0, page 273). The map orientation makes possible to define two-dimensional sections and the order in which they are stored. The two basic vectors defining the section will be called "section basic vectors" and the remaining ones "storing basic vectors". The corresponding coordinates will be called in analogy "section coordinates" and "storing coordinates". Each section is a function of 1+d storing coordinates. This choice does not have

substantial meaning for regular structures but it plays important role in interpretation during the peak search and map visualisation.

FOURIER is usually used together with *CONTOUR*, which visualises the Fourier maps. Some examples of the *FOURIER* usage are therefore showed also in the chapter containing the description of the *CONTOUR* program (see §4.1,page 291).

The FOURIER run step by step

- FOURIER reads the input files m40, m50 and m80. The Fourier reflection file m80 contains the phase information so it is therefore necessary for every type of the map except the Patterson¹ map. It must be created² by REFINE before running FOURIER.
- Then the program interprets the control commands prepared by the user *via* the SetCommands tool. The two dimensional sections by 3+d dimensional map are stored in the m81 file in the order defined by the orientation of the map.
- The calculated maps are searched for local minima and maxima. In the case of the modulated structure *FOURIER* tries to assign modulation waves to the maxima. The maxima (together with the modulation parameters) and minima are stored in the m48 and m47 files, respectively. Both m47 and m48 files are readable by *EDITM40* and *DIST* programs.
- FOURIER writes the listing jobname.fou.

¹ In former versions of *JANA98* it was necessary to run zero cycles refinement with empty m40 before calculation of the Patterson map. In this version it is no longer needed.

² *REFINE* creates m80 during calculation of the last refinement cycle. Zero cycles is sufficient for the calculation of m80. If *REFINE* is interrupted by Break button the m80 is not created.

3.4.2 Basic commands

The Basic commands form contains the input and output information. If the Fourier summation checkbox is ticked (and we don't want the Patterson type map) the input for *FOURIER* is m80 with the phasing information. If the Fourier summation checkbox is free but the Peak interpretation checkbox is ticked *FOURIER* interprets already existing maps and the input is m81. The peak interpretation is usually fast and the user doesn't need to change the default setting, which turns on both the Fourier summation and the peak interpretation.

Basic commands
Title
Perform
Fourier summation Peak interpretation
sin(th)/lambda min. 0 max. 10
Omit not-matching reflections
Reflections with F(obs)> *F(calc) will be omitted
Formatted input M <u>8</u> 0 Sormat
Correction of F(obs) for twinning
Difference Fraction
Esc Ok

Figure 144 FOURIER: The basic commands

The m80 created by *REFINE* is a binary file. *FOURIER* can also read m80 in the user defined ASCII form. This is meant like a support for those needing to interpret the results from electron microscopy or direct methods with *FOURIER*.

If the case of the composite structure the user selects which subsystem will be used for the Fourier calculation. All indices are then internally transformed to the chosen subsystem.

In the case of a twin the Fourier map is calculated for the first twin domain and therefore the observed structure factors must be corrected. *FOURIER* offers two method for doing it:

The difference method:

$$F_{obs} = \sqrt{I_{obs} - \sum_{i=2,n} v_i F_{c,i}^2},$$
 E64

where n is number of twin domains and v_i is the volume fraction of the ith domain.

The fraction method:

$$F_{obs}^{corr} = F_{obs} \frac{F_{calc1}}{F_{calc}}$$
 E65

There is no general way, however, to correct completely for twinning. According to our experience the first method has advantage in stage when the Fourier program is used to localise new atoms and the second one should be preferred in the final stages of the structure determination.

In the following table there is the list of commands that may be stored in m50 after completing the SetCommands procedure. Only the commands different from the default setting are explicitly listed in m50.

Name	Syntax and Description
cutting	$\begin{array}{l} \mbox{cutting number} \\ \mbox{Default value: no cutting} \\ \mbox{The reflections with } F_{obs} > F_{calc} \ ^* \ \mbox{number will not be used for the} \\ \mbox{calculation.} \end{array}$
calc	calc flag Default value: calc 1 If the flag is set to zero, <i>FOURIER</i> doesn't calculate the map assuming that it was already calculated. It can be used for searching the map for the local extremes without its calculation.
method	method flag Default value : method 0 Selects the method for the calculation of the F_{obs} in the case of a twin. The Fourier map is calculated for the first twin domain. The observed structure factors must therefore corrected. Here are two ways how to do it: flag = 0 The difference method (equation <i>E64</i> , page 268). flag = 1 The fractional method (see equation <i>E65</i> , page 268)
peaks	<pre>peaks flag Default value: peaks 1 If the flag is set to zero, FOURIER doesn't search the map for the local extremes.</pre>
title	title title_of_this_run
snimn	$\begin{array}{l} \textbf{snlmn} \min_value\\ \textbf{Default value: snlmn 0}\\ \textbf{Sets the minimum value of } \sin\theta/\lambda \text{ for the acceptance of the reflections for the calculation.} \end{array}$
snimx	snlmx max_value Default value : snlmn 10 Sets the maximal value of $\sin\theta/\lambda$ for the acceptance of the reflections for the calculation.
subsys	subsys number Default value: subsys 1 Selects the composite subsystem for which the Fourier map will be calculated.

Table 23The Basic Commands of FOURIER in the m50 file

E66

3.4.3 Type of the Map

The Fourier syntheses is calculated according to the following equation:

$$\sigma(\mathbf{r}) = \frac{1}{V} \sum_{\mathbf{H}} A(\mathbf{H}) \exp(i\varphi(\mathbf{H})) \exp(-2\pi i \mathbf{H} \cdot \mathbf{r}),$$

where

 $\mathbf{H} = \sum_{i=1}^{3+d} h_i \mathbf{a}_i^*,$ $A(\mathbf{H})$ are the coefficients of the syntheses and $\varphi(\mathbf{H})$ are the phases.

The coefficients for various types of the Fourier synthesis are summarized in Table 24. The user interface is shown in Figure 145; the corresponding control commands written to m50 are explained in Table 24.

In the case of the Patterson/Checking Patterson/difference Patterson syntheses the coefficients are multiplied by the factor:

$$\left(\frac{\sum_{i=1}^{n} Z_{i}}{\sum_{i=1}^{n} f_{i}\left(\sin\theta/\lambda\right)}\right)^{2}$$
 E67

where Z_i is the atomic number and f_i is the atom form factor of the i-th atom,

to sharpen the map. Note that it has no effect for neutron data where the atom form factor is constatnt. The additional sharpening by the overall temperature factor:

$$\exp\left(8\pi^2 U_{iso} \frac{\sin^2 \theta}{\lambda^2}\right) \qquad or \qquad \exp\left(B_{iso} \frac{\sin^2 \theta}{\lambda^2}\right) \qquad E68$$

is optional.

This procedure helps to reduce the overlap caused by peak broadening.

	Type of the map				
	F(obs)**2 - Patterson				
	F(calc)**2 - checking Patterson				
	F(obs)**2-F(calc)**2 - difference Patterson				
	F(obs) - Fourier				
	F(calc) - checking Fourier				
	F(obs)-F(calc) - difference Fourier				
	F(obs)**2*F(calc) - alpha synthesis				
	F(obs)**2/F(calc) - beta synthesis				
	0/1 - shape function				
U(i	so) used to sharpen Patterson map				
	Esc Ok				

Figure 145 FOURIER: The types of the maps

Table 24The coefficients of the Fourier synthesis types available in FOURIER.

Synthesis type	$A(\mathbf{H})$	$arphi(\mathbf{H})$
Patterson	$F_{obs}^{2}(\mathbf{H})$	0
Checking Patterson	$F_{calc}^{2}(\mathbf{H})$	0
Difference Patterson	$F_{obs}^{2}(\mathbf{H}) - F_{calc}^{2}(\mathbf{H})$	0
Fourier	$\left F_{obs}\left(\mathbf{H} ight) ight $	$arphi_{\scriptscriptstyle calc}({ m H})$
Checking Fourier	$\left F_{calc}\left(\mathbf{H} ight) ight $	$arphi_{\scriptscriptstyle calc}({ m H})$
Difference Fourier	$\left\ F_{obs}\left(\mathbf{H}\right)-F_{calc}\left(\mathbf{H}\right)\right\ $	$arphi_{\scriptscriptstyle calc}({ m H})$
Alpha synthesis	$F_{obs}^{2}\left(\mathbf{H}\right)F_{calc}$	$oldsymbol{arphi}_{calc}\left(\mathbf{H} ight)$
Beta synthesis	$F_{obs}^{2}(\mathbf{H})/ F_{calc} $	$oldsymbol{arphi}_{calc}(\mathbf{H})$
Shape function	1 for all collected reflections	0

Name	Syntax and Description					
maptype	maptype flag Default value: ma Type of the Fourie flag = 1 flag = 2 flag = 3 flag = 4 flag = 5 flag = 6 flag = 7 flag = 8	aptype 4 er syntheses Patterson map (F_{obs}^2 coefficients) Checking Patterson (F_{calc}^2 coefficients) Difference Patterson ($F_{obs}^2 - F_{calc}^2$ coefficients) Fourier map (F_{obs} coefficients) Checking Fourier (F_{calc} coefficients) Difference Fourier ($F_{obs} - F_{calc}$ coefficients) Difference Fourier ($F_{obs} - F_{calc}$ coefficients) α -synthesis ($F_{obs}^2 - F_{calc}$ coefficients) β -synthesis ($F_{obs}^2 - F_{calc}$ coefficients)				
	flag = 9	Shape functions (The coefficients = 1)				
uiso	uiso number Default value: uis The additional te Patterson synthes	so 0 mperature factor in U form used for sharpening of the ses				
biso	biso number Default value : bis The additional te Patterson synthes	so 0 mperature factor in B form used for sharpening of the ses				

Table 25The Maptype Commands of FOURIER in the m50 File

3.4.4 Scope and Orientation

The section types in JANA98

This chapter is important only for modulated structures.

JANA98 distinguish three basic types of maps depending on way how the section basic vectors has been chosen. These section types allow visualising different aspects of the modulated structure. Two of them can be calculated directly by the FOURIER program and the remaining one can be extrapolated from the previous in the CONTOUR program. They can be understood from the following picture of the 3+d dimensional cell. Here A_3 represents the first three (external) basic vectors of the 4-dimensional superspace, A_4 are the internal basic vectors, \mathbf{R}_3 represents the real space.

In the following explanation we shall speak about 4-dimensional Fourier synthesis and the internal coordinate will be sometimes denoted as x4. The work with 5- and 6-dimensional maps is analogous.

Figure 146 The Four Dimensional Elementary Cell

• The $A_3 - A_4$ maps

One of the section basic vector is from A_3 and the second one is A_4 . Such maps can show the modulation of a selected atom in particular directly in one section.

• The $A_3 - A_3$ maps

Both section basic vectors are from A_3 . The two dimensional sections of the map can show coordinations of atoms and their changes as a function of remaining two vectors including A_4 . The sections cannot show directly modulations as they are periodic. This is due the fact that they were calculated for constant internal coordinates. Moreover they are also deformed as $A_1 \neq a_1$. The real coordinations of atoms and their changes caused by modulation can be visualised by the sections of the real space R_3 .

• The R_3 - R_3 maps

In order to have a picture without deformation the section through \mathbf{R}_3 has to be performed. These maps are no longer periodic and they cannot be calculated by standard Fourier summation technique. On the other hand they can be extrapolated from A_1 - A_4 maps. The section then depends on the *internal coordinate t*, which is the projection of the forth coordinate to the \mathbf{A}_4 axis along \mathbf{R}_3 direction - $t = x_4 - \mathbf{q} \cdot \mathbf{r}$. Therefore this type of maps is also called *t-maps*.

There are two basic way how to use such maps. First we can calculate a section covering several cells and calculated for one selected *t*. Such map can shows directly and without deformation part of the modulated structure. The second possibility is to calculate these maps for more *t* values from the interval $\langle 0,1 \rangle$. Such maps will show

behaviour of the selected part as a function of t. The main difference to the previous $A_3 - A_3$ maps is that these section are no more deformed, i.e. they show real geometry in 3d space, at the cost of losing the periodicity.

Communication between FOURIER and CONTOUR

If *FOURIER* is used only to localise maxima and estimate new modulation parameters the *CONTOUR* program is not needed. On other hand the *CONTOUR* program allows to visualise the sections of the map and draw conclusions necessary to find more details concerning different aspects of the modulation. The following scheme shows the sharing of the work between *FOURIER* and *CONTOUR*.

Figure 147 Communication between FOURIER and CONTOUR

The Scope Form

With the Scope form the user can define the following parameters:

- Volume of the map in coordinates A₃
- The interval and the step for the internal coordinate
- The step for the calculation of the map

The Scope of the map should be defined with respect to the desired orientation of the map and later operations in *CONTOUR*.

The *independent volume* is optimal if we calculate the map for the reason of the peak search or if we will later user *CONTOUR* for plotting the sections through the whole cell. If the map is calculated in the independent volume Contour has enough information for calculating general sections of arbitrary area and width.

The *explicit setting* of the map volume is useful in the cases when some part of the map has to be examined in details. It usually requires small steps and the calculation of the whole independent volume could be excessively long.

Another reason for the explicit choice is if we need a section comprising more elementary cells, for instance $x1 \in \langle -0.25, 0.25 \rangle$; $x2 \in \langle -0.25, 0.25 \rangle$. Such section can be calculated by *CONTOUR* from the map in the independent volume like general section. If we use, however, the explicit setting of the map volume the section can be plotted directly without calculation of the general section.

The last reason for the explicit setting is if we need different steps along the single coordinates.

		Scope of	the map	
Indep	endent	<u>E</u> xplic:	itely	Central point
Γ]	
	minimum		maximum	step
x1	0	1		0.05
x2	0	1		0.05
ж3	0	1		0.05
x4	0_	1		0.04
Center			Scope [A]	
<u>A</u> dd borde	r		<u>S</u> tep [A]	
		Esc	Ok	

Figure 149 The Fourier synthesis calculated in explicitly defined volume

The calculation of the map *around the central point* is usually used if we need a A_3 - A_4 map showing the modulation of some atom. In the example below the La atom is chosen as the central point and the volume of the map is defined by *Scope* option along three coordinates in A_1 : $x1 \in \langle x1(La)-0.5, x1(La)+0.5 \rangle$; $x2 \in \langle x2(La)-0.5, x2(La)+0.5 \rangle$; $x3 \in \langle x3(La)-2, x3(La)+2 \rangle$. The section orientation will be defined later *via* the Orientation form like x3-x4. The directions along x1 and x2 will be the width of the section and the map could be integrated along these directions by *CONTOUR*.

The central point can be defined by atom name or by three coordinates. If the atom used for the definition of the central point is a part of a molecule its position should be specified according to the conventions in § 1.2.6 page 27).

		Scop	e of	the map					
Indep	endent	Εz	mplic	itely		Central point			
	minimum			maximum		step			
x1									
ж2									
ж3									
ж4	0		1			0.04			
Center	La			Scope	[A]	0.5 0.5 2			
<u>A</u> dd border	r			Step	[A]	0.25			
		E	SC	Ok					

Figure 150 The Fourier synthesis calculated around a central point

The *length and the step of the additional coordinate* should be also defined with respect to the orientation of the map. In the case of A_3 - A_4 maps the length setting influences if we will have one or more periods of the modulation function in the plot. The step controls the precision of the function shape. For A_3 - A_3 sections we don't need more than one period in x4 and the step controls the number and distance of the successive layers.

The *step of the map in* Å is the calculation step used by *FOURIER*. The fine step - for instance 0.1 Å - causes smooth contours in the plot but at the cost of long calculation and large files. The default step 0.25 Å is usually in agreement with the accuracy of the data. This means that we will not see more with finer step but it may be useful for publication reasons.

The Orientation Form

The first two axes in the Orientation form defines the section basic vectors and the remaining ones the storing basic vectors. In the CONTOUR program the map can be integrated along the storing basic vectors or the section can be plotted separately.

In the following example the section is defined by A_3 and A_4 (it is therefore the A_3 - A_4 map) and it depends on x1 and x2. The section will be stored and later plotted in the following order:

x3-x4(x11,x21), x3-x4(x12,x21), , x3-x4(x1n,x21), x3-x4(x11,x22), x3-x4(x12,x22), , x3-x4(x1n,x22), x3-x4(x11,x2m), x3-x4(x12,x2m), , x3-x4(x1n,x2m),

where subscripts denotes the step numbers, n is number of steps in A_1 direction, m is number of steps in A_2 direction.

Figure 151	Setting the map	orientation
------------	-----------------	-------------

Map orien	ntation
Use default	
A1	A2 A3 A4
1st axis	
2nd axis	
3rd axis 🚺	
4th axis	
Orientation	3412
Esc	Ok

Table 26The Scope and Orientation Commands of FOURIER in the m50 File

Name	Syntax and Description						
addbord	addbord flag Default value: addbord 1 If flag is 1, one step is added to the volume of the map in each direction						
center	Center x1 x2 x3						
	center atom_name						
	Defines the central point of the map. It is used together with the xlim keys and the scope key to define the volume of the map. The central point can be defined by fractional coordinates x1, x2 and x3 or by the name of some atom present in the m40 file.						
orient	orient code This key defines two dimensional sections by the electron density map and their order the m81 file. It is also called the orientation of the map. The code consists of three (or more for 3+d structures) sequence numbers of the basic cell vectors. The first and the second basic vector define the section, which depends on the remaining coordinates.						
	Example: orient 1234 The plane of this section is defined by a and b cell vectors. The horizontal axis of the section runs along a . The sections are stored in m81 file by ascending order of the z coordinate and x4 coordinate. See the Orientation form for more details.						

