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Abstract 

This paper describes a computational method for the 
determination of all possible phonon modes in 
framework crystal structures that leave the funda- 
mental structural units (tetrahedra and octahedra) 
undistorted. Such rigid-unit modes (RUMs) are prime 
candidates as soft modes for displacive phase transi- 
tions, such as in the perovskite structure, and this 
computational method can be used to rationalize the 
phase transitions in any framework structure. The 
method has been programmed for general use. The 
RUM approach is illustrated by consideration of the 
perovskite, quartz and cristobalite structures. 

1. The concept of rigid-unit modes 

Many silicate crystal structures are composed of SiO4 
tetrahedra that are linked to other tetrahedra by 
corner-sharing oxygen atoms to give a semi-infinite 
framework connectivity. Quartz is one well known 
example of what we call a framework structure. Such 
framework structures are not confined to silicates: 
AIPO4 and As205 are examples of nonsilicate 
framework structures. Many framework structures 
are found to undergo displacive phase transitions 
(Carpenter, 1988; Salje, 1988). In some respects this 
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might seem to be counter-intuitive, because Si-O 
bonds are strong and the tetrahedra are difficult to 
distort. However, such phase transitions can occur 
without any significant distortions of the SiO4 
tetrahedra. Quartz is a good example of this (Megaw, 
1973; Grimm & Dorner, 1975; Boysen, Dorner, Frey 
& Grimm, 1980; Berge, Baccheimer, Dolino, Vallade 
& Zeyen, 1985; Vallade, Berge & Dolino, 1992). The 
high-temperature (/3) phase of quartz (Fig. l a )  has 
hexagonal symmetry and the low-temperature (a)  
phase (Fig. 1 b) has trigonal symmetry. In the quartz 
structure, the SiO4 tetrahedra are connected as linked 
spirals and at the phase transition the spirals are 
distorted by rotations and displacements of the 
tetrahedra. M egaw (1973) has discussed the structures 

(a) (b) 

Fig. 1. (a) Projection of the hexagonal phase of quartz down [001 ], 
in which the SiO4 tetrahedra are shown as shaded units. (b) 
Projection of the trigonal phase of quartz down [001]. 
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of other silicate crystals from this perspective and 
Glazer (1972) has extended this analysis to the 
different phase transitions in perovskites in which the 
B O  6 octahedra rotate without distortion. 

The displacive phase transition in quartz is driven 
by a normal soft optic phonon,  which has recently 
been measured by inelastic neutron scattering 
(Dolino, Berge, Vallade & Moussa, 1992). This 
phonon is an example of a normal mode that is able 
to propagate without distortions of the tetrahedra. 
We are prompted to ask whether such vibrational 
modes, which involve distortions of the basic struc- 
ture framework but which do not distort the SiO4 
tetrahedra, are more common? Such modes can be 
called rigid-uni t  m o d e s  (RUMs). Boysen et al. (1980) 
were the first to consider the issue of rigid-unit modes 
and they deduced the existence of one RUM at a 
zone-boundary wave vector in quartz. Berge et al. 
(1985) and Vallade et aI. (1992) have extended this 
analysis and have shown that a number of different 
types of RUM exist in the/3 phase of quartz. These 
include a RUM at k = 0, which acts as the soft mode 
for the a-/3 transition, and a whole branch of RUMs 
along the ,~ direction, [¢, 0, 0], in reciprocal space, 
which is responsible for the incommensurate phase 
transition. Berge et al. (1985) and Vallade et al. (1992) 
have been able to account for many of the features 
of  the incommensurate phase transition by the 
existence of these rigid-unit modes. This basic picture 
has been confirmed by molecular-dynamics simula- 
tions (Tautz, Heine, Dove & Chen, 1992). It would 
seem reasonable to expect that RUMs might exist in 
a large number of framework structures and their 
existence would provide the basic explanation for the 
existence of the displacive phase transitions observed 
in such structures. 

