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By framework structures are meant materials consisting of
relatively stiff units such as octahedra or tetrahedra, joined
by shared oxygen (or other) atoms at the corners. Examples
are ZrwW ,0Og and many aluminosilicates. Rigid rotation of
the units often gives a reduction of the volume or of some
lattice constant as a purely geometrical effect. The theory of
this effect is developed and shown to give a negative con-
tribution to the thermal expansion coefficient. This is in
addition to the usual positive contribution from anharmo-
nicity of the interatomic forces. The negative effect varies
through the phonon spectrum, being strongest for low fre-
guencies, but the sign of the temperature coefficient may be
reversed above a soft mode phase transition.

I. Introduction

HE ability of a ceramic to withstand thermal shock depends
(inter alia) on the coefficient of thermal expansion (COTE).
A few have a negative COTE, of which Z§®, and Zr'\W,Og

are currently arousing major interest because they have cubic

symmetry’~* Other materials have a small positive one or
nearly zero such that one infers a negative contribution to the
COTE in addition to the usual positive effect from anharmo-
nicity in the interatomic forces.

The present work is a theoretical study of how negative

thermal expansion can arise as a geometrical effect in frame-

work structures. Detailed computations fdguartz and their
analysis using the present theory are given elsewhere.

By framework structures we mean crystal structures consist-
ing of rather stiff atomic units such as AXetrahedra or/and
AX octahedra which are joined by shared X atoms (usually
oxygen) at the corners.Thus as well as in ZryO, and
ZrW,0g,*? negative COTES exist in cordierite 2Mg@Al,O,-
5SiG, in the c direction® B-eucryptite LiAISIO, also in thec
direction?-1* B-quartz (i.e., above the—3 phase transition
temperature¥;*2:12 some zeolited? and dehydrated anal-
cimel® The list becomes longer if we include cases where the
COTE is approximately zer®;*” much less than would be
expected from the normal anharmonicity of interatomic poten-
tials, and implying the presence of some additional negative
contribution.

We can easily see a qualitative picture of how a negative
contribution to the COTE arises. It is a geometrical effect in
framework structures, associated with the rotation of the rather

R. Raj—contributing editor

Manuscript No. 190904. Received June 23, 1997; approved October 27, 1997.

Supported by the Engineering and Physical Sciences Research Council and the

Natural Environment Research Council of the United Kingdom, and by a research
studentship for P. R. L. Welche.

1793

stiff structural units®22or what is the same thing, the bond
bending at the shared oxygen (or other) corner atoms. Figure 1
shows the framework structure which we shall refer to as 2D-
perovskite. We can consider it either as a 2D (two-
dimensional) framework of linked squares or as a (001) section
through the octahedra of the cubic or tetragonal perovskite
structure. Figure 1(a) shows the ideal structure (lattice constant
a,), and Fig. 1(b) the result of rotating alternate squares by an
angle6. Clearly in the latter the areA(6) of the unit cell is
reduced and we may write to lowest order

A(6) = ag(1 —mab) (L1)

wheren), is a geometrically calculable constant (equal to unity
in this case). The important point is that the area or lattice
constant is reduced by the rotation as a straightforward geo-
metrical effect. If we now think of fluctuating positive and
negative rotations as being a manifestation of thermal agitation,
then we have a negative COTE. We have

(A0))r=Ag(1 - T]A<92>T)

where®20increases andAldecreases witfi.