Table 26 (Continued)

scope	<pre>Scope rx ry rz This command is used together with the center key for definition of the map volume. The numbers define the size of the map along a, b and c axis, respectively. In the case of 3+d structures the information given by the scope command is extended by the x4lim, x5lim and x6lim commands. Example 1: center As scope 2 2 1 orient 123 The volume with the central point in the arsenic atom and the dimensions ±1Å along a axis, ±1Å along b axis and ±0.5Å along c axis is defined. The plane of the section is ab. Example 2: center As scope 2 2 1 step 0.2 orient 123 The same as the previous example but with changed calculation step. Example 3: center As scope 0.5 0.5 2 x4lim 0 1 0.1 extinct 2412</pre>
	This example prepares the Fourier map for plotting of the z modulation function component of arsenic.
step	step numberDefault value: step 0.25Sets step in Å for calculation of the maps. This step can also be changed separately for single axis by xlim, ylim etc. commands.
xlim ylim zlim x1lim x2lim x3lim x3lim x4lim x5lim x6lim	<pre>xlim min max step The size of the map long the x axis. The analogous commands exist for ylim, zlim, x1lim, x2lim, x3lim, x4lim, x5lim and x6lim. Xlim, ylim and zlim mean the same like x1lim, x2lim and x3lim, respectively.</pre> Example: xlim 0 0.5 0.1 ylim 0 0.5 0.1 zlim 0 0.5 0.1 Sets the volume of the map to one quarter of the unit cell. The step for the calculation is 0 1Å

3.4.5 The Peaks Commands

For modulated structures the peak search is performed only if the internal basic vectors are used as last storing vectors. This means also that the fastest storing vector and both section basic vectors are the external ones. Then the program tries to assign modulation parameters to positive peaks.

The user settings for the peaks searching are entered in the Peaks Commands form.

Peaks commands							
Maximum number of peaks							
Default Explicitely							
Positive	Negative						
Interpretation of d	iplacement waves						
No. of <u>h</u> armonics	1_						
Maximal displacement	1						
Esc	Ok						

Table 27The Peaks Commands of FOURIER in the m50 File

Name	Syntax and Description
positive	positive number The maximal number of positive peaks to be found in the map. The default value is n+5, where n depends on the map type ¹ .
negative	negative number Default value: negative 5 The maximal number of negative peaks to be found in the map.
dmax	dmax rumber The limit in Å for distinguishing two different maxima. The default value is 1 Å.
harmonic	harmonic number
	The number of harmonic waves used for the construction of the curve representing the position of the maximum. Using more than 2 harmonics is not recommended.

¹ In the case of the normal Fourier map (maptype 2) n is the number of atoms missing in the m40 file. The total number of atoms which should be present in the m40 is calculated from the chemical formula and the number of the chemical units in the elementary cell - this information is entered by *PRELIM* and saved in the basic crystal information part of the m50 file. For other types of the maps n = 0.

3.4.6 The m48 and m47 Files

FOURIER stores local maxima and minima of the map to the m48 and m47 file. The maxima for modulated structures are saved together with modulation parameters calculated from the map.

The distances between the atoms existing in the structure and the peaks found in the map can be calculated by *DIST* program, which can directly read both m47 and m48 file. The positive maxima can be added to the m40 file by *EDITM40*, which can read the m48 file. In the case of modulated structures the modulation parameters are added together with the coordinates of the maxima so that the refinement can start with the starting point calculated from the map.

4			1									
1.000000					coordinat							
0.000000					coordinat							
0.000000												
0.000000												
max1	1	1	1.000000	0.072093	0.370162	0.666232		000	0	1	0	
36.45												
0.034325	0.	002908-	0.010730	0.006872	-0.009755-	0.014637	-					
0.000000												Modulation
max2	1	1	1.000000	0.242085	0.212733	0.152491		000	0	1	0	parameters
8.91												
-0.004784-	0.	021230-	0.013531-	0.060348	-0.021528-	0.081200						
0.000000												
max3	1	1	1.000000	0.081891	0.373225	0.518970		000	0	1	0	
6.70												
0.101414-	0.	006506	0.056510-	0.031413	-0.029077-	-0.034423						
0.000000												
max4	1	1	1.000000	0.230782	0.064043	0.117471		000	0	1	0	
4.13												
-0.031754-	•0.	000731	0.031050	0.007749	-0.026178	0.021138						
0.00000												

Figure 153 The m47 File for Ordinary or Modulated Structure

4			1							
1.000000										
0.00000										
0.00000										
0.00000										
min1	1	1	1.000000	0.041514	0.425487	0.748936	000	0	0	0
19.02										
min2	1	1	1.000000	0.004098	0.313358	0.716243	000	0	0	0
10.99										
min3	1	1	1.000000-	0.000985	0.032555	0.749904	000	0	0	0
3.55										
min4	1	1	1.000000-	0.003849	0.482830	0.750187	000	0	0	0
2.01										
3.000000										

3.4.7 Fourier Listing

FOURIER creates listing jobname.fou. It is wide listing and it is accessible from the listing viewer (see page 41).

Figure 154 The Fourier Listing for Modulated Structure

The listing for standard structures is similar but simplier becouse it doesn't contain the section concerning the assignment of modulation vawes.

Program for n-dimensional Fourier synthesis structure :	page = 1 17:22:39 04-Apr-99
The following lines were read as a control data : =>orient 1324 subsys 2<= =>x4lim 0 1 0.04<= =>end<=	Copy of the <i>FOURIE</i> R commands
Non-centrosymmetric super-space group : P63mc(00g)	
Wave length : 0.71073	
Composite part #1	
W(1) = 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000	Basic crystal information
Cell parameters : 4.8996 4.8996 4.3410 90.00 90.00 Modulation vector q(1) : 0.00000 0.00000 1.83870	120.00 Volume: 90.2
Type of map : F(obs) - Fourier	
Limits of sin(th)/lambda for acceptance are : 0.000000 10.000000	Information about the map
Fourier for subsystem #2 will be calculated	
Program for n-dimensional Fourier synthesis structure :	page = 3 17:22:39 04 <i>-2</i> pr-99
Scope of the map : x1 from -0.0500 to 0.5500 step 0.0500 x3 from -0.1111 to 1.1111 step 0.1111 x2 from -0.0500 to 1.0500 step 0.0500 x4 from 0.0000 to 1.0000 step 0.0400	
Orientation: 1324	

Figure 154 (Continued)

Positive peaks

are listed for each step in the x4 coordinate. In this case the step in x4 is 0.04.

rho is the absolute height of the maximum in e/A^3 .

rel is relative height scaled together with the height of the negative peaks.

Searching of positive peaks - maximum number of peaks to be found : 5

			x4= 0.00	00		x 4= 0.040							x4= 0.080						
peak/	ata	m x	У	z	rho	peak/	ato	m x	У	z	rho	peak,	/atc	m x	У	z	rho		
1/	2	0.0000	0.0000	-0.0162	28.89	1/	2	0.0000	0.0000	-0.0086	26.90	1/	2	0.0000	0.0000	-0.0135	29.29		
2/	4	0.5000	0.0005	0.0418	3.89	2/	4	0.4930	0.5070	0.0604	4.30	2/	1	0.3250	0.6500	0.6643	6.21		
3/	3	0.1059	0.8941	0.3963	3.38	3/	1	0.3250	0.6500	0.0616	2.54	3/	4	0.4926	0.5074	0.0985	4.71		
4/	1	0.3250	0.6500	0.8877	1.57	4/	3	0.1000	0.1983	0.3993	2.13	4/	3	0.2785	0.1500	0.4286	2.19		
5/	5	0.2921	0.1500	0.3386	1.49	5/	0	0.2683	0.7317	0.4868	1.94	5/	5	0.2500	0.5130	0.4727	2.16		

		x 4	= 0.120			x 4= 0.160							x4= 0.200						
peak/	'ato	m x	У	z	rho	peak/aton		m x	У	z rh		rho peak/atom			У	z	rho		
1/	2	0.0000	0.0000	0.0065	30.68	1/	1	0.3250	0.6500	0.4240	37.21	1/	1	0.3250	0.6500	0.4528	92.83		
2/	1	0.3250	0.6500	0.7110	12.16	2/	2	0.0000	0.0000	0.0362	23.91	2/	0	0.0000	0.0000	0.8951	13.64		
3/	4	0.4897	0.5103	0.1518	4.67	3/	3	0.3100	0.1500	0.4566	7.11	3/	3	0.3180	0.1500	0.4785	13.14		
4/	5	0.2141	0.5124	0.4560	3.28	4/	4	0.0452	0.5250	0.0097	5.06	4/	4	0.0576	0.5250	0.0393	8.90		
5/	3	0.2952	0.1500	0.4538	3.14	5/	5	0.4346	0.4682	0.2971	4.75	5/	5	0.1134	0.7311	0.0040	7.14		

.

			x4= 0.96	50		x4= 1.000								
peak,	/ato	m x	У	z	rho	peak/	ato	m x	У	z	rho			
1/	2	0.0000	0.0000	-0.0422	30.71	1/	2	0.0000	0.0000	-0.0162	28.89			
2/	4	0.5074	0.4926	0.0106	3.84	2/	4	0.5000	0.0005	0.0418	3.89			
3/	0	0.4188	0.0347	0.3131	2.35	3/	3	0.1059	0.8941	0.3963	3.38			
4/	5	0.3483	0.1750	0.0957	1.57	4/	1	0.3250	0.6500	0.8877	1.57			
5/	0	0.3034	0.1500	0.3806	1.47	5/	5	0.2921	0.1500	0.3386	1.49			

The list of positive peaks written to the file m48									Successfully interpreted peaks This is the list of peaks which have been interpreted with 1 harmonic wave. The rest of the peaks was discarded. The 2 nd peak corresponds to the position of Co atom.								
	These	peaks wer	e successf	ully inter	preted with	1 hannonio	:wave(s)										
		x	У	z	rho	rel			x	У	z	rho	rel				
	-	0 225616	0 (50(20)	0 70007	26.04	207			0 504000	0.000500	0.020057	F F0	44				
	⊥.	0.325616	0.000620	0.766937	36.84	28/		4.	0.504202	0.008529	0.030857	5.59	44				
	2.	0.000000	0.000000	0.956669	24.51	191 =Col		5.	0.338993	0.141536	0.188239	4.06	32				
	3.	0.211490	1.206709	0.459964	7.17	56											

Figure 154 (Continued)

Negative peaks

are listed for each step in the x4 coordinate. In this case the step in x4 is 0.04.

rho is the absolute height of the maximum in e/A^3 .

rel is relative height scaled together with the height of the negative peaks.

Searching of negative peaks - maximum number of peaks to be found : 5 Program for n-dimensional Fourier synthesis structure :

page = 5 17:22:39 04-Apr-99

			x4= 0.00	0		x4= 0.040							x4= 0.080						
peak/atom		m x	x y z		rho	rho peak/atom		m x	У		rho	rho peak/atom		n x	У	z	rho		
1/	0	0.0000	0.0000	0.4823	-13.42	1/	0	0.0000	0.0000	0.4905	-7.37	1/	0	0.5215	0.3322	0.3333	-4.66		
2/	0	0.3305	0.5148	0.9423	-4.63	2/	0	0.5144	0.3485	0.3678	-4.94	2/	0	0.4368	0.5632	0.2723	-4.58		
3/	0	0.5182	0.1513	0.3109	-4.23	3/	0	0.4195	0.5387	0.1398	-4.10	3/	0	0.0283	0.9717	0.4836	-4.12		
4/	0	0.3250	0.6500	0.3881	-2.22	4/	0	0.1690	0.4103	0.3692	-2.66	4/	0	0.2075	0.7925	0.4213	-3.31		
5/	0	0.2311	0.3749	0.3564	-1.84	5/	0	0.3529	0.1750	0.7783	-2.45	5/	0	0.2953	0.7047	0.1704	-3.30		

.

			x4= 0.96	0					x4= 1.00	0	
peak/	ato	m x	у	z	rho	peak/	/atc	m x	у	z	rho
1/	0	0.0000	0.0000	0.4565	-13.80	1/	0	0.0000	0.0000	0.4823	-13.42
2/	0	0.1825	0.5159	0.8627	-5.11	. 2/	0	0.3305	0.5148	0.9423	-4.63
3/	0	0.3250	0.6500	0.2174	-4.87	3/	0	0.5182	0.1513	0.3109	-4.23
4/	0	0.5062	0.3477	0.0833	-3.17	4/	0	0.3250	0.6500	0.3881	-2.22
5/	0	0.4441	0.2250	0.2000	-3.03	5/	0	0.2311	0.3749	0.3564	-1.84

The l	ist of neg	ative peak	s written to	o the file :	m47	This is necessar	List of negative peaks This is the list of the strongest negative peaks. They are not necessarily present in all sections (i.e.for all tested values of x4).								
whic	h are the	first 5 e	xtremes peak	s											
	ж	У	z	rho	rel		x	У	z	rho rel					
1.	0.324998	0.650001	0.194465	-19.02	-148 =Ta	4	0.102622	0.550001	0.367333	-15.57 -121					
2	0 324998	0.650000	0 930019	-16 35	_127	5	_0 000004	0.000002	0 469990	-14 58 -114					
3.	0.119941	0.880055	0.935496	-15.80	-123	5.	0.000001	0.000002	0.100000	11.50 111					

3.5 Advanced Topics

3.5.1 Setting and deleting special modulation functions

Using a special modulation functions should be based on density maps indicating need of this kind of description. Usually the structure is first solved with harmonic modulations functions, which may fail for some atom. Investigation of A_3 - A_4 sections¹ through an electron density map centerd in this atom can show a step-like behaviour which can be described either by a crenel or sawtooth function. Here are the steps how to set a special function in *JANA98*:

- Estimation of initial coefficients of the special function from an appropriate contour section. For a **crenel function** (see page 128) we need the center (osin1) and the width (o). For a **sawtooth function** (see page 124) we need the center(xcos\$), the width(ycos\$) and the A₃ coordinate (xsin\$, ysin\$ or zsin\$²). All of them can be easily found in a *CONTOUR* plot using the Locator.
- The initial parameters must be written to m40 with a text editor. For a **crenel function** (see example in Figure 77, page 129) s_0 and w_0 should be 1, 0 and 0sin1 have values read from the contour plot, 0cos1 is always 0. For a **sawtooth function** (see example in Figure 74, page 126) s_p and w_p should be 1, xsin\$, ysin\$, zsin\$, xcos\$ and ycos\$ have values read from the contour plot and zcos\$ is always 0. In both cases the user should also set the refinement keys because they are not automatic.
- The initial function can be checked with *CONTOUR* with Options->Define atom to be indicated in map. It is especially useful when setting a sawtooth function.
- Refinement of the initial parameters.
- The special function can be further combined with harmonic position modulation functions. For a **crenel function** we simply add a harmonic position wave by *EDITM40*. For a **sawtooth function** the special function is always saved in m40 like the last position modulation wave. Therefore to add (by *EDITM40*) the first harmonic wave we set the number of modulation waves to 2. If the special function is not defined in a full interval the harmonic functions need to be orthogonalized. This can be done through the *EDITM40* interface shown in page 170.
- Deleting of special function cane be done by *EDITM40* by setting number of relevant waves to 0.

The figures below show example of setting a crenel and sawtooth modulation function.

¹ Special functions are only available for 3+1 dimensional structures.

² For each of them we need a different section definition $(A_1-A_4, A_2-A_4 \text{ and } A_3-A_4)$.

(b) The contour plot with the initial crenel modulation function indicated by a dashed line.

(c) The position modulation function calculated as combination of the crenel function and three orthogonalized harmonic modulation waves.

Figure 156 Setting a sawtooth function

(a) Setting initial parameters of a sawtooth function from a contour plot.

(b) The position modulation function calculated as combination of the sawtooth function and one orthogonalized harmonic modulation wave.

3.5.2 Commensurate structures

This part is being prepared for the JANA2000 manual.

Structure Interpretation

This chapter describes basic programs of JANA98, their input and output files and the control keys.

IN THIS CHAPTER:

PROGRAM CONTOUR	.291
PROGRAM <i>DIST</i>	.311
PROGRAM <i>GRAPHT</i>	.331
	PROGRAM CONTOUR PROGRAM DIST PROGRAM GRAPHT

Next : References, page 341. Previous chapter: Structure Solution and Refinement, page 91

4 Structure Interpretation

This part describes structure interpretation programs of *JANA98*. *CONTOUR* is used for visualisation of electron density maps and probability density functions. *GRAPHT* plots positional, temperature and occupation parameters and derived entities as function of the t coordinate. *DIST* is used for calculation of distances, torsion angles and best planes.

4.1 Program CONTOUR

Input: [m40],m50,[m81] Output: HPGL file, PostScript file, PCX file or SciAn file M50 control keywords: none

Figure 157 The basic Window of CONTOUR

4.1.1 Description of CONTOUR

CONTOUR produces contours plots of Fourier maps in the direct space for regular and modulated structures. For regular and four dimensional structures it can also make maps of probability density function (p.d.f.) and joint probability density function (j.p.d.f.) based on refined parameters including Gram-Charlier expansion terms up to 6th order. *CONTOUR* doesn't make 3d visualization of electron density, but it can generate input files for program SciAn.