In this paper, we tackle the basic question of how 
we can predict the occurrence of RUMs in any given 
framework structure. Vallade (Berge et al., 1985; 
Vallade et al., 1992) appears to have been the first 
person to pursue this question in a systematic way 
for quartz, by testing all the special points, symmetry 
lines and planes of symmetry in reciprocal space for 
the existence of RUMs. Although this enumeration 
of the RUMs in quartz was obtained by hand [the 
details of the method are outlined in Vallade et al. 
(1992)], most framework structures are more complex 
than quartz and hand calculations are generally 
impractical. The purpose of this paper is to present 
a pragmatic method for the determination of the 
complete set of RUMs in any framework structure. 
We note that we mostly have in mind cases where 
adjacent units share a single oxygen atom, but the 
ideas can also be applied to cases where adjacent 
units (usually octahedra) share two oxygen atoms 
along a common edge. A similar question has been 
tackled for glasses, where the corresponding modes 
are called f loppy  m o d e s  (D6hler, Dandoloff & Bilz, 

1980; Thorpe, 1983; He & Thorpe, 1985; Cai & 
Thorpe, 1989). There are some differences, however, 
between the work on glasses and the present case. In 
particular, we are interested only in systems that are 
built as frameworks of rigid units, whereas the work 
on glasses is more generally applied to any system 
with rigid connectivity. Furthermore, we are now 
interested in the wave-vector dependence, which is 
not an issue in glasses. We will also see below that 
the work on glasses cannot be applied to crystalline 
materials as it predicts that there are no rigid-unit 
modes in crystalline silicates, contrary to our 
findings. We explain this apparent contradiction in 
§2. 

Before we describe the practical method we have 
developed for the enumeration of the set of RUMs 
for any framework structure, we outline some points 
of principles that highlight the essence of the problem 
(§ 2). We then describe a computational method and 
illustrate the main features using a two-dimensional 
analogue of the perovskite structure (§ 3). We con- 
clude by describing the application of the method to 
three examples, perovskite, quartz and cristobalite 
(§ 4). Some of the implications of the RUM model - -  
which are more numerous than one might have 
expected - -  have been described elsewhere (Dove, 
Giddy & Heine, 1992a,b) and the application of the 
RUM model to the phase transition in quartz has 
been described in detail by Berge et al. (1985) and 
Tautz et al. (1992). A detailed application of the 
RUM model to a number of systems that are of 
interest will be described elsewhere (Giddy, Dove, 
Hammonds,  Winkler & Heine, 1993). 

2. Framework rigidity and the issue of flexibility 

At first glance, it is by no means obvious that RUMs 
will be geometrically allowed in a silicate structure. 
From a qualitative viewpoint, it is easy to conceive 
of topological structures that are floppy (i.e. that have 
zero-frequency vibrational modes), such as a two- 
dimensional set of four rods joined into a square (Fig. 
2a). In this example, the structure is unstable against 
a shear of the square. On the other hand, it is also 

(a) (b) (c) 

Fig. 2. (a) Four rods hinged at the corners, forming a structure 
that is easily sheared. (b) The same four rods cross braced with 
a fifth rod, giving rise to a stiff structure. (c) The original four 
rods braced with a fifth rod constrained to be parallel to two of 
the other rods. This structure can now be sheared. 



A. P. GIDDY, M. T. DOVE, G. S. PAWLEY AND V. HEINE 699 

easy to conceive of structures that are cross braced 
and hence rigid, such as the square of rods 
with a fifth rod connected across the diagonal (Fig. 
2b). Indeed, there is a theorem that has been used 
extensively in the study of the dynamics of glasses 
(D6hler et al., 1980; Thorpe, 1983; He & Thorpe, 
1985; Cai & Thorpe, 1989), which simply states that any 

