
Multicast Application Sharing Tool for the Access

Grid Toolkit

S Mehmood Hasan1, Gareth J Lewis1, Vassil N Alexandrov1,
Martin T Dove2, and Matt G Tucker3

1Advanced Computing and Emerging Technologies Centre,
School of Systems Engineering, University of Reading,
Whiteknights, P.O. Box 225 Reading, RG6 6AY, UK

2Department of Earth Sciences, University of Cambridge,
Downing Street, Cambridge CB2 3EQ

3ISIS Facility, Rutherford Appleton Laboratory,
Chilton, Didcot,OX11 0QX

Abstract

Multicast Application Sharing Tool (MAST) allows geographically distributed participants to
share arbitrary legacy applications. MAST supports scalable group to group collaboration by
using multicast. It is being used within the eMinerals project to augment the Access Grid
functionality. In this paper we describe MAST and its deployment as an Access Grid node
service within the eMinerals Virtual Venue.

1 Introduction

The e-Science community is benefiting from
research derived from multi-institutional
collaborations. These collaborations max-
imise the potential for sharing of expertise
and experience between partners and must
be supported by collaborative tools. These
tools aim to complement human face-to-face
communication by providing various modes
of interaction between geographically dis-
tributed peers. Collaborative tools create a
virtual work environment on multiple com-
puter systems connected over the Internet.

Multicast Application Sharing Tool (MAST)
enables sharing of legacy applications in a
group to group setting. It has been developed
as part of the eMinerals project [1] to be
used specifically with the Access Grid [2]
environment. Access Grid is an advanced
collaborative environment, which is used
for group to group collaboration across the
Internet. The communication offered by the
Access Grid can be enriched by an ability
to share, modify and collaboratively create
data and information. MAST allows geo-
graphically distributed participants to share
anything from subject specific applications,

such as a molecular viewer to generic office
programs, such as a PowerPoint presenta-
tion. This paper describes the integration of
MAST into the Access Grid environment by
deploying it as a node service. This allows
participants or group of participants within
an Access Grid session to engage in various
collaborative activities beyond audio/video
conferencing.

The paper is organised as follows: Sec-
tion 2 describes MAST in detail, including
various implementation issues, and provides
a comparison with the state of the art.
In Section 3, we discuss the Access Grid
Toolkit and the concept of node services.
This discussion leads us to the deployment of
MAST as an Access Grid service in Section 4.
The penultimate section presents our initial
experiences, and we conclude with remarks
on the work presented in this paper and a
roadmap for our future work in Section 5.

2 Application Sharing

Audio/Video conferencing is essential for an
effective collaborative experience, allowing
participants to mimic natural human inter-

Proceedings of the UK e-Science All Hands Meeting 2005, ©EPSRC Sept 2005, ISBN 1-904425-53-4

433



action. Another major component involves
sharing of material between participants.
This includes activities such as collaborative
viewing of visual data, document editing
by various colleagues and collaborative
code development between geographically
distributed peers. Application sharing is
the ability to share and manipulate desktop
applications between multiple participants,
thus facilitating the aforementioned activi-
ties.

Application sharing provides functional-
ity that is essential in some group meetings.
There are two main approaches to imple-
menting application sharing; collaboration
aware and collaboration unaware sharing.
Collaboration unaware sharing involves an
application developed to share the graphical
representation of the programs running on
the system. These tend to be less responsive
to user interactions and generate relatively
large amounts of network traffic. Due
to the applications being unaware of the
collaboration, there is no need for them
to be adapted to work in a cooperative
manner. Collaboration aware applications,
on the other hand, are developed to support
cooperative work by providing mechanisms
to synchronise the “shared view” between
users. The synchronisation puts less demand
on network resources and so the interactive
response is generally better. However, as
mentioned earlier either applications are
specifically developed for this purpose or
they are adapted to work in a cooperative
manner, which may not be possible for many
commercial applications.

2.1 Related Work

The Access Grid Toolkit provides some
default collaboration aware applications,
such as, shared browser, shared question tool
and shared presentation. It also includes the
functionality to deploy newly created appli-
cations. These suffer from the disadvantages
mentioned in the previous section. Several
collaboration unaware application sharing
solutions are also currently used with the
Access Grid, these include; Virtual Network
Computing (VNC) [5], inSORS IGPix [6] and
Distributed PowerPoint (DPPT) [7]. The
main problem with these application sharing
systems is their scalability within a group
environment.