CONTOUR is a fully interactive program and doesn't need any control commands in the m50 file. Like in other programs of *JANA98* its functionality varies for ordinary and modulated structures.

We recommend reading of FOURIER (page 265) before this chapter.

4.1.2 Drawing R₃-R₃ and A₃-A₃ sections stored in the m81 File

The tool "Fourier maps from m81 file" allows plotting of two dimensional sections by an electron density map stored in the m81 file by FOURIER. The sections orientation and the order they are stored in m81 are defined by FOURIER control commands (see page 273).

After selecting "Fourier map(s) from m81 file" the program automatically plots the first section and activates operating buttons on the right of the basic window. Their functions are common for most types of CONTOUR tasks.

Figure 158 The Operating Buttons of the CONTOUR Window

4.1.3 Contour options and Contour tools

The Contour options are common for m81 plots, general sections and probability density plots. The menu differs for ordinary and modulated structures.

Figure 159 Contour options for ordinary structures

Change <u>c</u> ontours definition
Define summation limits
Define <u>a</u> toms to be indicated in maps
Draw potential curves
Locator
Search for $\underline{e}xtremes$ - in selected region
Search for extremes - in whole map

- *Change contour definitions* sets the basic properties of the contour plot (see Figure 161).
- Define summation limits is used for superposition of sections (see page 299).
- *Define atoms to be indicated in maps* is used for selection of atoms which will be marked in the plots by a cross.
- *Draw potential curves* plots electron density curves and potential curves defined by a section through selected maxima see Figure 164 Figure 166.
- *Locator* identifies atoms being near to the current pointer position within a user defined limit see Figure 167.
- Search for extremes in selected regions searches maxima and minima in a region selected by mouse in the current section see Figure 163.
- *Search for extremes in whole map* searches maxima and minima in the whole map (without defining an area by mouse).

Figure 160 Contour options for modulated structures

- *Change length of additional vector* is used for scaling sections containing x4 coordinate see page 308.
- *Transform x4 map to t-maps*. The difference between x4 maps and t-maps is explained in page 273. Example of a t-section is in Figure 174.

Figure 161 The Contour Definitions Menu

(a) With uniform contours

The units of the contour intervals are $e/Å^3$.

The contour intervals are set automatically with respect to the highest maximum found in the map. The maxima from all layers are taken into account. If there is a strong maximum in some layer, the default contour interval can be too rough for the rest of the sections and needs to be changed.

	Contour parameters	
Ì	Extremals of the map(s) : -7.218707 152.7375	
	Uniform contours Explicite contours	
	Positive contours 15.2737	5_
	<u>N</u> egative contours	
	Draw positive 🔽 Positive cutoff 152.737	5
	Draw negative Negative cutoff	
	Draw contours	
	Esc Ok	
	↓	
	The negative maxima (When selected) are plotted by dashed linesThe cutoff interval can supp strong maxima in order to ge and shorter HPGL or P	ress plotting of very t better performanc 'ostScript files.

(b) With explicit contours

The contour to be plotted are explicitly listed in the text box.

Contour parameters
Extremals of the map(s) : -7.218707 152.7375
Uniform contours Explicite contours
Positive contours
<u>N</u> egative contours
Draw positive Positive cutoff
Draw negative Negative cutoff
Draw contours -5 0 10 25 50 75 100 125 150
Esc Ok

Figure 162 CONTOUR: A Strong Maximum Affected by the "Positive Cutoff" Limit.

Figure 163 Searching for extremes

The area which the program searches for extremes is defined by conjunction of up to 5 rectangles.

The search results:

(Rho is the peak height in $e/Å^3$)

			Max ima			
	Local		Fr	actional		Rho
1.400	-0.018	0.000	0.1285	0.5163	0.3211	25.22
0.000	0.003	0.000	0.0666	0.5765	0.2958	24.11
-0.725	1.198	0.000	0.0169	0.6506	0.3377	17.25
			Ok			

Figure 164 Defining electron density and potential curves

The section through the maxima is defined by a polyline drawn to the contour plot.

Figure 165 Example of an electron density curve

Figure 166 Example of a potential curve

These curves play an important role in a study of anharmonic effects in the crystal. The program can estimate errors either by extrapolating from the error map (if calculated in advance) or directly by applying the Monte Carlo method for the selected path.

Figure 167 Usage of locator

The locator mode is activated by choosing "Locator" from the Options menu and finished by pressing the second mouse button. The atoms found near to the locator position are listed together with their symmetry codes.

4.1.4 Drawing General sections

The m81 file contains a set of two dimensional sections by electron density map. The sections are calculated by *FOURIER* according to the orient control command. The section orientation is not arbitrary because each plane has to be parallel with two basic cell vectors.

CONTOUR allows to recalculate the sections to be parallel with an arbitrary user defined plane. This plane is called the *general section plane* and can be defined with help of the *Plane form*. Calculation of general sections is possible for R_3 - R_3 and A_3 - A_3 section types.

Figure 168 The Plane form of CONTOUR

This form is used for the definition of a general section plane. The symbols *s*1,*s*2,*s*3,*o*1,*o*2,*o*3 will be used in the next figure.

The plane is defined by three points which can be entered like atom names, by coordinates or as one point or atom and two vectors from that point. The atom names may contain molecular position indicators and internal symmetry codes (see § 1.2.6 page 27).

If the map is calculated by *FOURIER* in the whole independent volume of the 3+d space, the sections can be arbitrarily expanded or translated. The area of the general plane is called **scope** and is defined by the length (in Å) of x and y plot axes in the Scope text box. The third component defines the "width" of the section in Å along the z plot axis. The number of sections perpendicular to z is equal to the width divided by the interpolation step.

The option " 1^{st} point put to" defines where the first point defining the plane will appear in the contour plot. With (0,0,0) the first point is equivalent with the origin in the lower left corner. Otherwise it is translated according to Figure 169 and Figure 170.

Figure 169 The scope definition and contour plot orientation

Cartesian axis used by CONTOUR for plotting are e1, e2 and e3. The measurement unit is Å. The general section is defined by three points AT1, AT2 and AT3 entered in the Plane form. The line AT1 - AT2 is parallel to e1.

The section dimensions(Å) are s1, s2 and s3. The position of AT1 in the plotting axes is (o1, o2, o3). The first plotted section goes through AT1.

The next figure shows a general section defined by three points AT1, AT2 and AT3 calculated with scope s1=8Å, s2=10Å and s3=1Å. The position of AT1 is (4,5,0.5). Because the structure fragment is not exactly planar, all sections in the e3 direction are superimposed by means of the "Define summation limits" option of the Contour options menu. Plotting of the strongest maximum was suppressed by the "positive cutoff" limit entered in the Contour definitions menu.

Figure 170 An Example of the General Section for Ordinary Structure

Figure 171 The procedure to prepare the general section from Figure 170.

The last figure shows the section after editing the contour definitions. The contours of the largest maximum are truncated by setting the "Positive cutoff" to 30.

General section for modulated structures

The way of a general plane definition is the same like for ordinary structures. Summation can be done not only for e_3 axis but also for remaining directions (x4, x5, x6).

Figure 172 The Contour Options Menu for Modulated Structures

Change contours definition
Define summation limits
Define atoms to be indicated in maps
Draw <u>p</u> otential curves
Locator
Search for extremes - in selected region
Change length of additional vectors
Transform x4-maps to t_{-} maps

Figure 173 The Contour Summation Limits Form for Modulated Structures

For modulated structures the x4 maps (The A_3 - A_3 section type, see page 273) can also be transformed to t-maps (i.e. R_3 - R_3 section type). The order of steps is important because

- Summed maps cannot be transformed to t-maps
- t-maps cannot be transformed back to x4-maps

With x4 maps the geometry of the structure may be deformed but the sections are periodic. With t-maps the geometry is the same like in the real space but the sections are no longer periodic. This is illustrated in the following figures.

Figure 174 An Example of the General Section for Modulated Structure

(a) The sections were transformed to t-maps and summed along the e3 direction. This is plot for t=0.

(b) The result of the additional summation along the x4 direction.

Figure 175 Four cells of an A_3 - A_3 section. The plot is periodic.

Figure 176 Four cells of a R_3 - R_3 section. The plot is not periodic.

4.1.5 Drawing A₃-A₄ sections

If the 2-dimensional sections prepared by Fourier contain the x4 (x5,x6) axis CONTOUR does not open the main menu and plots immediately the first section. For this type of sections

CONTOUR allows to draw modulation functions for one or more atoms. The electron density map should be calculated in a volume centerd in the atom in question.

The next example illustrates usage of Contour for plotting of modulation functions.

Figure 177 Plotting of A_3 *-* A_4 *sections*

In this example the Fourier map is calculated in the vicinity of atom O3a of a testing four dimensional structure. The scope 0 0 2 means that the calculated sections go exactly through x(O3a) and y(O3a) and extend ± 1 Å around z(O3a). The fourth coordinate varies from 0 to 1. The first two axes in the Map orientation form comprises the fourth coordinate which therefore appears in the plotted sections.

The change of the length of additional vector (the x4 coordinate in this case) is made only like an exercise. The default value 2 Å is usually convenient.

4.1.6 Drawing (joined) probability density functions

The program *CONTOUR* allows to plot and analyse the *probability density function* (p.d.f.), which makes visualization of the refined "shape" of the selected atom. The

$$p.d.f.(\mathbf{u}) = p.d.f._{har}(\mathbf{u})[1 + (1/3!)C^{ijk}H_{ijk}(\mathbf{u}) + (1/4!)D^{ijkl}H_{ijkl}(\mathbf{u}) + (1/5!)E^{ijklm}H_{ijklm}(\mathbf{u})...]$$
(E 69)

where $H_{ij...n}$ are Hermite polynomials, C,D,E,F are anharmonic displacement tensors (see page 122).

For more complex picture of the density the individual *p.d.f.*'s have to be combined. The resulting function is called *joined probability density function* (*j.p.d.f*).

CONTOUR makes also possible calculation and drawing of an error map that takes into account the covariation matrix. This map is calculated by a Monte Carlo method and may be time consuming.

JANA98 makes only 2-dimensional maps. However, CONTOUR allows saving a 3d map in the "stf" format, which can be used as an input to $SciAn^1$.

¹ See http://www.scri.fsu.edu/~lyons/scian/ for more information.

4.2 Program DIST

Input: m40, m50, [m47],[m48] Output: m61,dis M50 control keywords: the section between the keywords dist and end

4.2.1 Description of DIST

DIST calculates distances, angles, torsion angles and best planes for atoms present in the m40 file. It can also use the coordinates of Fourier maxima and minima stored by *FOURIER* in the m47 and m48. For modulated structures *DIST* calculates distances and angles as a function of the t coordinate.

The results are written to a wide listing jobname.dis in the newspaper columns form and also to m61 in one column. The wide listing is accessible by Listing viewer (see page 41). The listing and m61 are complementary (see page 330).

If *DIST* is started with default options it calculates the distances to each atom in m40. The minimum distance limit is 0 and the maximum distance is taken from m50 according to the chemical type (see dmax key, page 77). With the default setting *DIST* does not list the full coordination of each atom because it calculates each distance only once. In the case of modulated structures the distances are listed for 10 values of t coordinate.

The following paragraphs contain description of the SetCommands interface for *DIST*. The options set by the user are transformed to commands and written to m50. The syntax of the resulting commands is also explained.

Figure 178 The SetCommands menu for DIST

4.2.2 Basic commands

In the Basic commands form the user chooses bond limits, calculation of angles, type of output and whether the Fourier peaks are to be included in the calculation. See Table 28 for details.

The lower bond limit is the same for all atoms. The upper bond limits can be overall or dependent on the chemical type of atoms. If two atoms have different upper bond limit the calculation is based on the average value of these limits.

If the upper bond limit is set according to chemical types the upper bond limit of Fourier peaks is based on the first chemical type listed in m50.

Basic commands Title Round input coordinates Calculate angles List full coordination d(min) 0 d(max) according to chemical type \checkmark d (max) Include peaks from Fourier calculation none minima both Esc Ok

Figure 179 The Basic Commands

4.2.3 Selection commands

DIST calculates coordination for each atom flagged like a *central atom*. In the listing the central atoms are surrounded by a box from asterisks. With the default setting all atoms from m40 (and optionally m47 and m48) are considered central atoms. This can be changed by Selection form. The Fourier peaks are not present in this form so that if they are included to the calculation they are all used as central atoms.

The	e central at	coms for distanc	e calculation
Nala	Na2a	Na3a	Ca 02a
013a	013b]	
Include – at	com type	Include	Include - atom <u>n</u> ame
List		\checkmark	•
Select	<u>a</u> 11	Esc Ok	Refresh

Name	Syntax and Description
dmin dmax	dmin numberdmax numberDefault value: dmin 0The limits for calculation of distances in Å. Only distances and anglesbetween dmin and dmax are calculated for each central atom. If dmax isomitted the upper distance limit is determined by the chemical type of the atom and taken from m50 (see dmax key, page 77).
include	<pre>include flag Default value: include 0 Includes the Fourier peaks to the calculation flag = 0 the Fourier peaks are not used flag = 1 includes the m48 file with positive Fourier peaks flag = 2 includes the m47 file with negative Fourier peaks flag = 3 includes both m47 and m48 file</pre>
angles	angles flag Default value: angles 0 Turns on/off calculation of angles. flag = 0 The angles are not calculated flag =1 The angles are calculated
fullcoor	fullcoor flag Default value: fullcoor 0 flag = 0 Each distance will be calculated and printed only once. flag = 1 Full coordination will be calculated and printed for each central atom.
round	<pre>round flag Default value: round 0 flag = 0 Without rounding flag = 1 The distances and e.s.d.'s will be rounded to the first significant</pre>

Table 28Basic commands of DIST in the m50 file

Table 29	Selection	commands of DIST	in the m50 file
----------	-----------	------------------	-----------------

Name	Syntax and Description
select	select atoms Default value: select * Select the central atoms for the calculation. The wildcards are permitted. If the select command is not present in m50 all atoms are used as central ones.

4.2.4 Torsion angles and best planes

The calculation of torsion angles and best planes is intended for standard structures. In case of modulated structures only average positions of atoms are used.¹

The angles and planes are defined by atom names from m40. The wild cards are not allowed but the internal symmetry codes (see page 27) are accepted.

Torsion angle is defined by four atoms at1, at2, at3 and at4 from m40. It is the angle between vectors at2-at1 and at3-at4 projected along at2-at3.

Figure 181 The Torsion Angles Form

▼ 2/1 torsion angle ▲				
<u>1</u> st atom	<u>2</u> nd	atom	<u>3</u> rd atom	<u>4</u> th atom
C1	C2	C	22	C3
New		Make clone		Add
Disable	•	Delete		Rewrite
		Esc 0	k	

Best plane is defined by the atoms in the first line of the Best Planes form. The plane is calculated as the least square plane having minimal distances to these atoms. Each atom involved in the iteration process is taken with a weight derived from the e.s.d. of the distance between the atom and the plane. *DIST* then prints distances between the plane and the atoms listed in both lines of the form. *DIST* calculates also dihedral angles between all calculated best planes.

¹ We can expand the structure and save it in the SHELX format with "Transformation of m40 and m50 to various formats" of *EDITM40*, than import the expanded area back to *JANA98* by Tools->Transfer files from SHELX and calculate torsion angles and best planes for modulated positions.

Figure 182 The best plane form

Table 30Torsion angles and best planes commands of DIST in the m50 file

Name	Syntax and Description
torsion	torsion at1 at2 at3 at4 Sets calculation of torsion angle. It is defined as the angle of vectors at2-at1 and at3-at4 projected along at2-at3. At1, at2, at3 and at4 are names of atoms from m40. The wild cards are not allowed but the internal symmetry codes (see page 27) are accepted. The command can be repeated to calculate several torsion angles.
plane	 plane n1 n2 at2 at2 atn2 Sets calculation of best plane. The plane is defined by names of atoms from m40. First n1 atoms of the list are used for the definition of the plane. The distances from the plane are calculated for all atoms of the list (n2 atoms). The plane command must appear after the commands controlling distances and angles calculation. The list of atoms can continue on arbitrary number of lines The command can be repeated to calculate several best planes If there is more than one best plane defined <i>DIST</i> calculates angles between them.

4.2.5 Modulation commands

The distances and angles for modulated structures are calculated as function of t coordinate. The function is calculated for "Number of t values" points and printed for each "Print t period". For commensurate structures the initial step is t_0 and the number of steps is given number of points where the function is defined.

In case of composite structure the coordination of central atoms can substantially vary with change of t. For this reason *DIST* allows to print comprehensive tables of the whole coordination as a function of t.

If some atoms in the structure are occupationally modulated the user may need to define "Occupancy calculation limit". The distances are calculated only for t values where occupancy is above the limit. The "Occupancy indication limit" means that if the occupancy of an atom for some value of t is below this limit the atom will be marked in the listing by "*".