We can develop this picture further. Most framework struc-
tures have maximum volume or maximum lattice constants
when in an ideal symmetrical form. This is not true of some
structure3® which we shall exclude from our consideration.
Analogous to Eq. (1.1) we can write for some lattice constant
a of our structure

(1.2)

a=ag(1-n.6% (1.3)

wheref is again the rotation angle of the units and we expect
1, to be positive. Applying the principle of equipartition of

(b)

(a)

Fig. 1. Rotational motion in “2D-perovskite,” showing the rotation
of the units by an angle: (a) ideal structure before rotations, (b) after
rotations. Note the reduction, due to the rotation, of the size of the
square unit cell (dashed).
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energy to the potential energy of oscillation, we can write for approximation in the case of a soft mode with the temperature
the rotation due to thermal fluctuation dependence of Eq. (1.9). It turns out that we still have a nega-
tive contribution toAa as in Eq. (1.7) of the form

1,5, 1
S10g0%)r =5k T (1.4)

Lo Aa(m)

contribution to——= —(constan)_l_ e (1.10)
Herel is the moment of inertia of the uniteg is some average do c

or Einstein frequency for the rotation®2[7 is the equilibrium where we have substituted Eq. (1.9) into Eq. (1.7). However,
fluctuating value of6? at temperatureT, kg is Boltzmann's  differentiating this with repect td gives a positive COTE

constant, and we have made the high-temperature approximahecause the increase in the denominator in Eq. (1.10) is faster
tion for the thermal excitation. From Egs. (1.3) and (1.4) we that that of the numerator:
obtain the changda as

T
Aa ke T contribution toa,, = (constant———— 1.11
_:_T]a 2 (15) a ( ):(T_TC)Z ( )

' log
. . . which is positive. Such an anomalous positive expansion is
and the coefficienty, of linear expansion o& as seen inB-quartz just above i3, (841 K)13
Na Ks Fourth, we note that our geometrical ideas can be in_corp_o-
W=7 (1.6) rated within the conventional theory of thermal expansion in
Wg the harmonic approximation. This is expressed in terms of the

So far we have lumped the whole dynamics of the system Grineisen parameter

into an effective Einstein frequenay in Egs. (1.4) to (1.6). A 1 902
more detailed theory involves a summation over all phonon Y= m—s— (1.12)
modes (band indek and wavevectok in the Brillouin zone), S 202 0s
((ela_%;]_ %2 |rtgsclnj\|/\t/rilsgeometr|cal constany analogous to Eq. associated with a mode frequeneyand its behavior under
some strairs, e.g., elongation of tha lattice parameter. The
Aa(T) Ci ke T Mag; normal anharmonicity of interatomic potentials gives a positive
2 —‘ZT (1.7) vo However, with a framework structure such as in Fig. 1,
ki ki stretching the structure would make it more difficult to rotate
as will be shown in Section Ill, wherlg;T andwg; enter from the stiff units, i.e., would increase?. Conversely squeezing
the equipartition of energy as in Eq. (1.4) and wh&g is the structure would tend to make the units rotate, thus decreas-
some constant which may depend on the mode. A negativeing »?2. Either way, it leads to a negative Grisen parameter
COTE results as before: for the mode, and hence a negative contribution to the COTE
from it.
—_ CriKeMakj In Section Il we shall recapitulate the formal theory of ther-
=2 (1-8) " halexpansionin th ional Geisen form of th i-
T o pansion in the conventional Geisen form of the quasi

) ] harmonic approximation. We shall express it in a form suitable
The above outline already shows all the main features of the for our purposes and formulate it for a hexagonal crystal (point

theory, which we will enumerate as a guide through the algebra group P6,22 to be precise) with only two independent lattice
to follow. First, the negative contribution to the COTE is a constantsa = b andc, with a view to later application to

geometrical effect inherent to many framework structures. The g-quartz® This suffices to show how to treat more general

angular fluctuations of the units about an ideal structure causecases than cubic crystals, without the full panoply of elastic
a reduction in one or more lattice constants, because the structensors for triclinic crystals. In Section Ill we shall develop the