Virtual Network Computing (VNC) has
traditionally been used with the Access
Grid in order to share applications during
meetings. It shares the entire desktop with
the participants in the group, which may not
be desirable. However, it can be modified to
share a specific application.

VNC has become the leading solution
for desktop sharing. It is designed for point
to point communication, consisting of a
server (Xvnc) and a light-weight viewer
(vncviewer). A participant wishing to share
a particular application runs the application
and allows the rest of the group to make
individual connection to his/her machine.
This approach has several features that
make it less suitable for group to group
collaboration, these include:

• VNC is point to point - one participants
runs the VNC server within the group
and all other participants connect uni-
cast to that server. Each participant
establishes a separate TCP connection
with the server, and the server sends out
a copy of the same data on each con-
nection. This increases the load on the
server with each extra participant and
results in inefficient use of network re-
sources. VNC approach clearly does not
scale well and is therefore unsuitable for
group collaboration.

• All the participants wishing to be part of
a VNC session must acquire the IP ad-
dress of the VNC server machine prior
to the session. Furthermore, trust rela-
tionships between hosts must already be
in place for the communication to take
place. This puts a restriction on sponta-
neous collaboration between peers.

• Sharing several applications within a
group becomes complicated with VNC.
The situation becomes quite confusing
with several people sharing at the same
time because it is difficult to keep track
of which peer is sharing which desktop.
Furthermore, one must keep track of the
IP addresses of each VNC server machine
in the group.

There is a multicast extension to VNC
which attempts to overcome the scalability
problem associated with the original VNC
tool. MulticastVNC [8] was developed as
part of a TeleTeachingTool (TTT) and hence

Proceedings of the UK e-Science All Hands Meeting 2005, ©EPSRC Sept 2005, ISBN 1-904425-53-4

434



restricts participants (students) to be mere
viewers in a session. The TTT server acts
as a proxy, receiving unicast traffic from
the teacher’s machine running the VNC
server and multicasting the traffic to all the
students within a particular multicast group.
This overcomes the problem of bandwidth,
but adds the inconvenience that other par-
ticipants can act only as viewers. There is
another restriction which means each client is
must establish a TCP connection to the TTT
server to initialise the Remote Framebuffer
Protocol (RFB) [10] (used in VNC) and
get the multicast address and port for the
session. This connection is terminated upon
initialisation and the client then connects to
the multicast group.

inSORS IGPIX is a commercial applica-
tion sharing software. It works by grabbing
the graphical data associated with the shared
application and sending it to the inSORS
server based at their site. The clients then
make individual connections to this server
over http, using the URL circulated by
the presenter prior to the meeting. This
clearly does not provide a scalable model
as individual connections are made by each
client to the server. Moreover, clients are
mere viewers in this session, which can be
quite restrictive.

DPPT allows the sharing of PowerPoint
slides between geographically dispersed
peers. It is more responsive and makes more
efficient use of the network resources as it
only transmits the events rather than the
graphical data. However, there are several
drawbacks with this approach, these include:

• All participants must download the Pow-
erPoint slides before the collaborative
session can commence

• It is designed for sharing PowerPoint pre-
sentations and therefore no other appli-
cations can be shared

• It does not work well with animations
on the slides, this is because only slide
change and mouse/keyboard events are
propagated to all the participant

2.2 Multicast Application Shar-
ing Tool (MAST)

Our approach is based on providing a scal-
able solution for group to group collabora-

tion. This is achieved by using multicast -
where interested parties join a group and mes-
sages are propagated only to the group mem-
bers. The important point to note here is
that the sender only needs to send one copy
of the message which is then delivered to all
interested participants. In a group scenario
this is clearly a better approach than unicast,
where a separate copy of the same message
is sent out for each participant thus increas-
ing network traffic and load on the sender.
Broadcast, on the other hand, involves prop-
agating the message to everyone on the local
area network (LAN) thereby flooding the net-
work unnecessarily.

2.2.1 Update Mechanism

MAST shares an application’s visual repre-
sentation among participants within a group,
allowing changes to the application to be
propagated to all members. Sending visual
data associated with the whole application
would be inefficient. If only a small pro-
portion of the screen is changing, it would
make more sense to send only the changes.
MAST achieves this by splitting the visual
representation of the legacy application into
sections. Each section is checked to see if
there is a change. If the section has changed,
it is sent to the other participants. The
receiving participants identify the section
that has changed and update their local view
of the application. Therefore, MAST reduces
the network load by sending only updated
regions and also compressing the data before
transmission.