structure with F degrees of freedom and C indepen- 
dent constraints will only be floppy if F > C. This is 
simple to illustrate in our example of connected rods. 
The four rods in Fig. 2(a) each have three degrees 
of freedom (two translations and one rotation), giving 
F = 12. There are two constraint equations governing 
the connections at each joint, giving C = 8. Thus there 
are 4 (12 -8 )  remaining degrees of freedom. Two of 
these are the uniform translations of the whole struc- 
ture, one is the rotation of the whole structure and 
the fourth is the shear of the structure. Addition of 
the cross brace in Fig. 2(b) gives F = 15 and C = 12. 
We are left with only the uniform translations and 
rotation and the shear mode is no longer allowed. 
For a crystal structure with no constraints on the 
position or orientation of the crystal, this criterion is 
generalized to the condition that F >  C + 6 .  In our 
terminology, this means that a three-dimensional 
structure will only support ( F -  C - 6 )  RUMs if F >  
C +6. We note that a rigid body has six degrees of 
freedom (three translational and three rotational). 
For a tetrahedron connected to four other tetrahedra, 
each of the oxygens at the corners has three con- 
straints on its position (it needs to be at the same 
position as the same atom in the connected tetrahe- 
dron). These three constraints are shared by the two 
tetrahedra. Adding all the constraints leads to a total 
of six per tetrahedron, so that the number of con- 
straints is the same as the number of degrees of 
freedom. Thus, according to the criterion, framework 
silicates are a marginal case, with a fine balance 
between the number of degrees of freedom and the 
number of constraints. 

In many cases, however, it turns out that the num- 
ber of independent constraints is actually slightly 
lower. This case is illustrated in Fig. 2(c), where the 
cross brace is now parallel to two of the rods. As 
before, F = 15. However, in this case the number of 
independent constraints is actually lower than the 
number we calculated for the structure in Fig. 2(b). 
If we consider now the fifth rod, we see that if we 
constrain one end of the cross-brace rod to be cor- 
rectly joined to one of the rods that forms the square 
and we simply constrain its orientation to be parallel 
to the top rod, we have actually added only three 
independent constraints rather than four. So we have 
gained an additional degree of freedom,which can be 
identified with the same shear of the structure that is 
found in the structure shown in Fig. 2(a). This illus- 
trates the fact that in framework structures some of 
the constraints are not independent, thus allowing 

the existence of some RUMs but usually not many 
compared with the total number of normal modes in 
the crystal. Thus we may expect that the RUMs will 
often be restricted to a small finite set of wave vectors, 
for example along the high-symmetry lines in 
reciprocal space, or in zones. This will be found for 
the examples given below. However, this is not a 
general statement; we have found cases in which there 
are one or more RUMs for all wave vectors (Giddy 
et al., 1993). 

We noted in § 1 that the analysis previously applied 
to glasses (D6hler et al., 1980; Thorpe, 1983; He & 
Thorpe, 1985; Cai & Thorpe, 1989) predicts that 
for silicates the number of rigid-unit modes is zero 
(D6hler et al., 1980). The apparent contradiction be- 
tween this result and the results we present below has 
been outlined in the preceding paragraph - symmetry 
allows for some of the constraints to become degen- 
erate. This point is not an issue in the study of glasses. 
In cases where the RUMs are restricted to lines of 
planes of wave vectors in reciprocal space, the number 
of rigid-unit modes is almost zero when compared to 
the total number of normal modes. However, in those 
cases where there is one or more RUM for each wave 
vector, the total number of RUMs will amount to a 
few percent of the total number of normal modes. In 
these cases, the result for glasses fails spectacularly. 

Simply counting constraints and degrees of free- 
dom, however, only gets us part of the way to the 
goal of being able to deduce the existence of RUMs 
in any framework structure. Aside from the fact that 
it is difficult to deduce the number of independent 
constraints, such an analysis does not tell us the wave 
vectors of such modes. For this reason, we have 
developed an alternative approach, which we now 
outline. 

3. Computational method: the molecular approach and 
the split-atom method 

3.1. The basic idea 

We call our method the molecular approach, the 
essence of which is to treat the problem of determin- 
ing the set of RUMs as a problem in molecular lattice 
dynamics. In our application, we treat each rigid unit 
as an independent rigid entity, or 'molecule'. The 
atoms that are shared by two rigid units are treated 
as two distinct particles, or 'atoms' (one per molecule) 
with a separation of zero. These are given the name 
split atoms. The system is then subject to two con- 
straints, namely that the rigid units are unable to 
distort and that the pairs of split atoms cannot move 
apart. The rigid-molecule constraint is treated as a 
strict constraint, but we treat the zero-separation con- 
straint for the split atoms as a slack constraint by 
inventing an interaction potential operating between 
two split atoms, ~0(d), that is harmonic with respect 
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to the split-atom separation distance d: 

q~(d)=(1/2)Kd 2. (1) 

The force constant K would have infinite value for 
a strict constraint. Clearly, if a phonon is calculated 
to have zero frequency (i.e. zero potential energy) in 
this model, it implies that the split atoms do not 
separate in this mode and it is a RUM. 