Figure 183 Modulation commands

Modulation commands						
Number of t values	100					
<u>I</u> nitial t	0					
Print t period	10					
Make coordination t-tables	\checkmark					
Occupancy <u>c</u> alculation limit	0					
Occupancy in <u>d</u> ication limit	0.1					
Esc Ok						

Name	Syntax and Description
tzero	tzero number Default value: tzero 0 The initial value of t . The default value is 0. This command has no effect for commensurate structures.
nooft	<pre>nooft number1 Default value: nooft 100 The number of equidistant t values used for calculation of distances and angles. The distances and angles are calculated for number1 of t but only each number2th of them is printed to the listing. Number2 is defined by each command. Implicitly number1=100, number2=10. This command has no effect for commensurate structures.</pre>
each	each number2 Default value: each 10 The step for printing of the distances and angles as a function of t. The distances and angles are calculated for number1 of t but only each number2 th of them is printed to the listing. Number1 is defined by nooft command. Implicitly number1=100, number2=10. This command has no effect for commensurate structures.
ttables	ttables flagDefault value:ttables 0Sets output of the comprehensive table of coordination as a function of the t coordinate. This command is especially useful for composites.flag = 0offflag = 1 on
occut	occut number Default value: occut 0 The lower limit of occupation for which the distances will be calculated. This command is useful for structures with occupation modulation.
occind	occind number Default value : occind 0.1 The distances of atoms with occupation less than number will be indicated in the <i>DIST</i> listing by "*". This command is useful for structures with occupation modulation.

Table 31Modulation commands of DIST in the m50 file

4.2.6 Dist listing of an ordinary structure

Figure 184 Simple DIST Listing for Ordinary Structure

Calculating of distances, angles, torsion angles and best planes structure : cro2h2o								page = 1 09:03:54 07-Mar-97				
Nan	-centrosym	metric sp	ace group : F	63								
Wav	e length :	0.7107	73									
Cel	l paramete	rs	: 5.5000	5.5000	14.1630	90.00	90.00	120.00	Volume	: 3	71.0	
Lis	t of centr	ing vecto	urs :									
0	.000000 0	.000000	0.000000									
Sym	metry oper	ators :										Racio Crystal
	х у	z										Dasic Crystal
x	-y x1	/2+z										information
	-у х-у	z										
	-x -y1	/2+z										
-x	+у -х	z										
	у -х+у1	/2+z										
Ato	mic scatte	ring tabl	les :									
Fe	7.200	0.301	0.845	25.990	25.310	23.683	21.819	20.045	18.363	16.748	15.228	
				13.838	12.596	11.506	10.563	9.758	9.079	8.510	8.036	
				7.640	7.307	7.022	6.773	6.549	6.342	6.147	5.959	
				5.776	5.596	5.418	0.000	0.000	0.000	0.000	0.000	
Si	2.800	0.072	0.071	13.998	13.436	12.134	10.767	9.675	8.861	8.230	7.696	
				7.201	6.718	6.240	5.770	5.314	4.879	4.472	4.095	
				3.750	3.439	3.162	2.915	2.699	2.510	2.345	2.202	
				2.077	1.969	1.875	0.000	0.000	0.000	0.000	0.000	
0	18.000	0.008	0.006	7.999	7.798	7.246	6.472	5.623	4.808	4.089	3.489	
				3.006	2.628	2.337	2.115	1.946	1.816	1.715	1.634	
				1.568	1.512	1.463	1.419	1.377	1.337	1.298	1.260	
				1.221	1.183	1.145	0.000	0.000	0.000	0.000	0.000	
н	8.000	0.000	0.000	1.000	0.960	0.854	0.713	0.568	0.438	0.331	0.248	
				0.184	0.138	0.103	0.078	0.060	0.046	0.036	0.028	
				0.022	0.018	0.014	0.011	0.009	0.007	0.006	0.005	
				0.005	0.004	0.004	0.000	0.000	0.000	0.000	0.000	
The	following	lines we	ere read as a	control d	ata :				_			
=>d =>e	min 0 dmax nd≪=	: 3<=								Th	ne <i>DIST</i> c	ommands
The	The stem silfs											
The	The atom Silfe deleted from the distance calculation as coincides from with : Sil The atom Silfe deleted from the distance calculation as coincides from with : Sil											

List of atoms which will be used for the calculation.

Atoms with zero occupation or the ones coinciding with other atoms are not used. Atoms of molecules (if present) are expanded to molecular positions and their names are extended by the discriminator characters (see § 1.2.2 page A-14).

		fractional							cartegian				
no	atam		xf	vf	zf	signt	sigyf	sigzf	x	v	z	Uiso	
1	Fel	+	0.332516	0.000384	0.000000	0.000000	0.000000	0.000000	1.8278	0.0018	0.0000	0.0051(0)
2	Si1	+	0.000000	0.000000	0.302204	0.000000	0.000000	0.000000	0.0000	0.0000	4.2801	0.0060(0)
4	Si2	+	0.333333	0.666667	0.300307	0.000000	0.000000	0.000000	0.0000	3.1754	4.2532	0.0054(0)
6	01	+	0.336187	0.336928	0.072867	0.000000	0.000000	0.000000	0.9225	1.6048	1.0320	0.0096(0)
7	02	+	0.000000	0.000000	0.426187	0.000000	0.000000	0.000000	0.0000	0.0000	6.0361	0.0081(0)
8	03	+	0.333333	0.666667	0.426735	0.000000	0.000000	0.000000	0.0000	3.1754	6.0438	0.0095(0)
9	04	+	0.333333	-0.3333333	-0.072572	0.000000	0.000000	0.000000	2.7500	-1.5877	-1.0278	0.0105(0)
10	05	+	-0.328397	-0.212873	0.263519	0.000000	0.000000	0.000000	-1.2208	-1.0139	3.7322	0.0215(0)
11	05'	+	-0.327218	-0.080768	0.268809	0.000000	0.000000	0.000000	-1.5776	-0.3847	3.8071	0.0215(0)

Figure 184 (Continued) nation of atoms will be printed

Full coordination of atoms will be pr									
Distances will be calculated									
for atom : Fe from	1 0.000 to 3.000								
for atom : Si from	1 0.000 to 3.000								
for atom : 0 from	1 0.000 to 3.000								
for atom : H from	1 0.000 to 3.000								

Interpretation of the control commands

1st page of distances printed in newspaper columns

Calculating of distance structure : cro2h2o	es, angle	as, torsion angles and be	ast plane	s		09:03:5	page = 2 407-Mar-97
		05 1.7144 (0)	05' 2.7577 (0)	* atom 05	*
		05' 1.7380(0)	05' 2.7577 (0)	*****	***
		05' 1.7380(0)	*		Sil 1.6789(0)
		05' 1.7380(0)	*******	***	si2 1.7144(0)
*****	***	*		* atom 03	*	01 2.9512(0)
* atom Fel	*	*******	***	*****	***	02 2.7975(0)
******	***	* atom 01	*	Fe1 2.1077(0)	03 2.8304(0)
01 2.1105(0)	*******	***	Fel 2.1077(0)	05 2.8290 (0)
01 2.0932(0)	Fel 2.1105(0)	Fel 2.1077(0)	05 2.7487 (0)
01 2.1080(0)	Fel 2.1080(0)	Si2 1.7906(0)	05 2.8290 (0)
02 2.1056(0)	Fe1 2.0932(0)	01 2.7611(0)	05 2.7487 (0)
03 2.1077 (0)	02 2.7825(0)	01 2.7611(0)	05' 0.7272(0)
04 2.1056(0)	03 2.7611(0)	01 2.7611(0)	05' 2.3494(0)
*		04 2.7497 (0)	05 2.8304(0)	05' 2.4407(0)
******	***	05 2.9512(0)	05 2.8304(0)	*	
* atom Sil	*	05' 2.8145(0)	05 2.8304(0)	******	***
******	***	*		05' 2.7973(0)	* atom 05'	*
02 1.7560(0)	*******	***	05' 2.7973(0)	******	***
05 1.6789(0)	* atom 02	*	05' 2.7973(0)	Sil 1.6913(0)
05 1.6789(0)	******	***	*		Si2 1.7380(0)
05 1.6789(0)	Fel 2.1056(0)	*****	***	01 2.8145(0)
05'1.6913(0)	Fe1 2.1056(0)	* atom 04	*	02 2.7577 (0)
05' 1.6913(0)	Fel 2.1056(0)	*******	***	03 2.7973 (0)
05' 1.6913(0)	Si1 1.7560(0)	Fe1 2.1056(0)	05 0.7272(0)
*		01 2.7825(0)	Fe1 2.1056(0)	05 2.4407 (0)
******	***	01 2.7825(0)	Fe1 2.1056(0)	05 2.3494 (0)
* atom Si2	*	01 2.7825(0)	01 2.7497 (0)	05' 2.9095(0)
******	***	05 2.7975(0)	01 2.7497 (0)	05' 2.8125(0)
03 1.7906(0)	05 2.7975(0)	01 2.7497 (0)	05' 2.9095(0)
05 1.7144(0)	05 2.7975(0)	*		05' 2.8125(0)
05 1.7144(0)	05' 2.7577 (0)	*****	***	*	

One column in detail: **********

* atom Fel	*	central atom
******	****	
01 2.1105(0)	The neighbouring atoms found between the distances limits
01 2.0932(0)	(atom name , distance in Å, e.s.d if present in the m40file)
01 2.1080(0)	
02 2.1056(0)	
03 2.1077 (0)	
04 2.1056(0)	
*		

Figure 185	DIST listing of	an ordinary structure	with angles
------------	-----------------	-----------------------	-------------

The beginning of the listing is similar like in the						
previous example.						

*****	****	C6 68.52	(19)	C1 53.80(20)	H1(n2) 82.81(18)
* atom Zn	*	C7 43.95	16)	C2 29.58(21)	C1 2.9798(69)
******	****	C12 19.48	15)	C3 26.03 (21)	C2 28.89(20)
Br 2.4811(8)	H1(n1) 96.09	15)	C4 45.87 (20)	C3 76.63(22)
01 121.44(12)	H1(n1) 39.67	14)	C5 72.45(20)	C4 99.64(20)
N1 96.54(13)	H2(n1) 68.01	15)	C6 102.17(20)	C5 126.10(20)
N2 107.84(13)	H1(c1) 92.87	17)	C7 116.76(17)	C6 142.84(17)
N3 98.18(13)	H1(c1) 48.30	17)	Cl2 127.91(16)	C7 134.73(17)
Cl 106.21(14)	H1(c2) 141.98	18)	H1(n1) 89.92(18)	C12 119.29(18)
C2 97.26(15)	H1(c3) 161.87	18)	H1(n1) 90.80(15)	H1(n1) 41.26(17)
C3 90.50(13)	H1.(c5) 124.21	18)	H2(n1) 93.26(18)	H1(n1) 78.07(16)
C4 95.48(11)	H1(n2) 110.46	16)	H1(c1) 53.19(19)	H2(n1) 41.23(17)
C5 84.73(13)	NL 2.1213	45)	H1(c1) 161.00(19)	H1(c1) 16.21(19)
C6 108.46(11)	N2 81.05	(19)	H1.(c2) 40.00(19)	H1(c1) 107.20(18)
C7 117.74(10)	NB 164.05	18)	H1(c3) 38.59(19)	H1(c2) 38.23(20)
C12 121.51(10)	Cl 27.41	19)	H1.(c5) 78.09(19)	H1(c3) 79.83(21)
H1 (n1) 76.56 (11)	C2 53.89	(19)	H1.(n2) 20.53(16)	H1(c5) 127.77(20)
H1 (n1) 159.72 (8)	C3 102.28	21)	N3 2.0810(<u>4</u> 8)	H1(n2) 56.92(18)
H2(n1) 108.08(11)	C4 126.66	19)	Cl 139.73 (19)	C2 2.9340 (76)
H1(c1) 122.41(13)	C5 152.44	19)	C2 117.77 (21)	C3 48.44(22)
H1(c1) 75.06(13)	C6 152.09	19)	C3 71.53(22)	C4 73.11(20)
H1(c2) 79.61(14)	C7 130.21	17)	C4 45.64(20)	C5 98.58(21)
H1(c3) 73.21(13)	C12 107.10	(17)	C5 25.33 (21)	C6 131.49(20)
H1.(c5) 67.23(12)	H1(n1) 20.17	17)	C6 20.92 (22)	C7 141.36(17)
H1 (n2) 128.08 (11)	H1(n1) 78.13	15)	C7 45.49(19)	C12 139.82(18)
01 1.9574(39)	H2(n1) 20.19	16)	C12 69.99(19)	H1(n1) 60.39(18)
N1 88.11(16)	H1(c1) 35.07	18)	H1(n1) 173.81(18)	H1(n1) 95.24(16)
N2 130.43(17)	H1(c1) 79.95	17)	H1(n1) 89.99(16)	H2(n1) 70.03(18)
N3 89.44(18)	H1.(c2) 56.34	19)	H2(n1) 151.65(17)	H1(c1) 36.76(19)
Cl 103.83(18)	H1(c3) 101.39	20)	H1(c1) 129.45(18)	H1(c1) 132.42(19)
C2 129.53(18)	H1(c5) 147.66	19)	H1(c1) 109.81(19)	H1(c2) 17.65(20)
C3 145.33(18)	H1.(n2) 83.29	18)	HL(c2) 120.69(20)	H1(c3) 51.15(22)
C4 127.12(17)	N2 2.1581	48)	HL(c3) 77.16(22)	H1(c5) 98.89(20)
C5 114.77 (18)	N3 88.60	20)	H1.(c5) 38.21(19)	HL(n2) 42.43(19)

One column in detail:

******	****	
* atom Zn	*	The central atom
*****	****	
Br 2.4811(8)	The Zn-Br distance (Å) and its e.s.d.
01 121.44(12)	The Br-Zn-O1 angle (°) and its e.s.d.
N1 96.54(13)	Another Br-Zn-* angles
N2 107.84(13)	
N3 98.18(13)	
Cl 106.21(14)	
C2 97.26(15)	
СЗ 90.50(13)	
C4 95.48(11)	
C5 84.73(13)	
C6 108.46(11)	
C7 117.74(10)	
C12 121.51(10)	
H1(n1) 76.56(11)	
H1(n1) 159.72(8)	

Figure 186 DIST listing with best planes and torsion angles

This information is printed at the end of the listing. It is the same for both ordinary and modulated structures.

4.2.7 Dist listing of an incommensurate structure

Figure 187	DIST Listing	of a	modulated	structure
------------	--------------	------	-----------	-----------

The	beginning of the previo	e listing is sin ous examples	milar like in the S.					
		0.400	3,2358	0.300	2,7093	0.200	2,9891	
		0.500	3,1429	0.400	2.7471	0.300	2.9456	
		0.600	3,1298	0.500	2.7447	0.400	3,1531	
		0.700	3,1268	0,600	2.7093	0.500	3,5341	
*******	*****	0.800	3.0497	0.700	2.6960	0,600	3,8950	
* atom K	*	0.900	2.9425	0.800	2.7127	0.700	4.0819	
*******	*****	1.000	2.9457	0.900	2.7250	0.800	4.0542	
Fla	3.1217(23)			1.000	2.7128	0,900	3.8483	
ave	3.1331	F2a	2.8314 (25)			1.000	3.5408	
min	2.9227	ave	2.8402	03a	. 3.2621(28)			
INEX	3.3414	min	2,7629	ave	3.2763	*		
0.000	3.3336	max	2.9260	min	2.9282	********	*********	****
0.100	3.2964	0.000	2.7661	mex	3.6887	* atom Asa		*
0.200	3.1124	0.100	2.7669	0.000	3.6789	*******	*********	****
0.300	2.9471	0.200	2.8013	0.100	3.6382	Fla	. 1.7332(23)
0.400	2.9413	0.300	2.8589	0.200	3.4357	ave	1.7392	,
0.500	3.0480	0.400	2,9075	0.300	3,1978	min	1.7337	
0.600	3,1262	0.500	2,9260	0.400	3.0205	mex	1.7436	
0.700	3.1300	0.600	2,9086	0.500	2.9355	0.000	1.7397	
0.800	3.1421	0.700	2.8658	0.600	2.9474	0.100	1.7429	
0.900	3.2340	0.800	2.8211	0.700	3.0655	0.200	1.7401	
1.000	3.3336	0.900	2.7871	0.800	3.2789	0.300	1.7381	
		1.000	2.7661	0.900	3.5245	0.400	1.7377	
Fla	2,7594 (26)			1.000	3.6789	0.500	1.7390	
ave	2.7629	F2a	. 2.7049 (26)			0.600	1.7432	
min	2.7041	ave	2.7111	03a	3,5183(30)	0.700	1.7417	
mex	2.8149	min	2.6703	ave	3.5207	0.800	1.7353	
0.000	2,8138	max	2.7523	min	2.9332	0,900	1.7343	
0.100	2.7960	0.000	2.7100	max	4.0957	1.000	1.7397	
0.200	2.7753	0.100	2.6737	0.000	2.9469			
0.300	2.7657	0.200	2.6799	0.100	2.9867	Fla	1.7332(23)
0.400	2.7498	0.300	2.7124	0.200	3,2179	ave	1.7392	23,
0.500	2.7198	0.400	2.7250	0.300	3.5357	min	1.7337	
0.600	2.7041	0.500	2.7130	0.400	3.8441	mex	1.7436	
0.700	2.7243	0.600	2.6962	0.500	4.0522	0.000	1.7404	
0.800	2.7688	0.700	2.7088	0.600	4.0831	0.100	1.7436	
0,900	2,8061	0.800	2.7443	0.700	3,8995	0.200	1.7398	
1.000	2,8138	0.900	2.7475	0.800	3.5404	0.300	1.7377	
		1.000	2.7100	0.900	3.1581	0.400	1.7380	
Fla	2.7594 (26)			1.000	2,9469	0.500	1.7394	
ave	2.7624	F2a	. 2.8314 (25)			0.600	1.7427	
min	2.7041	ave	2.8411	03a	. 3.2621(28)	0.700	1.7409	
mex	2.8149	min	2.7629	ave	3.2715	0.800	1.7351	
0.000	2.7656	max	2.9260	min	2.9282	0.900	1.7345	
0.100	2.7751	0.000	2.8598	max	3.6887	1.000	1.7404	
0.200	2.7956	0.100	2.8021	0.000	3.1945			
0.300	2.8137	0.200	2.7671	0.100	3.4319	F2a	. 1.7258(24)
0.400	2.8065	0.300	2.7659	0.200	3.6361	ave	1.7447	-
0.500	2.7695	0.400	2.7866	0.300	3.6798	min	1.7260	
0.600	2.7249	0.500	2.8205	0.400	3.5280	max	1.7665	
0.700	2.7041	0.600	2.8650	0.500	3.2827	0.000	1.7563	
0.800	2,7193	0.700	2,9081	0.600	3,0682	0.100	1.7653	
0.900	2.7494	0.800	2,9260	0.700	2.9484	0.200	1.7451	
1.000	2,7656	0.900	2,9080	0.800	2,9349	0.300	1.7286	
		1.000	2.8598	0.900	3.0185	0.400	1.7305	
Fla	3.1217(23)			1.000	3,1945	0.500	1.7438	
ave	3.1293	F2a	. 2.7049 (26)			0.600	1.7589	
min	2,9227	ave	2.7111	03a	3,5183(30)	0.700	1.7556	
mex	3,3414	min	2,6703	ave	3,5266	0,800	1.7323	
0.000	2,9457	max	2.7522	min	2,9332	0.900	1.7298	
0.100	3,1091	0.000	2.7128	max	4.0957	1.000	1.7563	
0.200	3,2944	0.100	2,6804	0.000	3.5408			
0.300	3,3343	0.200	2.6734	0.100	3.2224	F2a	1.7258(24)
								-,