Another important issue involves the
frequency of obtaining the graphical data.
The visual data for the whole application
could be acquired and sent to other partic-
ipants each time an event occurs or after a
set interval. Changes to the visual repre-
sentation of an application can occur due
to hardware or software events. If the user
clicks a button on the application, the view
of the application will change in response
to the event. Similarly if an application
initialises an event, such as, an animation,
or a progress bar, the visual representation
of the application would change. There
are two possible methods for reacting to
these events - the first is to check the visual
representation after a default interval. This
method works well for software events, by
updating the screen to show changes not

Proceedings of the UK e-Science All Hands Meeting 2005, ©EPSRC Sept 2005, ISBN 1-904425-53-4

435



induced by external events, such as mouse
or keyboard events. The interval between
checking for updates is extremely important.
The default interval value must attempt to
provide good responsiveness, whilst ensuring
relatively low overhead. To reduce wastage of
processor time, the interval must be relatively
high. This makes using the interval method
unacceptable for changes due to external
events. In a standard operating system
users would expect the visual response to an
event within several hundred milliseconds.
If the interval is set much higher, then the
shared application would appear “sluggish”
to the user. The alternative to setting
the interval is to check sections after an
external event. It is sensible to assume
that the visual representation of the shared
application will change once it receives an ex-
ternal event. Using this method ensures that
the shared application will remain responsive.

MAST combines the two methods to
achieve an ideal balance, achieving high
responsiveness and avoiding unnecessary
overhead. The update interval can be set
relatively high to avoid undue wastage of
processor time, whilst still capturing changes
that are not due to external events. Check-
ing the segments after each external event
(associated with the shared applications
window) means that visual changes are
processed quickly, improving the interactive
performance.

2.2.2 Using Multicast: Benefits and
Restriction

In an application sharing scenario, one par-
ticipant has the application running on their
desktop which is then shared within the
group. This means the same data must be
transmitted to many participants. It is a one-
to-many connection and therefore the typical
multicast situation. Using multicast makes
MAST a scalable system for sharing appli-
cations. However, using multicast means
that MAST must also overcome some re-
strictions. Multicast is based on UDP (User
Datagram Protocol), which is a connection-
less transport-layer protocol. This means the
transmission of data is unreliable and there
are no quality of service guarantees.

2.2.3 Unreliable Transmission

With IP Multicast data packets can arrive out
of sequence and there is no guarantee of deliv-

ery. If some packets are lost then the remote
participants’ view of the shared application
could be incomplete. MAST does not have
any knowledge of packet loss and therefore
it would assume that the section is updated
and will not resend the section. To overcome
this problem, and to accommodate latecom-
ers, MAST must resend sections periodically
even if they appear to be unchanged since the
previous send. Resending sections could be
done all at once after a set intervals. However,
at that moment it could take a relatively long
time to obtain visual data for the entire appli-
cation not to mention the increased load on
the network. During this high overhead pe-
riod external events from the user could take
longer to process and so the responsiveness
of the shared application would be affected.
MAST attempts to balance this load by re-
sending a few sections after each interval, this
reduces the overhead associated with refresh-
ing the shared application, and maintains the
responsiveness to the application user.

Figure 1: Screen shot of a molecular viewer
being shared using MAST within an Access
Grid session on a Linux machine

A crucial factor while designing MAST was
to ensure that there were no dependencies
between data packets i.e. all the informa-
tion about a packet was self contained. It is
also important to tolerate missing packets and
deal with packets received out of sequence.
Each segment in MAST is compressed into
one packet and each packet contains a header.
The header provides the receiver all the in-
formation needed to display that particular
section on the screen appropriately.

2.2.4 Session Management

MAST provides each participant with a
list of all other participants in the session

Proceedings of the UK e-Science All Hands Meeting 2005, ©EPSRC Sept 2005, ISBN 1-904425-53-4

436



and their respective shared applications
(see Figure 1). An important aspect of
the transport system is the identification
of the each participant and their shared
applications. This is achieved by providing
each participant with a unique participant
id and generating a unique application id
for each shared application in the session.
MAST does not use a central server, which
means that the participant list cannot be
managed centrally. Each participant must
manage their own list, identifying each
participant and application stream. When a
new application stream is received, MAST
checks if the owner of the shared application
is present in its own participant list. If the
participant is present, then this application
is added to the list. If the participant is
not present, then the participant and the
application name is added to the list.