We have implemented this approach by modifying 
the standard molecular-lattice-dynamics program 
CRASH, written by Pawley (1972). The principal 
modification is the inclusion of the slack constraint 
potential (1). No other potentials are used in the 
modified program. We have given the modified pro- 
gram the name CRUSH. It was the relatively easy 
nature of the task of modifying the CRASH program 
that motivated the pragmatic choice of the molecular 
approach. 

The model of split atoms interacting via the poten- 
tial (1) is not as unphysical as it appears at first sight. 
In reality, of course, the shared oxygen atoms cannot 
split into two: what happens instead for a phonon 
that is not a RUM is that the units have to distort. 
Thus, the force constant K is to be interpreted as an 
average force constant for all types of distortion of 
the units, giving some measure of the stiffness of the 
units. If the magnitude of K is chosen as some average 
force constant for the different types of distortion, 
then we expect our procedure to give at least a qualita- 
tive picture of the phonon spectrum. 

3.2. Example: two-dimensional perovskite 

A simple example will serve to illustrate our 
molecular approach. Consider the two-dimensional 
projection of the perovskite structure (Fig. 3). The 
basic units are the 06 octahedra, and we can neglect 
the A and B cations. We allow only the x and y 
translations of the units and the rotations of the 
octahedra about the z axis; we label these dynamic 
variables as u, v and 0, respectively. For simplicity, 
the molecular mass has been set as unity (in arbitrary 

F !.U 

Fig. 3. The ideal two-dimensional perovskite structure, with one 
rigid unit per unit cell. The rigid units, shown as squares in this 
projection, are shaded. 

units). The unit-cell length is denoted a; the bond 
lengths are therefore equal to a/2. The Hamiltonian 
for this model is given by 

(1/2) ~ (.2 .2 +a2/~,,,) 
= Urn ,  n "~- t ) m ,  n 

m ,  tl 

+ ( K / 2 )  Z [(Um, n--Um+l,n)2+(Um, n--Um.n+l) 2 
m ,  tl 

"3l-(t)m,n--1)m+l,n) 2 +(Vm,n--Vm, n+,) 2 

+ a2(O,,,.,, + 0,,,+1,,,) 2 + a2(Om.n + O~.n+l) 2 

+ 2a(u,,,,,, - u,,,,,,+l)(Or..,, + O,.,.n+l) 

+2a(v,,,,-v,,+w,)(O,~,,,+O,.+,,,)], (2) 

where m, n identifies the position of the rigid unit in 
the two-dimensional square lattice. The vibrational 
frequencies to (k) for this system for any wave vector 
k = ~:a*+ ~'b* can be calculated from the dynamical 
matrix, D(k), in the usual manner: 

u (k ) ]  u (k) ]  

toE(k) v(k) = D ( k ) .  v(k) / ,  (3) 

0(k) 0(k)J  

where the dynamical matrix has the form 

I 4 K ( 1 0 - a )  0 flK 1 
D(k)=  4 K ( 1 -  o~) - y K  (4a) 

L - i l K  TK Ka2(1 + a) 

a = (cos 2rr~:+ cos 27r~)/2 (4b) 

,8 = ia sin 2rr~" (4c) 

T = ia sin 2rr~ (4d) 

and u(k) etc. are the spatial Fourier transforms of 
the real-space variables u etc. The normal-mode 
frequencies can be obtained from the diagonalization 
of O(k). 

Apart from the trivial acoustic-mode solution at 
k = 0 (a = 1,/3 = 3' = 0), the only solution with to = 0 
is a single mode at k = (0.5, 0.5), when a = -1, /3 = y = 
0. The eigenvector of this mode involves only the 
rotation 0. A set of calculated dispersion curves for 
this model is shown in Fig. 4. Note that, owing to the 
coupling between the rotational and translational 
variables (the off-diagonal components of the 
dynamical matrix), the transverse acoustic mode at 
the zone centre changes to a purely rotational mode 
at the zone boundary. The anticrossing that leads to 
this change is evident in Fig. 4. 