ture in a sense folds up under rotation. The volume of the ideal geometrical theory outlined in Section | and connect it with the
structure by symmetry usually has to be a minimum or a maxi- formal theory in Section IV.
mum, the former being perhaps a dense metallic structure and \We want to express our geometrical effect in terms of a
the latter our more open framework structure. The measure of negative Gtneisen parameter Eq. (1.12), because in practice
the effect is am coefficient in the sense of Egs. (1.3), (1.7), that is what one might measure or compute and the objective of
and (1.8). ~our theory would be to give a geometrical interpretation of it,
Second, we note from Eqgs. (1.6) and (1.8) that the negative as we shall foR-quartz elsewhergIn Section IV we go more
contribution to the COTE is proportional to~2 and hence is  deeply into the geometrical effect from the point of view of the
largest for the low-frequency modes, which arises from the general Gruaeisen theory. The theme of Section IV is contin-
way the frequency apears in the potential energy on the left sideyed in Section V for the acoustic modes, one of which turns out
of Eg. (1.4) and its generalization. Of course, one also has theto give a surprisingly large contribution grquartz® In Section
normal positive COTE due to the anharmonic form of inter- v| we shall investigate how the negative geometrical effect
atomic potentials, but this ends to be roughtly constant through combines with the normal positive expansion due to anhar-
the phonon bands: it is the same for all phonons in a simple monic forces. We shall do this by analyzing a simple generic
linear chain model. Thus adding the two effects together, one one-dimensional model, namely one row of the structure of
might expect a net negative effect from the lower frequency Fig. 1. It turns out that the two contributions simply add, but
phonon bands and a net positive one from the higher bands. Folthe geometrical effect is proportional &2 while the anhar-
example, inB-quartz it was found that the lowest 10 phonon monic one is more or less constant. This gives a characteristic
bands (out of 27) WItH( n the ar .dlrectlon in the Brillouin pattern for the variation of the Gneisen parametef/i(kj)
zone gave net negative contributions to the COTE. through the phonen spectrum, from large negative for the low-
Third, we can expect difficulties from Eq. (1.6) from the soft  est frequency bands to positive for the high-frequency ones, as
mode (SM) in the case of a soft mode phase transitiéh already mentioned.
where oneawg,, goes to zero a¥ tends to the phase transition
temperaturel, from above, i.e., where &t > T,

2
T)oeT-T 1.9 : . . . .
osm(T) = ¢ (1.9) In this section we will recapitulate some of the conventional
In differentiating Eq. (1.7) to obtain Eq. (1.8), we assumed that theory of the COTE in the specific form in which we will need
wy; was effectively constant, but this cannot be a satisfactory it. With a view to subsequent application@equart? we shall

Il. The Gru neisen Theory
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write the theory in the form appropriate to hexagonal symme- dC  (Cyq+Cro)éc — 2C15E 40
try. This differs sufficiently from the simplest cubic case so &=, = N Py (2.%)
that extension to any other symmetry should be trivial, while (C1a + C12)Cs5 ~ 273

avoiding the plethora of tensorial suffices needed for general \yhere ¢, and £, can be regarded as the thermally induced

triclinic crystals. stresses in tha, b, andc directions
We consideN unit cells of volumeQ) of a hexagonal crys-

talline material, and write for its Gibbs free energy fan = (2N X Eygoif Ve (ki) (2.10e)
<
G=Gp + Ge(€an€) * Cuin(€ap€e:T) (2.1) :
€= (N X Egorf v ki) (2.10h)
K

1
Ger = NQ (11 + €105 + 2C; €0 + 5%393 (2.2)
The extra factok2 appears in Eq. (2. H) becauseg/§dinvolves

) hoy; changing both thea andb axes.
Guip = kBTZ In [2 SInh(m—)} (2.3) We can check that Eq. (2.10) reduces to the standard text-
ki B book result for a cubic material

whereG,, andG,,;, are the elastic and thermally excited vibra-
tional parts ofG.2°> Since thermal expansion conserves the
assumed hexagonal symmetry, we have only two strain com-
ponentse; = e, = dc/cande, = e, = e,, = dal/a, where
throughout we shall use the subscrgdi to denote an equal
change in thea and b hexagonal axes. The; are the usual
elastic constants. The vibrational free energy is written in the
harmonic approximation as the usual free energy of a simple
harmonic oscillation, summed over all the phonon spectrum