Each instance of MAST must be responsible
for detecting participants that leave the
session or applications that are no longer
being shared. MAST supports explicit
leave/delete messages, these are sent when a
participant leaves the session or stops sharing
an application. When a participant receives
such a message, list is updated appropriately.
It may be possible that a peers was not
able to send a leave/delete message before
exiting the session. This could happen due
to abnormal program termination, system
shutdown or network related problems. In
this case, detecting leaving participants is
relatively simple - while a stream is being
received a flag is set to indicate that a partic-
ipant and their application is active. After a
set interval, these flags are cleared implying
that the entries have become inactive. List
entry flags are checked periodically and if
any entries have a cleared flag at the next
interval then these would be removed from
the list.

2.2.5 Unicast Support

As mentioned earlier, multicast provides a
scalable solution for group collaboration.
However, the use of multicast is not ubiqui-
tous and it is currently not available to many
institutions as well as home users (due to the
reluctance of the Internet Service Providers in
adopting this technology). This is expected to
change with the adoption version 6 of the in-
ternet protocol (IPv6). In the meanwhile, in
order to create an inclusive application shar-

ing environment MAST provides supports for
unicast transmission. This is achieved by us-
ing with a multicast bridge, such as, Quick-
Bridge [9]. A bridge works by joining the
appropriate multicast group on behalf of the
unicast participants interested in a multicast
session. The bridge then receives data from
the multicast group and forwards it unicast,
sending a separate copy to each of the uni-
cast participants. There must be a possibility
to detect if unicast participants are still in-
terested in receiving packets. In the case of
multicast transfer this is done automatically
by the network, but with unicast transmis-
sion the UDP packets are transmitted even if
the client is no longer running. A bridge ac-
complishes this by only forwarding packets to
active participants. In order for participants
to be active, they must send a keep alive mes-
sage periodically. MAST has been configured
to keep the state of the participant active with
the bridge by sending short messages period-
ically. This guarantees that only needed uni-
cast traffic is produced.

3 Access Grid Toolkit

The Access Grid Toolkit (AGT) is an ad-
vanced collaborative environment providing
audio and video conferencing facilities, ser-
vices, shared data and shared applications.
This technology has been widely adopted
within the academic community and is
used by the eMinerals team to hold regular
meetings. MAST is being used within the
eMinerals project to augment the Access
Grid functionality.

The Access Grid Toolkit consists of two
major components; the Venue Client and
the Venue Server. The Venue Server hosts
the Virtual Venues, which act as a meeting
point for peers with similar interests. These
can be modified using a Venue Management
Tool. The Venue Server is responsible for
managing the Virtual Venues and accepting
connections from participants via Venue
Clients. The Venue Client runs on the client
machine and allows the user to move between
Virtual Venues to share data and collaborate
using the available media tools.

There are two main mechanisms avail-
able for extending the functionality of the
Access Grid; the creation of shared applica-
tions [11] or deployment of services using the

Proceedings of the UK e-Science All Hands Meeting 2005, ©EPSRC Sept 2005, ISBN 1-904425-53-4

437



node service infrastructure [12]. The node
service infrastructure is used for the two main
media tools VIC [3] for video and RAT [4]
for audio. Each node has a single AGN-
odeService, each machine in the node has
a AGService Manager and each media tool
requires a AGService. The shared application
architecture allows the AGT functionality
to be enhanced by providing an interface to
which collaborative tools can be added. The
architecture consists of a Application Service
(for registering participants) and an Event
Channel for propagating messages to other
registered participants.

A major difference between the two mech-
anisms is the origin of the messages. In
the shared application infrastructure, the
messages originate from one of the client
machines (for example the IP address of a
client machine wishing to share its desktop).
The message is propagated to all the regis-
tered participants via the Event Channel and
each client can act on this information. This
model works well in a situation where one
of the clients is acting as a server and any
changes made by the client can be sent to
all registered participants. The node service
infrastructure propagates messages that
originate from the Venue Server. Amongst
other information sent to the current AGT
media tools is the multicast address and
port (resolved by the Multicast Address
Allocator). This information is used to allow
each client’s media tools to connect to the
correct multicast group. These tools provide
the scalability that is synonymous with the
Access Grid philosophy.