One column in detail:

*********	******	****	
* atom K ***********	*******	* ****	Central atom
Fla ave min max 0.000 0.100 0.200 0.300	3.1217 (3.1331 2.9227 3.3414 3.3336 3.2964 3.1124 2.9471	23)	The distance K-F1a calculated from the basic structure ¹ The average K-F1a distance for all used t values The minimum K-F1a distance for all used t values The maximum K-F1a distance for all used t values The K-F1a distance for t=0 The K-F1a distance for t=0.1 etc.
0.400 0.500 0.600 0.700 0.800 0.900 1.000	2.9413 3.0480 3.1262 3.1300 3.1421 3.2340 3.3336		The distances are calculated for 100 equidistant t values. This setting can be changed by the nooft control command The distances are printed for each 10 th t value. This setting can be changed by each control command

Figure 188	DIST listing of a modulated structure with angle
	(one column in detail)

<i>(one)</i>	coumn	ın	ueiuii
,			

* atom K *			central atom				
******	*******	****					
Fla	3.1217(23)	The distances for the first atom of the K coordination				
ave	3.1331		(see previous example for explanation)				
min	2.9227						
max	3.3414						
0.000	3.3336						
0.100	3.2964						
0.200	3.1124						
0.300	2.9471						
0.400	2.9413						
0.500	3.0480						
0.600	3.1262						
0.700	3.1300						
0.800	3.1421						
0.900	3.2340						
1.000	3.3336						
F1a	109.86(6)	The angle F1a-K-F1a calculated from refined coordinates				
ave	109.78		The average F1a-K-F1a angle for all used t values				
min	103.80		The minimum F1a-K-F1a angle for all used t values				
max	115.78		The maximum F1a-K-F1a angle for all used t values				
0.000	104.17						
0.100	104.10		The t grid and complexity of output is controlled by the same				
0.200	106.71		commands as used for distances - see previous example for				
0.300	110.92		explanation				
1.000	104.17						

¹ The atomic positions in the **basic structure** are the ones refined in the m40. The distances in the basic structure don't correspond to any 3d section but they should be close to "ave" distances.

4.2.8 Using DIST for commensurate structures

In the case of commensurate structures the modulation function is defined only in discrete points corresponding to the atomic positions in the superstructure and can have arbitrary values between these points. *DIST* automatically chooses the t values where the modulation function is defined.

The structure in the following example has q-vector of $(0,0,\gamma)$ type, the relation between the basic cell and the supercell is 1,1,4 (i.e. the **c** axis of the supercell is four times larger), and the t value used for the refinement is 0.188. The corresponding keywords in m50 are commen and tzero (see Table 9, page 80). Note: the tzero command of *DIST* (see modulation commands, page 316) has no effect for commensurate refinement.

*******	*******	****	0.688	2.3705		0.688	2.9581		min	2.0924	
* atom Ca		*	0.938	2.3851		0.938	3,1082		mex	2.1691	
********	*******	****							0.188	2,1035	
c1	2,7561(53)	03	2.3319(69)	*			0.438	2.0924	
ave	2.6851	,	ave	2.3874	,	**********	*******	****	0.688	2.1436	
min	2.6398		min	2.3534		* atom N		*	0.938	2.1691	
	2.7235		max	2,4408		******	*******	****			
0.188	2.6760		0.188	2.3705		01	2,8399(64)	נת	2,0969(41)
0.438	2.7011		0.438	2.3851		ave	2.7877	,	ave	2.1271	,
0.688	2.7235		0.688	2.3534		min	2.7607		min	2.0924	
0.938	2.6398		0.938	2.4408		mex	2.8148		mex	2.1691	
						0.188	2.7607		0.188	2.1436	
c1	2.7561(53)	D7	3.0034(65)	0.438	2.8148		0.438	2.1691	
ave	2.6851	,	ave	3.0124	,	0.688	2.7607		0.688	2.1035	
min	2.6398		min	2.9580		0.938	2.8148		0.938	2.0924	
mex	2.7235		mex	3.0539							
0.188	2.7235		0.188	3.0539		C1	1.4855(65)	D2	2.0677(49)
0.438	2.6398		0.438	3.0352		ave	1.4702		ave	2.1299	
0.688	2.6760		0.688	2.9580		min	1.4207		min	2.0899	
0.938	2.7011		0.938	3.0026		max	1.5198		mex	2.1700	
						0.188	1.4207		0.188	2.1700	
01	2.2480(90)	D7	3.0034(65)	0.438	1.5198		0.438	2.0899	
ave	2.2614		ave	3.0124		0.688	1.4207		0.688	2.1700	
min	2.1873		min	2.9580		0.938	1.5198		0.938	2.0899	
mex	2.3356		max	3.0539							
0.188	2.3356		0.188	2.9580		C3	1.4453(65)	D6	2.0423(42)
0.438	2.1873		0.438	3.0026		ave	1.4961		ave	2.1482	
0.688	2.3356		0.688	3.0539		min	1.4847		min	2.0704	
0.938	2.1873		0.938	3.0352		mex	1.5075		mex	2.1910	
						0.188	1.4847		0.188	2.0704	
02	2.2432(90)	D8	2.9725(57)	0.438	1.5075		0.438	2.1623	
ave	2.2414		ave	3.0322		0.688	1.4847		0.688	2.1689	
min	2.2099		min	2.9581		0.938	1.5075		0.938	2.1910	
mex	2.2728		mex	3.1082							
0.188	2.2099		0.188	2.9581		C4	2.5439(60)	D6	2.0423(42)
0.438	2.2728		0.438	3.1082		ave	2.5619		ave	2.1482	
0.688	2.2099		0.688	3.0285		min	2.5125		min	2.0704	
0.938	2.2728		0.938	3.0341		max	2.6113		mex	2.1910	
						0.188	2.5125		0.188	2.1689	
03	2.3319(69)	D8	2.9725(57)	0.438	2.6113		0.438	2.1910	
ave	2.3874		ave	3.0322		0.688	2.5125		0.688	2.0704	
min	2.3534		min	2.9581		0.938	2.6113		0.938	2.1623	
max	2.4408		max	3.1082							
0.188	2.3534		0.188	3.0285		D1	2.0969(41)	C2a	1.4734(44)
0.438	2.4408		0.438	3.0341		ave	2.1271		ave	1.4751	

Figure 189 DIST Listing for a commensurately modulated structure
4.2.9 Using *DIST* for composite structures

In composite crystals two or more structures coexist with different periodicities. The influence on distances calculation is that a distance between atoms from different composite parts calculated like function of t has no upper limit. This feature is clearly visible in the t plots (see page 337).

Figure 190 Example of a composite structure.

In this example the small shaded rings denote atoms belonging to the first composite part with larger cell. The second composite part with smaller cell comprises atoms indicated by large white rings. The cell parameters along the vertical direction are incommensurate.

The double arrow shows distances between one pair of atoms from different composite parts for various t values.

Like for other modulated structures *DIST* prints in the listing the minimum and maximum distance found in the t interval used for calculation. If the t function of distances does not have minimum in this interval *DIST* prints the value with a "<" sign.

Figure 191 DIST listing of a composite structure

Distances will be calculated

at 101 equidistant values of t from the interval <0,1> but only each 5th value will be printed

Figure 191 (Continued)

Calculating of distances, angles, torsion angles and best planes structure : Beznix - incommen

for atom : Sr from 0.000 to 3.000 for atom : Ni from 0.000 to 3.000 for atom : O from 0.000 to 3.000

Distances for central atom Ni1. The form of the output is the same like for other modulated structures. Note that many tvalues are not listed because the corresponding distances are out of limits. The explanation of "min" values is in the beginning of this chapter (page 342).

************************************												-
* #dom.Nill * Nill * Nill * Nill 2.8562 (703) 0.950 2.8134 0.900 1.6246 Nill 2.5586 (0) min 2.8957 max 2.3950 ave 2.7025	******	*******	****				0.900	2.6339		0.850	1.8029	
************************************	* atom Nil		* Ni	i3b'	2.8562(703)	0.950	2.8134		0.900	1.8246	
Nil. 2.4588 (0) min 2.4575 mix 2.4375 mix 2.4375 mix 2.4375 mix 2.4375 mix 2.4380 ave 2.700 1.953 (14) max 2.5126 0.950 2.9360 max 2.6334 min 1.7877 0	******	*******	**** 8	we	2.9054					0.950	1.9151	
eve 2.4755 max 2.9360 ave 2.7025 1.9553 (14) max 2.5196 0.950 2.9360 max 2.8380 ave 1.8897 0.000 2.5034 0.050 2.4174 min 1.7877 0.150 2.4476 ave 2.9360 0.150 2.6339 max 1.9955 0.100 2.4476 ave 2.9360 NL3a 2.6354 0.000 1.8022 0.150 2.4948 min 2.8773 min 2.6754 (7) 0.150 1.8029 NL1 2.5588 (0 0.000 2.8973 min 2.6756 (7) 0.500 1.9663 ave 2.4755 max 2.4380 0.900 1.6662 min 2.5054 ave 2.5361 0.950 2.6354 0.950 1.6662 0.850 2.4694 max 2.5362 0.150 1.9953 (14) 0.950	Ni1	2.5688(0) n	min	2.8573		Nil3a	2.6364(7)	1.000	1.8902	
min 2.3475 0.900 2.8573 min 2.5577 0 0 0 0 0 0 0.950 2.9360 max 2.4380 ave 1.8867 0.000 2.5034	ave	2.4755	r	nex.	2.9360		ave	2.7025				
max 2.536 0.950 2.9360 max 2.6380 ave 1.887 0.000 2.4779 Ni3b'	min	2.3475	(0.900	2.8573		min	2.5977		0	1.9563(14)
0.000 2.5034	mex	2.5196	(0.950	2.9360		max	2.8380		ave	1.8897	
0.050 2.4779 Ni2b'	0.000	2.5034					0.050	2.8134		min	1.7887	
0.100 2.4876 ave 2.9054 0.150 2.6695 0.000 1.8902 0.150 2.4848 min 2.8733	0.050	2.4779	N	Ľ3b'	2.8562(703)	0.100	2.6339		mex	1.9955	
0.150 2.4948 min 2.873	0.100	2.4876	a	ave	2.9054		0.150	2.6695		0.000	1.8902	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.150	2.4848	n	min	2.8573					0.050	1.9151	
	1.000	2.5034	n	nex.	2.9360		Ni3a	2.6364(7)	0.100	1.8246	
N11			(0.050	2.9360		ave	2.7025		0.150	1.8029	
ave 2.4755	Ni1	2.5688(0) (0.100	2.8573		min	2.5977		0.850	1.9653	
min 2.3475 Ni3b' 2.2814(703) 0.850 2.6695 0.950 1.6662 max 2.5196 ave 2.3641 0.900 2.6339 1.000 1.8902 0.850 2.4948 max 2.5382	ave	2.4755					max	2.8380		0.900	1.9643	
max 2.5196 ave 2.3641 0.900 2.6339 1.000 1.8902 0.000 2.5034 min 2.2735 0.950 2.8134	min	2.3475	N	Ľ3b'	2.2814(703)	0.850	2.6695		0.950	1.8662	
0.000 2.5034 min 2.2735 0.950 2.6134	menx	2.5196	ā	ave	2.3641		0.900	2.6339		1.000	1.8902	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000	2.5034	n	min	2.2735		0.950	2.8134				
0.900 2.4876 0.150 2.3829 Ni.3a	0.850	2.4848	n	nex.	2.5382					0	1.9563(14)
0.950 2.4779	0.900	2.4876	(0.150	2.3829		Ni3a	2.6364(7)	ave	1.8897	
1.000 2.5034 Ni3b' 2.2814 (703) min 2.5977 mex 1.9955	0.950	2.4779					ave	2.7025		min	1.7887	
ave 2.3641 max 2.6380 0.000 1.8902 Ni.3b 2.4720 (389) min 2.2735 0.050 2.8134 0.050 1.8662 ave 2.5211 max 2.5382 0.100 2.6339 0.100 1.9643 min 2.4730 0.850 2.3829 0.150 2.6695 0.150 1.9653 max 2.5517	1.000	2.5034	N	Ľ3b'	2.2814(703)	min	2.5977		max	1.9955	
Ni3b 2.4720(389) min 2.2735 0.050 2.8134 0.050 1.8662 ave 2.5211 mex 2.5382 0.100 2.6395 0.100 1.9643 min 2.4730 0.850 2.3829 0.150 2.6695 0.150 1.9653 mex 2.5517			a	ave	2.3641		max	2.8380		0.000	1.8902	
ave 2.5211 max 2.5382 0.100 2.6339 0.100 1.9643 min 2.4730 0.850 2.3829 0.150 2.6695 0.150 1.9653 max 2.5517	Ni3b	2.4720(3	389) r	min	2.2735		0.050	2.8134		0.050	1.8662	
min 2.4730 0.850 2.3829 0.150 2.6695 0.150 1.9653 mex 2.5517	ave	2.5211	r	nex.	2.5382		0.100	2.6339		0.100	1.9643	
max 2.5517 0.850 1.8029 0.900 2.4730 Ni3a 2.6364 (4) 0 1.9563 (8) 0.900 1.8246 0.950 2.5517 ave 2.7025 ave 1.8897 0.950 1.9151	min	2.4730	(0.850	2.3829		0.150	2.6695		0.150	1.9653	
0.900 2.4730 Ni3a	mex	2.5517								0.850	1.8029	
0.950 2.5517 ave 2.7025 ave 1.8897 0.950 1.9151	0.900	2.4730	N	L3a	2.6364(4)	0	1.9563(8)	0.900	1.8246	
min 2.5977 min 1.7887 1.000 1.8902 Ni.3b 2.4720 (389) max 2.8380 max 1.9955	0.950	2.5517	ā	ave	2.7025		ave	1.8897		0.950	1.9151	
Ni3b			n	min	2.5977		min	1.7887		1.000	1.8902	
ave 2.5211 0.850 2.6695 0.000 1.8902 0	Ni.3b	2.4720(3	389) I	18X	2.8380		max	1.9955				
min 2.4730 0.900 2.6339 0.050 1.9151 ave 1.8897 max 2.5517 0.950 2.8134 0.100 1.8246 min 1.7887 0.050 2.5517 0.150 1.8029 max 1.9955 0.100 2.4730 Ni3a 2.6364 (4) 0.850 1.9653 0.000 1.8902	ave	2.5211	(0.850	2.6695		0.000	1.8902		0	1.9563(14)
max 2.5517 0.950 2.8134 0.100 1.8246 min 1.7887 0.050 2.5517 0.150 1.8029 max 1.9955 0.100 2.4730 Ni3a 2.6364 (4) 0.850 1.9653 0.000 1.8902	min	2.4730	(0.900	2.6339		0.050	1.9151		ave	1.8897	
0.050 2.5517 0.150 1.8029 max 1.9955 0.100 2.4730 Ni3a 2.6364 (4) 0.850 1.9653 0.000 1.8902	menx	2.5517	(0.950	2.8134		0.100	1.8246		min	1.7887	
0.100 2.4730 Ni3a	0.050	2.5517					0.150	1.8029		mex	1.9955	
ave 2.7025 0.900 1.9643 0.050 1.9151 Ni3b 2.6656 (389) min 2.5977 0.950 1.8662 0.100 1.8246 ave 2.7483 max 2.8380 1.000 1.8902 0.150 1.8029 min 2.6578 0.050 2.8134 0.850 1.9653 max 2.9225 0.100 2.6339 0 1.9563 (8) 0.900 1.9643 0.150 2.7672 0.150 2.6695 ave 1.8897 0.950 1.8662	0.100	2.4730	Ni	i3a	2.6364(4)	0.850	1.9653		0.000	1.8902	
Ni.3b			a	ave	2.7025		0.900	1.9643		0.050	1.9151	
ave 2.7483 max 2.8380 1.000 1.8902 0.150 1.8029 min 2.6578 0.050 2.8134 0.850 1.9653 max 2.9225 0.100 2.6339 0 1.9563 (8) 0.900 1.9643 0.150 2.7672 0.150 2.6695 ave 1.8897 0.950 1.8662 min 1.7887 1.000 1.8902 Ni3b 2.6656 (389) Ni3a 2.6364 (7) max 1.9955	Ni3b	2.6656(3	389) I	min	2.5977		0.950	1.8662		0.100	1.8246	
min 2.6578 0.050 2.8134 0.850 1.9653 max 2.9225 0.100 2.6339 0 1.9563 (8) 0.900 1.9643 0.150 2.7672 0.150 2.6695 ave 1.8897 0.950 1.8662 min 1.7887 1.000 1.8902 Ni3b 2.6656 (389) Ni3a 2.6364 (7) max 1.9955 ave 2.7483 ave 2.7025 0.000 1.8902 0 1.9563 (14) min 2.6578 min 2.5977 0.050 1.8662 ave 1.8897 max 2.9225 max 2.8380 0.100 1.9643 min 1.7887 0.850 2.7672 0.850 2.6695 0.150 1.9653 max 1.9955	ave	2.7483	n	nex.	2.8380		1.000	1.8902		0.150	1.8029	
max 2.9225 0.100 2.6339 0 1.9563 (8) 0.900 1.9643 0.150 2.7672 0.150 2.6695 ave 1.8897 0.950 1.8662 min 1.7887 1.000 1.8902 Ni3b 2.6656 (389) Ni3a 2.6364 (7) max 1.9955	min	2.6578	(0.050	2.8134					0.850	1.9653	
0.150 2.7672 0.150 2.6695 ave 1.8897 0.950 1.8662 min 1.7887 1.000 1.8902 Ni3b 2.6656 (389) Ni3a 2.6364 (7) max 1.9955	mex	2.9225	0	0.100	2.6339		0	1.9563(8)	0.900	1.9643	
min 1.7887 1.000 1.8902 Ni.3b 2.6656 (389) Ni.3a 2.6364 (7) max 1.9955 ave 2.7483 ave 2.7025 0.000 1.8902 O 1.9563 (14) min 2.6578 min 2.5977 0.050 1.8662 ave 1.8897 max 2.9225 max 2.8380 0.100 1.9643 min 1.7887 0.850 2.7672 0.850 2.6695 0.150 1.9653 max 1.9955	0.150	2.7672	0	0.150	2.6695		ave	1.8897		0.950	1.8662	
Ni.3b							min	1.7887		1.000	1.8902	
ave 2.7483 ave 2.7025 0.000 1.8902 0 1.9563 (14) min 2.6578 min 2.5977 0.050 1.8662 ave 1.8897 mex 2.9225 mex 2.8380 0.100 1.9643 min 1.7887 0.850 2.7672 0.850 2.6695 0.150 1.9653 mex 1.9955	Ni.3b	2.6656(3	889) Ni	L3a	2.6364(7)	max	1.9955				
min 2.6578 min 2.5977 0.050 1.8662 ave 1.8897 max 2.9225 max 2.8380 0.100 1.9643 min 1.7887 0.850 2.7672 0.850 2.6695 0.150 1.9653 max 1.9955	ave	2.7483	ā	ave	2.7025		0.000	1.8902		0	1.9563(14)
max 2.9225 max 2.8380 0.100 1.9643 min 1.7887 0.850 2.7672 0.850 2.6695 0.150 1.9653 max 1.9955	min	2.6578	I	min	2.5977		0.050	1.8662		ave	1.8897	
0.850 2.7672 0.850 2.6695 0.150 1.9653 max 1.9955	mex	2.9225	I	nex.	2.8380		0.100	1.9643		min	1.7887	
	0.850	2.7672	(0.850	2.6695		0.150	1.9653		mex	1.9955	