ke Ty
e,=6=6-= BOL,, (2.11)
as follows, wherel),, is the volume per atom ang, is the
standard Grioeisen constant Eq. (2.8) for differentiation with
respect to volume change. If we assume in Eq. (2.9) that the
axis is elastically the same as thandb axes, i.e.c;3 = ¢,
andc,; = C;,, then the elastic symmetry is the same as in a
' cubic material, which also makes, = &. Then Eq. (2.9)

i.e., over normal modes of frequeney; in bandj at pointk in becomes
the Brillouin zone. Eachw,; depends ore,, ande,, and may
depend explicitly orT due to anharmonicity, e.g., around a soft &
mode phase transitiotf. Elastic equilibrium gives € =& =6 =35 (2.12)
G .
o =07 NQ[2(Cy; + Cyp)eun + 26,6.] EEkjw;jzv;%d(kj) whereB is the bulk modulus
ab Kj
1
(2.49) B=5(Cu+21) (2.13)

G .
Je 0=NQ[2¢, 38,5 + Caze] — EEkj w;jz"/rced(kl) (2.4b)
c Kj

where
1
Eq(T)= nkj+§ fioy; (2.5)
with

wfoft) o]

is the energy in the modej, which becomes

E(T)=kgT (2.6)

for

ﬁ(l)kj
Ke

in the classical high-temperature approximation. #kg and
vied are what we shall term “reduced” Greisen constants

1/ dw?,
v;e“(kj):—5<—wk'> : 2.7)
e

for the modekj defined for any strair, (i.e., e,, ande. in our
case) and related to the conventional @isen parameters

T>

d1In w:
N — 2 re BN — Kj
ve(Kj) = o yEKk)) = ( 26, )eﬂ (2.8)
Solving Egs. (2.4) yields
oa C33§a -C 3§c
p=—= —— (2.%)

- 2
& (Cqp+Cyp)Ca3— 203

Let us also assume that all modes have the samaeten
constant, as is true in the simplest model of a linear chain, or
thatwy,, is an appropriate average value. Note that in gengyral

is the average of,, v,, andy, not their sum. This is best seen
by thinking of the differentiation in terms of small finite dif-
ferences and noting that 1% straies= e, = €. give a 3%
volume change,,. The summation in Eq. (2.10) contributes a
factor ANnwheren is the number of atoms in the unit cell. We
also use the classical limit Eq. (2.6), after which Eq. (2.12) then
reduces to Eq. (2.11).

Finally, we note that the differentiation in Egs. (2.7) and
(2.8) is with respect to strain, so that the "Geisen constants
are in the nature of stresses, as is also evident in Egs. (2.9) and
(2.10).

Ill.  Geometrical Effect

This section will develop more fully the geometrical effect,
which gives a negative contribution to the COTE as outlined in
Section | in an oversimplified form for pedagogic purposes.
The major simplification there was to lump all the phonons
together into one Einstein mode in Eq. (1.4), which we will
now avoid.

We consider a phonon modtgof frequencyw,; with energy
E,(T), Eq. (2.5), in the mode at temperatuFeAs always in
simple harmonic motion, the energy is equally divided between
kinetic energy and potential energy, the latter having the form

1 1 ) S
EEkj(T) :E(lnertla termog;(6°)y; (3.1)

There are only rotations in the mode depicted in Fig. 1 but in
general there will also be some translations If we neglect the
latter, we can substituteNI for the inertia term in Eq. (3.1),
wherer is the number of rigid units (considered identical) each
with moment of inertid in each of theN unit cells. We obtain
(for the rotational geometrical effect only!)
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Eii(T)

Nrlwg;

<92>T,kj = (3.2)

for the contribution of the particular mode f@?F. Of course,
there are usually concomitant translations along with the rota-
tions which can alter the arithmetic by a factor of 2, and in the
case of quarfzwe specifically point to this effect in connection
with the differences iny®®for the soft mode ak = 0 and the
Vallade mode alon@*. Because of the assumption about the
inertia term, our theory is still approximate and intended only
as an interpretation of detailed calculations with thér@isen
theory, e.g., for quarfzand of the negative COTE phenom-
enon. In particular, Eq. (3.2) applies only to modes that are
primarily rotational, and not to longitudinal acoustic modes, for
example.