3.1 Deploying MAST as an Ac-
cess Grid Service

The Access Grid Toolkit provides default
services for the video (VIC) and audio (RAT)
tools. These tools run on the client machine
using information provided by the Venue
Server. Each of the Virtual Venues (VV) on
the server must provide a multicast address
and port for the different media tools. There
are two ways in which this can be configured;
the default method for the AGT is for the
Venue to dynamically allocate addresses
using the Multicast Address Allocator. The
same dynamic address must be used for each
type of media tool within a VV. The second
method is to allocate static addresses for
each media tool within the VV. A Virtual

Venue can be configured using the Venue
Management Tool and modified to use static
multicast addresses. The Venue Management
Tool only allows static addresses to be
specified for audio and video. It is possible
to extend the python scripts on the server
side to configure other services with static
addresses, but we felt using the dynamic
address mechanism provided a more elegant
solution.

Figure 2: Screen shot showing part of the
MastService python script and the MastSer-
vice configuration file

MAST is intended to work with the Access
Grid, employing the same scalable model.
Like VIC and RAT, MAST requires all the
participants to join a common multicast
group. The node service infrastructure
provides the most appropriate solution for
deploying MAST within the Access Grid. To
achieve this, there are several steps which
are needed. A service for MAST must be
created within the AGT and MAST must be
adapted to accept the information sent to it
by the Venue.

A service can be constructed by creat-
ing two files, a MastService python script -
which is used to control the MAST media
tool on the client machines and a Mast-
Service configuration file which describes

Proceedings of the UK e-Science All Hands Meeting 2005, ©EPSRC Sept 2005, ISBN 1-904425-53-4

438



attributes of the service, such as its name
and capability. A snapshot of these files can
be seen in Figure 2. To create the MAST
Service, a MAST capability must be declared
in the Types python script so that it can be
used within the MAST service script. This
capability describes the type of information
being transferred. The MAST Service has
two roles; it acts as both a consumer and a
producer of data. There are several impor-
tant parts to the Service script, including the
initialisation of the AGService, configuration,
starting and stopping the service. Once
completed, the script files are packaged in a
zip file with the MAST executable and moved
to the appropriate directory (depending on
the platform).

The MAST application must also be
adapted to work with the MAST Service
and accept the command line arguments in
the format “multicast address/port”. This
information is used to automatically connect
to the correct multicast group when a client
enters a new Venue. In such a situation, the
MAST menu items used for opening saved
connections and creating new connections are
disabled to ensure that control of an applica-
tion’s connection is exclusively restricted to
the Venue Server.

Figure 3: Screen shot showing MastService
enabled on a node and the MAST configura-
tion options on a Windows machine

User can add the MAST Service using the Ser-
vice Manager within the Venue Client. Fig-
ure 3, shows MAST Service enabled on a node
together with a MAST configuration dialog.
If the MAST service is enabled when enter-
ing a new Venue, the connecting client will
be allocated the multicast address and port
necessary to share applications using MAST
within that particular Virtual Venue.

4 Initial Experiences

The initial deployment of MAST across the
eMinerals project has required tweaking of
various options and parameter within the
tool. MAST uses unreliable transmission and
therefore packet loss on the network becomes
a major consideration. As mentioned earlier
in the paper, MAST sends the graphical
representation of the shared application
periodically as well as after external events.
If a small percentage of packets are lost then
the periodic update interval can be set to
a relatively high value, thus reducing the
network traffic and the load on the sender.
On the other hand, if a large percentage
of packets are lost, all group members
may not have the same view of the shared
application - a situation which is highly
undesirable in a synchronous collaborative
environment. In this scenario, the update
frequency is increased to counter the packet
loss on the network. This increases the
CPU usage but allows all the participants
to have an identical view of the shared
application. Theoretically, it is possible
that even with high update frequency the
users’ experience is compromised due to
a very large percentage of packets lost on
the network. However, we have not encoun-
tered that scenario during the testing process.