3.3. Practical implementation 

The perovskite example has illustrated both the 
molecular method for the enumeration of the set of 
RUMs and the application of the CRUSH program. 
We found that CRUSH will give unambiguous 
results for relatively small values of K (of the order 
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of 5000 kJ mol -~/1,-2). Rounding errors in CRUSH 
typically give RUM frequencies with maximum 
values of--0.01 THz, compared with typical frequen- 
cies of > 5 THz for all other modes. Thus the RUMs 
can easily be identified in the program output. The 
program was modified to use isotropic inertia tensors 
for all rigid units, with the tensor axes lying parallel 
to the Cartesian axes used in the program. This is a 
good approximation because the units are always 
nearly exact tetrahedra or octahedra and it makes the 
interpretation of the eigenvectors given in the output 
much easier. CRUSH can handle more than one unit 
in the structure and also more than one type of unit. 

We have interfaced CRUSH with the group-theory 
program of Warren & Worlton (1974) to enable us 
to assign a symmetry to each RUM. The fact that all 
the RUMs have zero frequency means that their calcu- 
lated eigenvectors will generally be mixed, even over 
modes of different symmetry. However, by projecting 
the symmetry eigenvectors back onto the calculated 
RUM eigenvectors we can easily unmix and assign 
unique symmetries to the different RUMs. We have 
also interfaced CRUSH with the structure-drawing 
program STRUPLO (Fischer, 1985) in order to give 
a graphical representation of the k - - 0  RUM 
distortions.* 

3.4. Comparison with alternative approach 

We should compare this approach with a possible 
alternative method, namely one which treats the 

* The suite of programs we have developed is written in standard 
Fortran. The programs are run on a VAX computer under VMS, 
but we believe that they can be compiled and run on any standard 
computer. The source codes and sample data files are available by 
electronic mail from MARTIN@MINP.ESC.CAM.AC.UK. 

[~,o] [g,~q 
3 

2 

0 I i | I 

r x 

[~,~l 

M r 

W a v e  v cJ~o r 

Fig. 4. Calculated dispersion curves for the two-dimensional 
perovskite along the three symmetry directions. 

molecular constraint as a slack constraint and the 
constraint that keeps the positions of the shared atoms 
identical as a strict constraint. This approach could 
be carried out using a conventional lattice-dynamics 
program, with strong intramolecular interactions (e.g. 
Si-O bonds and O-Si -O bond angles) and no inter- 
molecular interactions, and indeed we have used this 
approach for some calculations (Dove et al., 1992b). 
This approach, however, has three drawbacks in com- 
parison with the method we have used. The first 
drawback is that the calculated eigenvectors are not 
given in terms of rotations or translations of 
individual rigid units, so that a separate sorting of 
external and internal modes would be necessary. The 
second drawback is that a good potential model 
would have to be invented that would be applicable 
to different types of rigid units (tetrahedral or octahe- 
dral, and different with respect to the central cations). 
Moreover, before a calculation can be performed, 
it would be desirable to perform a preliminary 
structure-relaxation calculation. This is not trivial if 
RUMs are present, as the structure can relax with a 
modulation given by the set of eigenvectors of the 
RUMs with no cost in energy. Imposition of symmetry 
can help in most cases but will not help if there is a 
RUM that does not break the symmetry. These prob- 
lems do not occur with our approach. The third 
drawback, which is the least serious of the three, is 
that unless the system contains only tetrahedral rigid 
units with sharing of all atoms (assuming that the 
atoms at the centers of the rigid units are not 
included), the number of calculated modes will be 
higher than with our method, producing more unwan- 
ted output. 

3.5. Some practical points 

It is often found that the symmetry of a given crystal 
structure does not constrain the tetrahedra to have 
the ideal shape. In many of our applications, we use 
both idealized geometries as well as the actual struc- 
tures with slightly distorted tetrahedra. We have 
found that in some cases the use of distorted 
tetrahedra means that the calculated RUM frequency 
is no longer zero but has a small value, so we try to 
use idealized structures whenever possible. For com- 
plex structures that contain only tetrahedra of the 
same kind, we generate the idealized structures using 
a lattice-energy minimization program that incorpor- 
ates only harmonic potentials for the shortest Si-O 
and O-O bonds. 