We will confine ourselves to the case of hexagonal symme-
try for the same reasons as in Section I, and write forathed
c lattice parameters

a=ag(1-n.0°) (3.33)
C=Co(1-mcH?) (3.30)

Here we have introduced the crucial geometrical constgpts
and v describing the reduction in lattice parameters due to
rotations. Substituting Eqg. (3.2) into Eqg. (3.3) and summing
over all modes we obtain
da -1 -1 -2 ;
&) = — =N (1) Egoif—na(ki)] (3.49)
ki

dc
e =— =N 2 (1) Egoi-nc(ki)] (3.4D)
ki

Itis immediately apparent that Egs. (3.4) are rather similar to
the result in Egs. (2.9) and (2.10) of the proper @isen
theory, with the factoEkjmﬁ occurring in each. The relation-
ship becomes more evident if we rewrite Eqgs. (3.4) and the
theory of Egs. (2.1) to (2.10) for arbitrary straigsand elastic
constantx, (s, t = 1 to 6) without special symmetry. Equa-
tions (2.9) and (2.10) become

€= Ccu&(T) (3.59)
1 - re H
€= mkEjEkjwkfvs k) (3.50)
and Egs. (3.4) become
1 :
&(T) = —mejEk,»w;fnm) (3.50)
which when substituted into Eq. (&pgives
re H Q H
Vs d(kj) = _ﬁcsmt(kj) (36)

where we have used the summation convention for the suffix
The approximation in Egs. (pand (3.6) relates to the inertia
termrl because in general a phonon will involve translation of
the units as well as rotation.

We note that Eq. (3.6) gives negative valuesytt as ex-
pected, and that it allows us to interpret a computed (or mea-
sured)yeqkj) (e.g., for quart®) in terms of geometrical con-
stantsm,. We also note from Eq. (3.6) that the geometrical
effect makes a roughly constant contribution to the reduced
Grineisen constantg9qkj), not to the usualy(kj), for all
rotational modes.

Table | gives some calculated results on an idealized model

Journal of the American Ceramic Society—Heine et al.

Vol. 82, No. 7

Table I. Reduced Grineisen Parameters from Split Atom
Model of B-Quartz at k=0
1 req) A2 redjq 2 redjq 2
i 2\(/-'7‘-‘}’_'/2% y(‘EI'I—/|21T) NI(\'f'ZZ}T)
4 -44 74 -53
5 -32 -73 -45
6 -32 -73 -45
7 -86 0 -56
8 -86 0 -56
9 -13 =37 -20
10 0 0 0
11 0 0 0
12 -7 -19 -11
13 -7 -19 -11
14 -11 -18 -13
15 -19 -56 -31
16 -86 0 -56
17 -47 -91 -60
18 -47 -91 -60