Segment size is an important factor in
determining the amount of traffic generated
to share an application. MAST divides the
shared application’s window into several
segments. Each segment is compressed into
one packet and transmitted to the entire
group. As each packet is compressed into one
packet, the size of each packet depends on
the size of the initial segment and the rate
of compression. In our experience, sharing
document editing applications generates less
traffic and average packet size is quite small
in general. However, packet size tends to be
relatively large with graphical applications.
This is due to the rate of compression - with
high resolution graphics the compression is
comparatively less effective resulting in larger
packet sizes. The segment size is determined
dynamically depending on the size of the
shared application and the host machine
display resolution. This ensures packet size
is kept small enough and the packets are not
discarded.

Deploying MAST as an Access Grid node ser-

Proceedings of the UK e-Science All Hands Meeting 2005, ©EPSRC Sept 2005, ISBN 1-904425-53-4

439



vice provides a convenient way of interaction
for the participants. Prior to this, the multi-
cast address and port had to circulated via
other means, such as email etc. However, if
MAST Service is enabled when a participant
enters a Virtual Venue, MAST automatically
connects to the multicast group allocated by
the Venue Server. The point to note is that
this is a seamless process to the users, which
in our initial experience has proved to be a
very useful feature specially for novice users.

5 Conclusion and Future
Work

In this paper, we have presented the deficien-
cies of existing application sharing tools and
provided a detailed discussion on design and
implementation of the Multicast Application
Sharing Tool. MAST has been specifically
developed for group collaboration and com-
plements the Access Grid functionality. The
use of MAST with Access Grid Toolkit builds
a virtual work environment allowing geo-
graphically distributed peers to collaborate
in a meaningful manner. Deploying MAST
as an Access Grid node service provides a
convenient way for participants to interact.
It enables use of the tool in a similar manner
to other default services, such as audio and
video services.

In the future, we plan to optimise vari-
ous subsystems of MAST in order to enhance
the user experience, and use machine and
network resources more efficiently. This
can be achieved by using separate channels
for session information and application
related data, allowing application data to
be processed more quickly. Additionally,
the used encoding could be improved to
reduce network traffic in order to support
low bandwidth networks.

Acknowledgements

We are grateful to the National Environmen-
tal Research Council (NERC) for their finan-
cial support

References

[1] Dove, M.T. et. al.: Environment from
the molecular level: an escience testbed

project. AHM 2003 (Nottingham 2-
4/9/2003)

[2] The Access Grid Project website.
Available on: http://www.accessgrid.org
Last accessed on 30 June 2005

[3] Videoconferencing Tool (VIC) website.
Available on: http://www.mice.cs.ucl.
ac.uk/multimedia/software/vic/
Last accessed on 30 June 2005

[4] Robust Audio Tool (RAT) website.
Available on: http://www.mice.cs.ucl.
ac.uk/ multimedia/software/rat/
Last accessed on 30 June 2005

[5] Richardson, T., Stafford-Fraser, Q.,
Wood, K.R., Hopper, A.: Virtual Net-
work Computing. IEEE Internet Com-
puting, Volume 2, Number 1 Jan-
uary/February 1998

[6] The inSORS website. Available on:
http://www.insors.com Last accessed on
30 June 2005

[7] von Hoffman, J.T.: Guide to Distributed
PowerPoint. Retrieved on 30 June 2005
from http://accessgrid.org/agdp/guide/
dppt.html

[8] Ziewer, P., Seidl, H.: Transparent
Teleteaching. In Proceedings of AS-
CILITE 2002, Auckland, NZ, December
2002

[9] Daw, M., von Hoffman, J.T.: Guide
to Netwrok Bridging on the Access
Grid. Retrieved on 30 June 2005 from
http://www.accessgrid.org/agdp/guide/
network-bridging/1.0/html/book1.html

[10] Richardson, T.: The RFB Pro-
tocol. Version 3.8. RealVNC
Ltd. Retrieved on 30 June 2005
from http://www.realvnc.com/
docs/rfbproto.pdf

[11] Futures Laboratory: Programmer’s
Manual - Shared Application. Retrieved
on 30 June 2005 from http://www-
unix.mcs.anl.gov/fl/research/accessgrid/
documentation/developer.html

[12] Lefvert, S.: Programmer’s Man-
ual - Node Services. Retrieved on
30 June 2005 from http://www-
unix.mcs.anl.gov/fl/research/accessgrid/
documentation/developer.html

Proceedings of the UK e-Science All Hands Meeting 2005, ©EPSRC Sept 2005, ISBN 1-904425-53-4

440