We have also demonstrated the existence of a 
simple rule, that in some cases different rigid-unit 
modes do not commute. By this, we mean that, after a 
structure has been distorted by one RUM eigenvector, 
many of the other RUMs no longer have calculated 
frequencies of zero. This effect is seen experimentally 
in quartz: an M-point  mode of the c~ phase is observed 
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Table 1. Rigid-unit modes in the cubic and tetragonal 
phases of perovskite 

Rigid-unit  Rigid-unit  
modes  in the modes  in the 

Wave vector  cubic  phase tetragonal phase 

(0, o, o) (Three acoustic) (Three acoustic) 
(0.5, 0.5, ~') One rotational (z) 
(0.5, ~', 0.5) One rotational (y) One rotational (y) 
(~', 0.5, 0.5) One rotational (x) One rotational (x) 

(0.5, 0.5, 0.5) Three rotational Two rotational 
(0.5, 0.5, 0) One rotational (z) 

(0.5, 0.0, 0.5) One rotational (y) One rotational (y) 
(0.0, 0.5, 0.5) One rotational (x) One rotational (x) 

to soften on approaching the transition (Boysen et 
al., 1980). In the fl phase this mode is a RUM, but 
in the a phase, which can be described as the fl phase 
modulated by a single RUM at k = 0, it gains a finite 
frequency proportional to the square of the amplitude 
of the distortion. This rule will be illustrated in some 
of our examples in § 4. 

4. Sample results 

4.1. Cubic and tetragonal perovskite 

The results of the CRUSH analysis for the cubic 
perovskite structure are given in Table 1. The triply 
degenerate rotational RUM at k = (0.5, 0.5, 0.5) is the 
mode that is observed to soften in the antiferroelectric 
phase transition in SrTiO3 [see Bruce & Cowley 
(1981) for a review of this phase transition]. In addi- 
tion, one rotational RUM is allowed along each of 
the edges of the Brillouin zone. The existence of this 
mode has been observed by inelastic neutron scatter- 
ing (Stirling, 1972). It was found that the whole 
branch softens on approaching the phase transition 
until the mode at k=(0.5,0.5,0.5)  reached zero 
frequency first (the branch along the edge has a slight 
dispersion, with the minimum at this wave vector). 
The fact that a number of RUMs exist whilst only 
one specific mode softens illustrates one limitation 
of the RUM description of phase transitions, namely 
that we are not in a position to explain why any one 
particular RUM is observed to soften first in prefer- 
ence to another possible RUM. 

The analysis presented above was carried out on 
the ideal undistorted paraphase. What  happens when 
we perform a RUM analysis on the structure of a 
distorted phase? In Fig. 5, we show a distorted version 
of the two-dimensional projection of the perovskite 
structure that was shown in Fig. 3. It turns out that 
in this case there are no rotational RUMs at any wave 
vector. The reason for this is clear from a close look 
at the distorted structure. If the units are to rotate 
without changing their size, the unit cell needs to 
shrink. This coupling to strain becomes of higher 
order in the high-symmetry case shown in Fig. 3. 
Thus, in order to preserve the existence of the rota- 

tional RUM, we would need to include strain as a 
dynamical variable in the model. However, the three- 
dimensional structure with the antiferroelectric dis- 
tortion at k =  (0.5, 0.5, 0.5) still has some rotational 
RUMs, which are also described in Table 1. These 
modes correspond to rotations of the octahedra out 
of the planes and can themselves generate additional 
phase transitions as found in a number of other 
perovskites (Glazer, 1972). 

We have included perovskite in our examples 
because it provides a clear illustration of the basic 
principles. However, it is known that the octahedra 
in many perovskites are not actually very rigid; in the 
case of SrTiO3 there is a soft optic phonon at k = 0 
that involves a ferroelectric distortion of the 
octahedra. However, the tetrahedra in silicates are 
much more rigid and our analysis is applicable in 
these cases. We believe that this is also true for 
tetrahedra containing other cations, such as 
aluminium and phosphorus. In this respect, we note 
that the force constants for A1PO4 berlinite deduced 
from measurements of phonon dispersion curves do 
not differ substantially from those for SiO2 (Bethke, 
Eckold & Hahn, 1992). 