page = 3

11:28:04 18-04-99

Figure 191 (Continued)

The type of output can be selected in the Modulation Commands form (see page 316). Atom Nil is coordinated by 6 oxygen atoms but not for every value of t. This is a characteristic feature of composite structures.

	** Coordination	on for atom : Nil	**						
	**********	******	******						
t= 0.000 t= 0.050 t= 0.100 t= 0.150 t= 0.200									
0 1.8902	0 1.8662	0	1.8246	0	1.8029				
0 1.8902	0 1.8662	0	1.8246	0	1.8029				
0 1.8902	0 1.8662	0	1.8246	0	1.8029				
0 1.8902	0 1.9151	0	1.9643	0	1.9653				
0 1.8902	0 1.9151	0	1.9643	0	1.9653				
0 1.8902		0	1.9643		1.9653				
NLL 2.5034	NLL 2.4//9	NL30	2.4/30	NL3D'	2.3829				
NLL 2.5054	NL30 2.331/	NH2-	2.40/0	NH2-	2.4040				
	Ni3a 2 8134	Mi3a	2.0339	Mi3a	2.0095				
	Ni3a 2 8134	Mi 3a	2.000	Mi3a	2.0000	1			
	Ni 3b' 2,9360	Ni3b	2.8573	Ni3b	2.7672	1			
						 	ا 		
t= 0.250	t= 0.300	t= 0.350		t= 0.400		t= 0.450			
t= 0.500	t= 0.550	t= 0.600		t= 0.650		t= 0.700			
t= 0.750	t= 0.800	t= 0.850		t= 0.900		t= 0.950			
		0	1.8029	0	1.8246	0	1.8662		
		0	1.8029	0	1.8246	0	1.8662		
		0	1.8029	0	1.8246	0	1.8662		
]	0	1.9653	0	1.9643	0	1.9151		
		0	1.9653	0	1.9643	0	1.9151		
		0	1.9653	0	1.9643	0	1.9151		
		Ni3b'	2.3829	Ni3b	2.4730	Nil	2.4779		
		Nil	2.4848	Nil	2.4876	Ni3b	2.5517		
		Ni3a	2.6695	Ni3a	2.6339	Ni3a	2.8134		
		NL3a	2.6695	NL3a	2.6339	NL3a	2.8134		
		NL3a	2.0095	NL3a	2.0339	N13a	2.8134		
I					2.05/5		2.3300		
t= 1.000									
0							1		
0 1.8902									
0 1.8902									
0 1.8902						l l			
0 1.8902									
0 1.8902									
Nil 2.5034	ĺ						i		
Ni1 2.5034									

Figure 191 (Continued)

	*********	*****	*****					
	the Groudinstein	- fan atam . Ca						
	** Coordinat	on tor atom : Sr	~~					
	**********	*******	*****					
								_
+- 0.000	+- 0.050	+- 0 100		+_ 0 150		+_ 0 200		ī
C= 0.000		1 100				C= 0.200		I
	· · · · · · · · · · · · · · · · · · ·	·						7
0 2.4096	0 2.2406	0 2	2.5155	0	2.4940	0	2.3287	
0 2.4215	0	0	2.5408	0	2.5386	0	2.4355	1
0 2 5116	0 2 5079	0	2 6319	0	2 6424	0	2 5615	i
0	0		2.0319	0	2.0121	0	2.5015	-
0 2.6319	0 2.6/24	0	2.6501	0	2.6899	0	2.6/95	1
0 2.6513	0 2.7194	0 2	2.7696	0	2.7522	0	2.7130	1
0 2.6776	0	0	2.7974	0	2.8043	0	2.7138	Ì
0 2 71/2	0 2 7923	10	0 700/	•	2 0115	0	2 7205	i
0 2./142	0	0	2./994	0	2.0115	0	2.7305	1
0 2.7355	0 2.8385	0 2	2.8353	0	2.8510	0	2.7551	
	0 2.8771	0 2	2.9071	0	2.8649			1
	Ni3a 2.9298	0	2.9260	0	2.9400	İ		İ
	NT-20 2 0905							ł
1	14154 2.9095	1		l		I		I
								Ţ
t= 0.250	t= 0.300	t= 0.350		t= 0.400		t= 0.450		1
								_
0 2 4299	0 2 4403		2 3554	0	2 4943	0	2 5234	T
0	0		2.333	0	2.1010	0	2.5251	1
0 2.4853	0 2.4896	0	2.4244	0	2.5304	0	2.5351	1
0 2.6098	0 2.6071	0	2.5766	0	2.6494	0	2.6346	1
0	0	0	2,6621	0	2.6994	0	2.6427	ĺ
0 2 6214	2.00	0	2 6047	0	2 7546	0	סדדד כ	1
0 2.0314	2.6361	0	4.094/	0	2./540	0	2.7779	ļ
0 2.6366	0 2.6388	0	2.7220	0	2.8072	0	2.7915	1
0 2.6689	0 2.6562	0 2	2.7284	0	2.8187	0	2.8060	1
0	0	0	2.7321	0	2.8313	0	2.8235	i
NF 20 2 0790	NT-20 2.0677				2 0620		2 0145	ł
NL5a 2.9700	ML3d 2.90//	1		0	2.0050	0	2.9145	1
				0	2.9462	0	2.9225	
t= 0.500	t= 0.550	t= 0.600		t= 0.650		t= 0.700		1
		1				1		<u>'</u>
0 0 007	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4500		0 41 07		a 2000	1
0 2.2297	0 2.39/3	0	2.4582	0	2.416/	0	2.2889	ļ
0 2.5005	0 2.4127	0	2.4881	0	2.4695	0	2.4575	1
0	0	0	2.6089	0	2.6202	0	2.5381	Ì
0 2 6628	0 2 6408	0	2 6207	0	2 6250	0	2 6097	i
0	2.0400		2.0207	0	2.0250	0	2.0007	1
0 2.7126	0 2.66/1	0	2.6319	0	2.6325	0	2,7122	1
0 2.7942	0 2.6973	0	2.6371	0	2.6392	0	2.7298	1
0 2.7963	0 2.7212	0	2.6546	0	2.6884	0	2.7418	
0 2 8512	0 2 7319	io :	2 6983	0	2 7336	0	2 7907	i
0	0		2.0505	•••••••••••••••••••••••••••••••••••••	2.7550		2.7507	ł
0 2.8512		NIJa 2	2.9580			0	2.9562	ļ
						Ni3a	2.9765	
t= 0.750	t= 0.800	t= 0.850		t= 0.900		t= 0.950		1
								1
								,
0 2.4986	0 2.5041	0 2	2.2672	0	2.4116	0	2.4689	1
0 2.5454	0 2.5457	0	2.4730	0	2.4540	0	2.4827	1
0	0	0	2,5248	0	2.6250	0	2,6138	i
0 2 5740	0 2 6642	0	2 6895	0	2 6265	0	2 6227	1
2.6/40	2.0042	0	2.0000	0	2.0203	0	2.0227	1
0 2.7543	0 2.7588	0	2.72/1	0	2.6303	0	2.6265	ļ
0 2.7921	0 2.7907	0	2.7350	0	2.6516	0	2.6282	1
0	0	0	2.7588	0	2.6995	0	2,6664	ĺ
0 0.0507	0 2.0530	0	0 0110	0	2 7262	0	2 6061	1
2.0597	2.8520	0		0	2.7303		2.0001	1
0 2.8775	0 2.8909	0	2.9243			N13a	2.9548	1
0 2.9334	0 2.9305	Ni3a 2	2.9572					1
t= 1.000	I	1				I		1
- 1.000	1	1		I		1		1
								7
0 2.4096								1
0 2.4215								1
0		i				i		i
0 2 6310								1
0								ļ
0 2.6513								1
0 2.6776								1
0 2.7142								j
0 2 7355		1						1
2.7335	1	1		I		I		1
								Ē

4.2.10 DIST listing m61

Together with the wide listing *DIST* writes the results also in one column form to the m61 file. The information of these two output files is complementary; m61 lists the symmetry codes which are not present in the wide listing, but it doesn't contain the values of distances and angles as a function of the t coordinate.

Figure 192	The m61 fil	e of ordinary	structure.
------------	-------------	---------------	------------

Dista	inces and angl	les concerning a	tom Zn
zn	- Br	2.4811(8) symmetry: x,y,z#
Br	- Zn	- 01	121.44(12) symmetry : x,y,z
Br	- Zn	- N1	96.54(13) symmetry : x,y,z
Br	- Zn	- N2	107.84(13) symmetry : x,y,z
Br	- Zn	- N3	98.18(13) symmetry : x,y,z
Br	- Zn	- C1	106.21(14) symmetry : x,y,z
Br	- Zn	- C2	97.26(15) symmetry : x,y,z
Br	- Zn	- C3	90.50(13) symmetry : x,y,z
Br	- Zn	- C4	95.48(11) symmetry : x,y,z
Br	- Zn	- C5	84.73(13) symmetry : x,y,z
Br	- Zn	- C6	108.46(11) symmetry : x,y,z
Br	- Zn	- C7	117.74(10) symmetry : x,y,z
Br	- Zn	- C12	121.51(10) symmetry : x,y,z
Br	- Zn	- H1(n1)	76.56(11) symmetry : x,y,z
Br	- Zn	- H1(n1)	159.72(8) symmetry : 1/2-x,1/2+y,1/2-z
Br	- Zn	- H2(n1)	108.08(11) symmetry : x,y,z
Br	- Zn	- H1(c1)	122.41(13) symmetry : x,y,z
Br	- Zn	- H1(c1)	75.06(13) symmetry : 1/2-x,-1/2+y,1/2-z
Br	- Zn	- H1(c2)	79.61(14) symmetry : x,y,z

Figure 193 The m61 file for modulated structure. See page 27 for description of the special symmetry codes starting with the "#" character.

Distances	s concerning atom	Sr1		
Sr1	- 031	2.2636(0)	symmetry : 1/2-x,y,-1+z#s2t0,0,-1
Sr1	- 031	2.2636(0)	symmetry : 1/2-x,y,z#s2
Sr1	- 031	2.2636(0)	<pre>symmetry : 1/2-x,y,1+z#s2t0,0,1</pre>
Sr1	- 031	2.2636(0)	symmetry : 1/2+x,1-y,1-z#s-2t0,1,1
Sr1	- 031	2.2636(0)	symmetry : 1/2+x,1-y,2-z#s-2t0,1,2
Sr1	- 031	2.2636(0)	symmetry : 1/2+x,1-y,3-z#s-2t0,1,3
Sr1	- 011	2.6068(89)	symmetry : 1/2-x,y,-1/2+z#s2t0,0,-1
Sr1	- 011	2.6068(89)	symmetry : 1/2+x,1/2-y,1-z#s-2c2
Sr1	- 02	2.6168(14)	<pre>symmetry : x,y,-1+z#t0,0,-1</pre>
Sr1	- 02	2.6168(14)	symmetry : x,y,z#

4.3 Program GRAPHT

Input: m40, m50 Output: HPGL ,PostScript, PCX or numerical form M50 control keywords: none

4.3.1 Description of GRAPHT

GRAPHT plots coordinates, occupancies, distances and bond valences as a function of the t coordinate. It can save the pictures in HPGL, PostScript and PXC format or in a numerical form suitable as an input for other programs.

4.3.2 Coordinate plots

Graph t-xyz								
Atom	As							
<u>t</u> min,tmax	0 1							
Delta [A]	1							
Cod	ordinates							
<u>×</u>	Y Z							
Esc Ok								

Figure 194 The t-xyz form of GRAPHT

This tool plots the difference between selected coordinate and its basic value as a function of t.

Delta in the form defines the length of the vertical axis of the plot in Å.

Figure 195 Example of a coordinate plot

4.3.3 Occupancy plots

Graph	t-occupancy
Atom	Na4
tmin, tmax	0 1
omin,omax	0.2 1
Ese	c Ok

Figure 196 The t-occupancy form of GRAPHT

This tool plots the occupancy of an atom as a function of t. The omin and omax define the length of the vertical axis of the plot in the positive and negative

direction, respectively.

Figure 197 Example of an occupancy plot

4.3.4 Temperature plots

Figure 198 The t-temperature parameters form of GRAPHT

This tool plots selected temperature parameters of an atom as a function of t. The Umin and Umax define the minimal and maximal value on the vertical axis of the plot, respectively.

Figure 199 Example of a t-temperature parameters plot.

4.3.5 Distance and valence plots

This tool plots distances between a central and other selected atoms and bond valences defined according to Brown & Altermatt, 1985 as a function of t.