4.2. Hexagonal and trigonal quartz 

We have used CRUSH to confirm that our model 
gives results that are fully consistent with the analysis 
of Berge et al. (1985) and Vallade et al. (1992) for 
the hexagonal fl phase of quartz. We have extended 
the analysis to include all the zone-boundary points 
and the complete set of results is given in Table 2. It 
should be noted that there are RUMs at all special 
points in the Brillouin zone and along many of the 
high-symmetry lines. There is also one band of RUMs 
in a plane in reciprocal space, which correspond to 
acoustic modes in the long-wavelength limit. The 
optic RUM at F gives the distortion associated with 
the a-/3 phase transition and one of the branches of 
RUMs along Z is the branch that is responsible for 
the incommensurate phase transition (the other 
branch is an acoustic branch). 

Fig. 5. The distorted two-dimensional  perovskite structure, with 
two octahedra  per  primitive unit cell. 
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Table 2. Rigid-unit modes in the hexagonal and 
trigonal phases of quartz 

Rigid-unit modes 
in the hexagonal Remaining in the 

Wave vector phase* trigonal phase 

0, 0, 0 1"2(+21"3, F 5 acoustic) (Three acoustic) 
0, 0, ~ A2, A4, za6 
b r, ~:, 0 A 2 Yes 
~, 0, 0 2Z 2 

0, 0, 1/2 2A2, As 1 
1/3, 1/3, 1/2 H 2 Yes 
1/3, 1/3, 0 K 2 Yes 
1/2, 0, 1/2 Lt Yes 
1/2,0,0 2M 2 1 
~, ~:, 1/2 Q2 Yes 
1/2, 0, ~ U I Yes 
~, s r, 1/2 1 Yes 

~, ~', 0 1 Yes 

* The letters represent the wave vector, the subscripts give the mode 
symmetry and the superscripts denote the degeneracy of the mode. 

Table 3. Rigid-unit modes in the cubic and tetragonal 
phases of cristobalite 

Rigid unit 
modes in the Remaining in the 

Wave vector cubic phase* tetragonal phase 

O, O, 0 ~F;( + ~F?o acoustic) 1 (+three acoustic) 
~, ~, 0 2; 2 Yes 
~, 0, 0 2A 3 
~', ~, St: 2A3, A 2 

1/2, 1/2, 1/2 L2, 2L 4 
~, 1, ~: s2 
1,0,0 2X 4 
~:, ~, ~" 1 

* The letters represent the wave vector, the subscripts give the mode 
symmetry and the superscripts denote the degeneracy of the mode. 

In Table 2, we also list the RUMs found in the 
trigonal phase. We note that, whilst some of the RUMs 
remain in the trigonal phase, a number can no longer 
be classed as rigid-unit modes. Among these are the 
M-point RUM that was studied in some detail by 
Boysen et  al. (1980). This illustrates the rule of the 
non-commutation of rigid-unit modes. 

4.3. Cubic and tetragonaI cristobalite 

The results of a CRUSH analysis of the cubic/3 
phase of cristobalite (Fd3m) are presented in Table 
3. We note that in this case there are RUMs for wave 
vectors in the [1, 1, 0] zone as well as at special points 
and along symmetry directions. The X4 RUM is the 
mode that gives the distortion associated with the 
c~-/3 phase transition at 503 K (Hatch & Ghose, 1990; 
Schmahl, Swainson, Dove & Graeme-Barber, 1992). 
The existence of these planes of RUMs has been 
demonstrated by diffuse electron scattering (Hua, 

Welberry, Withers & Thompson, 1988). These authors 
were able to correlate their results with calculations 
of the RUM eigenvector at one special wave vector. 

We have also determined the set of RUMs for the 
low-temperature tetragonal phase (P41212) and these 
are also listed in Table 3. Very few RUMs remain in 
the tetragonal phase, which again illustrates the rule 
of the non-commutation of rigid-unit modes. This 
prediction has been verified by inelastic neutron scat- 
tering (Swainson & Dove, 1993). 
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