Ag 1	0 -2	1.842	0.370	Hg 2	0 -2	1.972	0.370	S	i 4	0	-2	1.640	0.370
Ag 1	S -2	2.119	0.370	Hg 2	S -2	2.308	0.370	S	i 4	S	-2	2.126	0.370
Al 3	Cl -1	2.032	0.370	Ho 3	0 -2	2.025	0.370	S	n 2	F	-1	1.925	0.370
Al 3	F -1	1.545	0.370	I 5	0 -2	2.003	0.370	S	n 4	Cl	-1	2.276	0.370
Al 3	0 -2	1.620	0.370	I 7	0 -2	1.910	0.370	S	n 4	F	-1	1.843	0.370
As 3	0 -2	1.789	0.370	In 3	F -1	1.792	0.370	S	n 4	0	-2	1.905	0.370
As 3	S -2	2.272	0.370	In 3	0 -2	1.902	0.370	S	n 4	s	-2	2.399	0.370
As 5	F -1	1.620	0.370	In 3	S -2	2.370	0.370	S	r 2	0	-2	2.118	0.370
As 5	0 -2	1.767	0.370	к 1	Cl -1	2.519	0.370	Т	a 5	o	-2	1.920	0.370
В 3	F -1	1.281	0.370	к 1	F -1	1.992	0.370	Т	b 3	o	-2	2.032	0.370
в 3	0 -2	1.371	0.370	K 1	0 -2	2.132	0.370	т	e 4	0	-2	1.977	0.370
Ba 2	F -1	2.188	0.370	La 3	0 -2	2.172	0.370	т	e 6	0	-2	1.917	0.370
Ba 2	0 -2	2.285	0.370	La 3	S -2	2.643	0.370	T	h 4	F	-1	2.068	0.370
Ba 2	S -2	2.769	0.370	Li 1	F -1	1.360	0.370	Т	i 4	0	-2	1.815	0.370
Be 2	F -1	1.281	0.370	Li 1	0 -2	1.466	0.370	Т	11	I	-1	2.822	0.370
Be 2	0 -2	1.381	0.370	Mar 2	0 -2	1.693	0.370	Т	11	0	-2	2.226	0.340
Bi 3	0 -2	2.094	0.370	Min 2	Br -1	2.335	0.370	Т	11	S	-2	2.545	0.370
Bi 3	S 2	2.570	0.370	Min 2	Cl -1	2.133	0.370	Т	13	0	-2	2.007	0.370
C 4	N -3	1.442	0.370	Min 2	F -1	1.698	0.370	U	4	F	-1	2.038	0.370
C 4	0 -2	1.390	0.370	Min 2	0 -2	1.790	0.370	U	6	0	-2	2.075	0.370
Ca 2	Br -1	2.507	0.370	Min 3	0 -2	1.760	0.370	v	3	0	-2	1.743	0.370
Ca 2	F -1	1.842	0.370	Min 4	0 -2	1.753	0.370	v	4	0	-2	1.784	0.370
Ca 2	0 -2	1.967	0.370	Mon	0 -2	1,907	0.370	v	5	õ	-2	1.803	0.370
Cd 2	Cl -1	2.212	0.370	N 3	0 -2	1.361	0.370	w	6	0	-2	1,917	0.370
Cd 2	0 -2	1.904	0.370	N 5	0 -2	1,432	0.370	v	3	õ	-2	2.019	0.370
Ce 4	0 -2	2.090	0.370	Na 1	F -1	1.677	0.370	- Y	ь 3	õ	-2	1,965	0.370
Cd 2	s -2	2.304	0.370	Na 1	0 -2	1.803	0.370	Z	n 2	C1	-1	2.027	0.370
C1 7	0 -2	1.632	0.370	Na 1	s -2	2.300	0.370		n 2	0	-2	1.704	0.370
Co 2	C1 -1	2.033	0.370	Nb 5	0 -2	1,911	0.370	7	r 4	ч Т	-1	1.846	0.370
Co 2	F -1	1.649	0.370	Nd 3	0 -2	2,105	0.370	7	r 4	0	-2	1.928	0.370
Co 2	0 -2	1.692	0.370	Ni 2	F -1	1.596	0.370	_		Ũ	-	1.020	0.070
CO 3	C 2	1 634	0.370	Ni 2	0 -2	1 654	0 370						
Cr 3	ਦ <u>-</u> 1	1 657	0.370	D 5	N _3	1 704	0.370						
Cr 3	0 -2	1 724	0.370	P 5	0 -2	1 617	0 370						
Cr 6	0 -2	1 794	0.370	P 5	S -2	2 145	0 370						
Cs 1	C1 -1	2.791	0.370	Pb 2	0 -2	2,112	0.370						
Cs 1	0 -2	2.417	0.370	Pb 2	s -2	2.541	0.370						
Gi 1	T -1	2.108	0.370	Pb 2	Se -2	2.686	0.370						
Gi 1	0 -2	1,600	0.370	Pb 4	0 -2	2.042	0.370						
Gi 1	S -2	1.898	0.370	 Pr 3	0 -2	2,138	0.370						
Cu 2	F -1	1.594	0.370	Pt. 2	C 2	1.760	0.370						
01 2	0 -2	1.679	0.370	Pt. 4	0 -2	1.879	0.370						
Cu 2	s -2	2.054	0.370	Rb 1	Cl -1	2.652	0.370						
Cu 3	0 -2	1.739	0.370	Rb 1	0 -2	2.263	0.370						
D 1	0 -2	0.927	0.370	S 2	N -2	1.597	0.370						
Dv 3	0 -2	2.001	0.370	5 2	N -3	1.682	0.370						
Er 3	F -1	1.904	0.370	5 4	N -3	1.762	0.370						
Er 3	0 -2	1,988	0.370	5 4	0 -2	1.644	0.370						
Eu 2	s -2	2.584	0.370	5 6	0 -2	1.624	0.370						
Eu 3	0 -2	2.074	0.370	Sb 3	F -1	1.883	0.370						
Fe 2	0 -2	1.734	0.370	Sb 3	0 -2	1.973	0.370						
Fe 3	C 2	1.689	0.370	Sb 3	S -2	2.474	0.370						
Fe 3	F -1	1.679	0.370	Sb 3	Se -2	2.602	0.370						
Fe 3	0 -2	1,759	0.370	Sb 5	F -1	1.797	0.370						
Fe 3	S -2	2.149	0.370	Sb 5	0 -2	1.942	0.370						
Ga 3	0 -2	1.730	0.370	Sc 3	0 -2	1.849	0.370						
Ga 3	S -2	2.163	0.370	Sc 3	S -2	2.321	0.370						
Ge 4	0 -2	1.748	0.370	Se 4	0 -2	1.811	0.370						
Ge 4	S -2	2.217	0.370	Se 6	0 -2	1.788	0.370						
н 1	N -3	0.885	0.370	Si 4	C -4	1.883	0.370						
н 1	0 -2	0.882	0.370	Si 4	N -3	1.724	0.370						

Table 32Bond-Valence parameters

This is output of the Bond valence calculator program¹. It is based on Brown & Altermatt, 1985.

¹ http://www.ccp14.ac.uk/ccp/web-mirrors/valence/valence.txt

4.3.6 The distance plots of composite structures

Calculation of distances for composite structures is discussed in page 325. The program makes systematic search to find and draw all distances as a function of t within the limits defined in the form.

The t-distance form (page 335) contains an option for drawing of non-modulated curves. They are calculated from basic positions of atoms as refined in the m40 file. In the case of two atoms belonging to different composite parts the non-modulated curves are hyperbolic and can be used as an estimation how modulation influences distances. For instance, in the following figure the minimal distance without modulation could be too short.

Figure 202 Example of a distance plot with non-modulated curves

References

Axe, J.D. (1980). Phys. Rev. B, 21, 4181-4190

Becker, P.J. & Coppens, P. (1974). Acta Cryst. A30,129-147 Extinction within the limit of validity of the Darwin transfer equations, part I

Becker, P.J. & Coppens, P. (1974). Acta Cryst. A30,148-152 Extinction within the limit of validity of the Darwin transfer equations, part II

Brown, I.D. & Altermatt, D. (1985). Acta Cryst. B41,244-247

De Wolf, P.M., Janssen, T. & Janner, A.(1981). Acta Cryst. A37, 625-636 The superspace groups for incommensurate crystal structures with a onedimensional modulation

Hall, S.R.(1981). Acta Cryst. A37, 517 Space group notation with an explicit origin

International Tables for Crystallography (1993). Vol. B

International Tables for Crystallography (1992). Vol. C

Kuhs, W.F. (1992). Acta Cryst. A48, 80-98

Madariaga,G. (1994). Proc. international conference on aperiodic crystals Aperiodic'94, pp 425-429. World Scientific.

Petricek, V., Gao, Y., Lee, P. & Coppens, P. (1990). Phys.Rev.B, 42, 387-392 X-ray analysis of the incommensurate modulation in the 2:2:1:2 Bi-Sr-Ca-Cu-O superconductor including the oxygen atoms.

Petricek, V., Lee, A. Van Der & Evain, M. (1995). Acta Cryst A51, 529-535 On the use of crenel functions for occupationally modulated structures.

Schomaker, V. & Trueblood, K.N. (1968). *Acta Cryst.* B24, 63 - 76. On the rigid-body motion of molecules in crystals

Van Smaalen, S. (1991), Phys.Rev.B, 43, 11330-11341 Symmetry of composite crystals.

Van Smaalen, S. & Petricek, V. (1992). Acta Cryst A48,610 Refinement of incommensurate structures against diffraction data from a twinned crystal.

List of Figures

Figure 1	The protected memory setting for Windows95	
Figure 2	The Advanced Program Settings for Windows95	
Figure 3	The Directory Structure of PC Installation	
Figure 4	The Directory Structure of UNIX Installation	
Figure 5	The JAINAYS W W W Home Page	
Figure 6	The registration form for JANA98	
Figure 7	Refinement results for the testing example testa	
Figure 8	Refinement results for the testing example testb	
Figure 9	Refinement results for the testing example testc	
Figure 10	Refinement results for the testing example testm	
Figure 11	An Example of the Pull Down Menu	
Figure 12	An Example of the Form	
Figure 13	Example of the Text Box	
Figure 14	Example of a dialogue box	
Figure 15	The basic programs communication scheme	
Figure 16	The basic window of JANA98	
Figure 17	The File Menu	
Figure 18	The file manager working in the group mode	
Figure 19	The Edit Menu	
Figure 20	The listing viewer	
Figure 21	The Run Menu	
Figure 22	The Tools Menu	
Figure 23	Importing SHELX files	
Figure 24	Generation of the subgroup structure	
Figure 25	The User Preferences for the PC Version	
Figure 26	The General User Preferences for UNIX Version	
Figure 27	The Display-Specific User Preferences for UNIX version	
Figure 28	The printer settings for the PC version of JANA98	
Figure 29	The basic window in the case that m95 does not exist	55
Figure 30	The Centring Vectors Form	56
Figure 31	The main menu of DATRED	
Figure 32	The Basic reflection File m95	
Figure 33	The Cell Contents Form	59
Figure 34	The Crystal Shape Form	
Figure 35	Running X-Shape	
Figure 36	Crystal Shape Viewer	
Figure 37	The View Definition for the Precession Photo	
Figure 38	The Simulation of the Precession Photo	
Figure 39	The Point Group Test Results	
Figure 40	The Cell Transformation Menu	
Figure 41	Transformation to Doubled Cell	
Figure 42	The Main Menu	
Figure 43	The Cell Form	
Figure 44	The Symmetry Form	
Figure 45	The Centring Vectors Form	
Figure 46	The Atoms Form	
Figure 47	The data reduction scheme starting from the diffractometer file	
Figure 48	The data reduction scheme starting from other reflection file	
Figure 49	The Import form	
Figure 50	The Import form if the 4" Index has to be generated	
Figure 51	The Import list for single data set.	
Figure 52	The Import list for multiple data sets.	
Figure 53	Joining multiple data sets	
Figure 54	The Commensurate Options	

Figure 55	The basic crystal information file m50 - Part I	
Figure 56	The basic crystal information file m50 - Part II	
Figure 57	Creation of m91	
Figure 58	The Refinement Reflection File m91	
Figure 59	Listing of PRELIM.	
Figure 60	The details about the listing from averaging	
Figure 61	The example of m40 containing one composite part without molecules	
Figure 62	The example of m40 containing one composite part with a molecule.	
Figure 63	The example of m40 with two composite parts.	
Figure 64	The location of refinement keys in m40	
Figure 65	Example of the header of m40 with 1 molecule and 1 composite part	
Figure 66	Example of m40 with scale parameters for a 6-fold twin.	110
Figure 67	Example of m40 with isotropic extinction of type I with Lorentzian distribution	112
Figure 68	An atom in m40 with anisotropic temperature parameters.	118
Figure 69	An atom in $m40$ with ADP of the 3^{rd} order.	118
Figure 70	An atom in m40 with position and temperature modulation	118
Figure 71	An atom in $\pi 40$ with modulation of the 3^{rd} order ADP	119
Figure 72	An example of a sawtooth modulation function (abscissa A-B) in the x_4 - x_i projection	125
Figure 73	Example of an atom in the atomic part of m40 with harmonic position modulation	126
Figure 74	Example of an atom in the atomic part of m40 with sawtooth position modulation	126
Figure 75	The crenel (periodic step-like) occupation wave:	128
Figure 76	Example of an atom in the atomic part of m40 with harmonic occupation modulation	129
Figure 77	Example of an atom in the atomic part of m40 with Crenel occupation modulation	129
Figure 78	Example of a crenel function in a Contour plot.	136
Figure 79	Example of $m40$ with the C_{60} molecule having the local point group symmetry Ih	141
Figure 80	Example of m40 with TLS Tensors	147
Figure 81	The Basic Window of EDITM40	
Figure 82	The Select Atoms Form	
Figure 85	Testm.m40	130
Figure 64	The Unuo/Do Form	130
Figure 05 Figure 86	Conversion of IIAO and IIBO10 various formats	130
Figure 87	Adding maxima from m19	139
Figure 88	Adding of Hydrogens	100
Figure 89	Transformation and origin shift	162
Figure 90	expansion of m40 by symmetry operations	163
Figure 91	Conversion of individual temperature parameters to TLS	
Figure 92	Setting anharmonic tensors	
Figure 93	Example of setting refinement keys	167
Figure 94	definition of wave vectors for a 5-dimensional case	168
Figure 95	Example of setting modulation waves	169
Figure 96	Example of the orthogonalization tool	170
Figure 97	Atomic m40	
Figure 98	creation of molecules from the atomic part of m40	173
Figure 99	M40 from Figure 97 after creating molecules	176
Figure 100	An Example of the m45 File. It is used in Figure 101	177
Figure 101	Inserting a molecule from m45 (see Figure 100)	
Figure 102	M40 with a molecule added from m45 (see Figure 101)	
Figure 103	Placing a model molecule according to Figure 101	
rigure 104	M40 Dejore Introducing CH ₃ molecules	
rigure 105 Figure 106	$M_{42} \text{will } a \subset H_3 \text{ molecule } \dots A dding CH \text{molecule from } m_4 f = \dots A dding CH M ddi$	
rigure 106 Figure 107	Adding CH ₃ molecule from m45 and defining its molecular positions	183
rigure 10/ Figure 100	The mutual orientation of the atomic part and new molecular positions	10J 102
Figure 100	r=0 uper unumg C113 molecule Definition of a rotation axis for a molecule	100
Figure 109	M40 after redefinition of rotation axes for CH_3 groups	188
Figure 111	The refinement listing showing refinement of CH_3 groups	
Figure 112	File m50 used for examples in Figure 113 - Figure 117.	

Figure 113	Change from individual to molecular position modulation.	194
Figure 114	Change from individual to TLS temperature parameters.	197
Figure 115	Introducing TLS modulation	200
Figure 116	Change from TLS to individual temperature modulation	203
Figure 117	Refinement of individual and molecular modulation together	205
Figure 118	M50 for examples concerning the local symmetry	208
Figure 119	Setting a molecular model without local symmetry	200
Figure 119	Setting the local symmetry D.	213
Figure 120	Setting the local symmetry T	215
Figure 121	The shape of AsE octobedron	215
Figure 122 Figure 123	The Basic Window of PEEINE	210
Figure 125 Eigure 124	The Dusic Willauw of the Definement Dun	219
Figure 124	The scheme of the Refinement Run	220
Figure 125	The setting order of refinement keys	223
Figure 120		227
Figure 12/	The Screen Output of KEFINE	228
Figure 128	The Main Menu of the Refinement Commands	230
Figure 129	The Basic Commands for REFINE	231
Figure 130	FoFc List in the Refinement Listing	233
Figure 131	R Statistics in the Refinement Listing	234
Figure 132	The Select Reflections Form	238
Figure 133	The Dontuse Command Form	238
Figure 134	The Scale Command Form	239
Figure 135	The Weighting Scheme Form	241
Figure 136	The Extinction Form	243
Figure 137	The Fixed Commands Form	245
Figure 138	The Restriction Form	247
Figure 139	The Equation Form with an internal equation	248
Figure 140	The Equation form with an inter atomic/molecular equation.	248
Figure 141	The Modulation Commands Form	
Figure 142	The refinement listing	260
Figure 143	The basic window of FOURIER	265
Figure 144	FOURIER' The basic commands	267
Figure 145	FOURIER: The types of the mans	207
Figure 145	The Four Dimensional Flomontary Call	271
Figure 140	Communication between EOLIDIED and CONTOLID	275
Figure 147	The Fourier syntheses calculated in the independent volume	275
Figure 140	The Fourier synthesis calculated in amplicitly defined volume	270
Figure 149 Eloure 150	The Fourier synthesis calculated around a control point	277
Figure 150	The Fourier synthesis calculated around a central point	277
Figure 151	Setting the map orientation	2/9
Figure 152	The m48 File for Modulated Structure	282
Figure 153	The m47 File for Ordinary or Modulated Structure	282
Figure 154	The Fourier Listing for Modulated Structure	283
Figure 155	Setting a crenel function	287
Figure 156	Setting a sawtooth function	288
Figure 157	The basic Window of CONTOUR	291
Figure 158	The Operating Buttons of the CONTOUR Window	292
Figure 159	Contour options for ordinary structures	293
Figure 160	Contour options for modulated structures	293
Figure 161	The Contour Definitions Menu	294
Figure 162	CONTOUR: A Strong Maximum Affected by the "Positive Cutoff" Limit.	295
Figure 163	Searching for extremes	296
Figure 164	Defining electron density and potential curves	297
Figure 165	Example of an electron density curve	298
Figure 166	Example of a notential curve	208
Figure 167	Usage of locator	290
1 15410 10/ Figure 160	The Plane form of CONTOLR	299 200
Figure 100	The scope definition and contour plot orientation	201
Figure 109	In Example of the Conoral Section for Ordinam Structure	201
rigure 170 Figure 171	The procedure to propage the convert section for Orainary Structure	502
rigure 1/1	The procedure to prepare the general section from Figure 1/0.	303
rigure 172	Ine Contour Options Menu for Modulated Structures	305

Figure 173	The Contour Summation Limits Form for Modulated Structures	
Figure 174	An Example of the General Section for Modulated Structure	
Figure 175	Four cells of an A_3 - A_3 section. The plot is periodic.	
Figure 176	Four cells of a R_3 - R_3 section. The plot is not periodic.	
Figure 177	Plotting of A_3 - A_4 sections	
Figure 178	The SetCommands menu for DIST	
Figure 179	The Basic Commands	
Figure 180	Selection commands	
Figure 181	The Torsion Angles Form	
Figure 182	The best plane form	
Figure 183	Modulation commands	
Figure 184	Simple DIST Listing for Ordinary Structure	
Figure 185	DIST listing of an ordinary structure with angles	
Figure 186	DIST listing with best planes and torsion angles	
Figure 187	DIST Listing of a modulated structure	
Figure 188	DIST listing of a modulated structure with angles	
Figure 189	DIST Listing for a commensurately modulated structure	
Figure 191	DIST listing of a composite structure	
Figure 192	The m61 file of ordinary structure	
Figure 193	The m61file for modulated structure	
Figure 194	The t-xyz form of GRAPHT	
Figure 195	Example of a coordinate plot	
Figure 196	The t-occupancy form of GRAPHT	
Figure 197	Example of an occupancy plot	
Figure 198	The t-temperature parameters	
Figure 199	Example of a t-temperature parameters plot	
Figure 200	Plotting t-distance and t-valence plots	
Figure 201	Example of a distance plot for a composite structure.	
Figure 202	Example of a distance plot with non-modulated curves	

List of Tables

Table 1	The adjustable parameters of JANA98	
Table 2	The command line options available in UNIX version of JANA98	
Table 3	Basic file extensions in JANA98	
Table 4	The basic programs of JANA98: purpose, input and output files	
Table 5	The basic files of JANA98	
Table 6	The derived files of JANA98	
Table 7	The derived files of JANA98	
Table 8	Control of the JANA98 basic window	
Table 9	The Keywords in the First Part of m50	
Table 10	File m40 in the symbolic form	
Table 11	The meaning of the extinction parameters in JANA98	
Table 12	Atomic and corresponding molecular parameters	
Table 13	The parameters without automatic refinement keys	
Table 14	The Index of the Refinement Control Commands	
Table 15	The Basic Commands of REFINE in the m50 File	
Table 16	The Select Reflections Commands of REFINE in the n50 File	
Table 17	The Weighting Scheme Commands of REFINE in the n50 File	
Table 18	The Extinction Commands of REFINE in the m50 File	
Table 19	Examples of User Constraints	
Table 20	The Constraints Commands of REFINE in the m50 File	
Table 21	The Modulation Commands of REFINE in the m50 File	
Table 22	The Overlap Commands of REFINE in the m50 File	
Table 23	The Basic Commands of FOURIER in the m50 file	
Table 24	The coefficients of the Fourier synthesis types available in FOURIER	
Table 25	The Maptype Commands of FOURIER in the n50 File	
Table 26	The Scope and Orientation Commands of FOURIER in the n50 File	
Table 27	The Peaks Commands of FOURIER in the n50 File	
Table 28	Basic commands of DIST in the n50 file	
Table 29	Selection commands of DIST in the n50 file	
Table 30	Torsion angles and best planes commands of DIST in the m50 file	
Table 31	Modulation commands of DIST in the m50 file	317
Table 32	Bond-Valence narameters	337
	r	

Contents

CONTENTS	••••••	3
1 BASIC FI	CATURES	8
1.1 Instai	LATION AND USER SUPPORT	
	An example of ftp commands:	9
1.1.2 In	stallation of <i>JANA98</i> on UNIX workstations	
	Automatic installation from jana98Pack.exe	10
	Manual installation from jana98.tar.gz or jana98.tar.Z	10
	The environmental variable JANADIR	11
	Troubleshooting	11
	The initialisation file jana98.ini	12
1.1.3 In	stallation of JANA98 on a PC with Windows9x/NT or DOS	13
	Step by step instructions	13
	Program properties for Windows95/98	14
1.1.4 A	djustable parameters	15
1.1.5 L	ocation of files	15
	The directory structure	15
	Temporary files	16
1.1.6 U	ser Support	17
	WWW Page of JANA98	
	Registered Users	17
1.1.7 R	esults of testing refinements	18
1.2 Execu	ITING <i>JANA98</i>	21
1.2.1 T	he command line syntax	21
	The command line for the PC version	21
	The command line for the UNIX version	21
1.2.2 T	he window size in UNIX version	
1.2.3 U	sing UNIX version of <i>JANA98</i> with ssh	
1.2.4 Fi	le name conventions	
1.2.5 E	lements of JANA98 graphics interface	
	Pull down menu	
	Form	
	<i>I ext box</i>	
126 4	Dialogue box	
1.2.6 A	tom names in JANA98	
1.3 BASIC	PARTS OF JANA98	
1.3.1 L	ist of programs	29
1.3.2 Li	ist of files	
1.3.3 B	asic steps with JANA98	
1.4 THE BA	ASIC WINDOW AND COMMON TOOLS	
1.4.1 T	he SetCommands Tool	
1.4.2 T	he File Menu	
	The file manager	
	The Edit Menu	

		The Listing Viewer	41
	1.4.3	The Run Menu	42
	1.4.4	The Tools Menu	43
		Recovering m40 file	43
		Transferring files from SHELX	43
		Creating CIF Files	
		Reading CIF files	44
		Generating a subgroup structure	45
		User preferences	46
		DOS preferences	46
		UNIX preferences	47
		UNIX general preferences	47
		UNIX display-specific preferences	49
		Resizing JANA98 basic window	
		Printer settings	51
2	DDFI		54
4	INELL		
	2.1 Pro	OGRAM <i>DATRED</i>	55
	2.1.1	Reading of diffractometer files	
		Appending another diffractometer file	
	2.1.2	The basic reflection file m95	
	2.1.3	Absorption correction	59
		Absorption correction for a general shape	59
		Optimisation of the crystal shape by X-Shape	60
		The Crystal shape viewer	62
	2.1.4	Simulation of a precession photo	63
	2.1.5	The Point group test	64
	2.1.6	Cell transformations	64
	22 PRC	OGRAM PRFLIM	67
	2.2 TRC 2.2 T	Description of PRFI IM	
	2.2.1 2.2.1	The Cell form	
	2.2.2	The Symmetry form	
	2.2.3	The symmetry torn	
		Four-dimensional superspace groups	
		Permutation of basic vectors	70 70
		Non-standard contring	70 70
		Transformation of a	70 71
		3d+2 and $3d+3$ symmetry	71 71
	224	Wave length and chemical formula	
	2.2.4	Import of reflections	
	2.2.5	Import of reflections Importing a single data set	72
		Importing a single data sets	7 <i>1</i> 74
		Importing data sets of several twin domains	
	226	The Twin option	75 76
	2.2.0	The Commensurate option	70 76
	2.2.7	The Basic crystal information file m50	ייייייייייייייייייייייייייייייייייייי
	2.2.0	Creation of the Refinement reflection file	
	2.2.9	<i>R</i> values	05
		r vulues Calculation of estimated standard deviations DDFIM	03 ۶۶
		The culling procedure	رن مو

		Listing from averaging	86
	2.2.10 The refinement reflection file m91		
	2.2.11	Listing of PRELIM	88
3	STRUC	TURE SOLUTION AND REFINEMENT	92
	2 1 STD		02
	3.1 SIK	The reference of the second star file with	93
	3.1.1	The refinement parameter file m40	93
		The basic parts of m40	93
		<i>Typical examples of</i> m40	94
		The symbolic form of m40	97
	3.1.2	Commands section	105
		Maximal number of scale parameters	105
		Definition of wave vectors	105
		Definition of orthogonalization parameters	106
	3.1.3	Header numbers	107
	3.1.4	Scale parameters	108
		Data scales	108
		Fractional volumes	109
		Refinement keys of scale factors	109
	3.1.5	Overall isotropic thermal parameter	110
	3.1.6	Extinction parameters	111
		Theoretical	112
	3.1.7	Atomic header parameters	116
		Setting the atomic header line parameters	117
	3.1.8	Temperature parameters	120
		The expressions defining various forms of the temperature factor.	120
	3.1.9	Anharmonic displacement parameters (ADP)	121
		Meaning of parameters	121
		Theoretical	122
		Setting or deleting ADP	122
	3.1.10	Position modulation parameters	123
		Theoretical	123
		Harmonic position modulation	123
		Sawtooth position modulation	124
		Meaning of parameters	125
		Selection of wave vectors	126
		Setting or deleting position modulation	126
	3.1.11	The occupation modulation parameters	127
		Theoretical	127
		Harmonic occupation modulation	127
		Crenel occupation modulation	128
		Meaning of parameters	128
		Setting or deleting occupation modulation	130
		The relationship between occupation factor ai and occupation	
		modulation.	130
	3.1.12	2 The temperature modulation parameters	131
		Theoretical	131
		Parameters meaning	132
		Setting or deleting temperature modulation	132
	3.1.13	Special and harmonic functions applied together	133
		=	

Introduction	133
Combination of harmonic functions and crenel functions	133
Orthogonalization of basic functions	134
Selection of basic functions	134
3 1 14 The ADP modulation parameters	137
Meaning of narameters	138
Setting or deleting of ADP modulation parameters	138
3 1 15 Phason for atoms	130
3.1.15 Thason for atoms	1/0
The model and molecular parameters	,140 140
2 1 17 Malagular hander parameters	140
5.1.17 Molecular lieader parameters	141 111
Meaning of parameters	141
The reference point	
Local symmetry	141
3.1.18 Parameters of the model molecule	142
3.1.19 Basic molecular parameters	142
Meaning of parameters	142
Theoretical	143
Rotation along predefined axis	144
3.1.20 TLS tensors	145
Meaning of parameters	145
Theoretical	145
Setting or deleting TLS tensors	146
3.1.21 Molecular position modulation	
Meaning of parameters	
Theoretical	148
Setting and deleting of molecular position modulation	149
3.1.22 Molecular occupation modulation	149
3.1.22 Molecular temperature modulation	150
Magning of narameters	150
Setting and delating of molecular temperature modulation	151
2 1 24 Dhagan for malacular positions	<i>IJI</i> 151
5.1.24 Phason for molecular positions	
3.2 Program <i>EDITM40</i>	153
3.2.1 Description of <i>EDITM40</i>	153
Rules for making temporary and permanent changes	154
Selecting atoms	154
3.2.2 Service tools	158
Do/Undo command	158
Editing of the file m40	158
Conversion of m40 and m50 to various formats	158
3 2 3 Procedures for deleting or adding atoms	159
Replacing/inserting atoms	150
Deleting of atoms	160
Adding of hydrogen atoms	100
Marging of symmetry related atoms	161
2.2.4 Transformation proceedings	101 16 0
5.2.4 Hallstolillation and/on origin shift	
Transformation ana/or origin shift	
Expansion by symmetry operation(s)	
1 ransforming m40 to supercell	
3.2.5 Procedures handling temperature parameters and ADP	164

	Temperature parameters	164
	Beta<->U	164
	Setting or deleting anharmonic tensors	165
3.2.6	Setting modulation waves and refinement keys	166
	Setting of refinement keys	166
	Setting or deleting modulation waves	168
	Define modulation waves	168
	Setting orthogonalization parameters	170
3.2.7	Procedures handling molecules	171
	Creation of new molecular part	171
	Using the model molecule file m45	177
	Placing the model molecule	180
	Setting the rotation axis	181
	Reference point, symmetry restrictions and refinement keys	189
	Transferring of atoms of molecule to the atomic part	190
	Transformation of molecular parameters	190
3.2.8	Choosing between molecular and atomic model parameters	191
3.2.9	Using local symmetry for molecules	
3 3 Ppc	NCP AM REFINE	210
3.5 TKC	Description of <i>PEFINE</i>	219 210
5.5.1	The weighting scheme minimised function and statistical quantiti	219 219
	The weighting scheme, minimised junction and statistical quantitie	es221 222
222	The related topics	222
3.3.2	Refinement laws	223
5.5.5	The automatic and special refinement keys	223 272
	The Manual and Automatic mode	223 222
	Authors and Autonae commanda	223 224
	Aureys and Auspee commanus	224 221
	The setting order for refinement less	224
	The setting order for refinement keys	223 226
	Usage of the build break	220 226
	Initial values of modulation parameters	220
	Duchum communas	227
		227
	The screen output of the refinement	228
	Singular Refinement.	228
224	Checking of the Results	229
3.3.4	The Devic Commands tool for <i>REFINE</i>	230
3.3.3	The Basic Commands	231
	The number of cycles, F_0F_c table and main features of the listing.	231
	Refinement keys and symmetry restrictions	232
	The minimised junction	232
	The damping factor	232
	List of reflections in the refinement listing	233
	K SIAUSUCS	255
226	Correlations	233
5.5.6	Moallying of the input reflection set	237
	Selecting reflections	23/
	The Dontuse command	238
~ ~ ~ ~	Ine Scale command	239
3.3.7	Weighting scheme	241

	3.3.8	Extinction correction	243
	3.3.9	User constraints	245
		The Fixed command	245
		The Restriction command	246
		The Equation command	247
		Syntax rules for structure parameters	248
	3.3.10) Modulation commands	253
	3.3.11	Twins and overlaps	255
		Main assumptions	255
		Overlapping of twin lattices	
		Classification of twins based on their twinning matrices	
		Refinement of completely overlapped twins	
		Refinement of partially overlapped twins	
		Refinement of twins having only fully separated or fully overlaged reflections	pping 257
		Refinement of twins having partially overlapped reflections	257
		Refinement of "almost" commensurate structures	258
	3.3.12	P. Refinement listing	260
	3.4 Pro	OGRAM FOURIER	
	3.4.1	Description of FOURIER	
	3.4.2	Basic commands	
	3.4.3	Type of the Map	270
	3.4.4	Scope and Orientation	273
		The section types in JANA98	273
		Communication between FOURIER and CONTOUR	274
		The Scope Form	
		The Orientation Form	
	3.4.5	The Peaks Commands	
	3.4.6	The m48 and m47 Files	
	3.4.7	Fourier Listing	
	3.5 AD	VANCED TOPICS	
	3.5.1	Setting and deleting special modulation functions	
	3.5.2	Commensurate structures	
4	STRUC	TURE INTERPRETATION	290
	41 DDC	OGRAM CONTOUR	201
	4.1 1 KC	Description of CONTOUR	291
	4.1.2	Drawing $R_2 = R_2$ and $A_2 = A_2$ sections stored in the mal File	291
	413	Contour options and Contour tools	292
	4.1.5	Drawing General sections	299
	1.1.1	General section for modulated structures	
	4.1.5	Drawing A ₃ -A ₄ sections	
	4.1.6	Drawing (joined) probability density functions	
	4.2 Pro	одгам <i>DIST</i>	
	4.2.1	Description of <i>DIST</i>	
	4.2.2	Basic commands	
	4.2.3	Selection commands	
	4.2.4	Torsion angles and best planes	314
	4.2.5	Modulation commands	316

4.2.6	Dist listing of an ordinary structure	
4.2.7	Dist listing of an incommensurate structure	
4.2.8	Using <i>DIST</i> for commensurate structures	
4.2.9	Using <i>DIST</i> for composite structures	
4.2.10	DIST listing m61	
4.3 Pro	OGRAM <i>GRAPHT</i>	
4.3.1	Description of <i>GRAPHT</i>	
4.3.2	Coordinate plots	
4.3.3	Occupancy plots	
4.3.4	Temperature plots	
4.3.5	Distance and valence plots	
4.3.6	The distance plots of composite structures	
REFERENCES		
LIST OF	FIGURES	
LIST OF T	ГАВLES	