represented by a single average stiffness parameter as de-
scribed in Section VI and elsewhei&Moreover, the stiffness
is described by a simple spring so that there are no anharmonic
contributions. The value of the parameter has been fixed to fit
the overall width of the phonon frequency band. Such a simple
model is obviously a gross oversimplification, but in fact the
phonon spectrum it gives is recognizably similar to that of the
most sophisticated calculations. The phonon frequencies were
calculated with this model & = 0 at two values of each of the
a andc lattice constants, with the reduced @aisen constants
Eqg. (2.7) then calculated by differencing. The results in Table
| show that our geometrical effect is zero for many phonons,
and gives a negative reduced @Geisen constant for phonons
where it is nonzero, as expected, which would lead to a nega-
tive COTE. The first three bands have been omitted from Table
| because they are rather meaningleds &t 0, and the modes
only go up toj = 18 in the model of stiff tetrahedra because
the internal motion of the silicon atoms has been eliminated.
We see from Table | that the geometrical effect is not limited
to low-frequency phonons but extends throughout the bands.
Moreover, it is the reduced Gneisen parameters Eq. (2.7) that
are roughly of constant order of magnitude, not the traditional
Grineisen parameters Eq. (2.8) themselves; note there is quite
a sizeable difference between them singevaries by more
than a factor of 100 through the phonon band. This is all in
accordance with our expectations as expressed in Eg. (3.6).
We now turn to another issue. In Fig. 1 we have a phonon
mode which we have described as purely rotational. It is a rigid
unit mode (RUM) in the language of Refs. 18-21 involving no
distortion of the units, and it is in fact the only such mode for
the system of Fig. 1. It is easy to see that this RUM leads to
negative expansion in the manner shown in Fig. 1 and dis-
cussed in Section I. But what of the other modes that involve
the distortion of the units: Will they not give a severely smaller
geometrical effect? We have glossed over this question in go-
ing from the RUM in Egs. (1.1) to (1.3) to an average over
modes in Eq. (1.4). The answer to our question is both “yes”
and “no”: yes to the extent that non-RUMs have higher fre-
guencies and there is a weighting facior in Egs. (2.10), but
not beyond that. The geometricglk® is roughly the same for
all rotational phonons in the model of Fig. 1 which we can
understand in the following way. Lattice contraction is a local
effect. Consider one ring of four squares in Fig. 1 and rotate
them by #, -6, +6, -6 counting around the ring. Clearly the
area enclosed by the four squares will be reduced by the
amount given by Eq. (1.1) (with, = 1 as mentioned there).

of B-quartz, designed to pick up the geometrical effects. It We ignore the rotations of the other squares, assuming them to
consists of regular tetrahedra joined at the corners into the be some random amounts; this of course will necessarily in-
correctB-quartz structure, but there are no interunit forces. In volve distortions of the units and hence higher frequency of
an arbitrary phonon, the tetrahedra will need to distort in vari- phonons. Returning to our ring of four squares, let us number
ous ways, but in the present model all types of distortion are them 1 to 4 and now suppose they are rotated by more general
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anglesh, to 8,. We may expect the area of the enclosed square want to apply to this system the general methodology of Sec-

to be reduced by something of order tion Il. We consider some phonon with rotatiérof the units.
—, The rotations of the units will not be all the same in some
dA = —Agnb (3.7) general phonon but they all oscillate with a constant amplitude
where ratio between them so that we can characterize the amplitude of

the whole mode by the anglé of one particular unit. To
calculate the phonon frequency we can use the general theory

6= 2017027050, (3.8) of oscillations which gives for the energies
i i 1 de 2
is an average amount of coherent rotation. We have Kinetic energyzi(inertia consta0t<a> (4.1a)
1 1
6% = 7607 + 63+ 05+ 02) + 5(=010,+ 0,05~ 6,0, ~ 0,0, _ 1, ,
£0,0,-0.0,) (3.9) potential energy: w?(inertia constan® (4.1b)
2Y4 3Ys .
Now very crudely we may write We will again take our inertia constant Bisl for N cells with
1 r units per cell of moment of inerti§ ignoring any transla-
‘elezzi(ef +02) (3.10) tional motion attendant on the rotations. Th#is therefore
. . 2(coefficient of6? in potential ener
by noting that we expe, and6, to be roughly correlated with w?= ( P a9y (4.2)
6, = -0, because that requires minimum distortion of the stiff Nl

units. Substituting Egs. (3.8) to (3.10) into Eq. (3.7) we have \ye also note from Section 11, in particular Eq. (2.7), that we
1 needw? at varying strain.
dA= —AOnAZ(e§+6§+9§+ 03) (3.11) Thus we need to develop the energy of the system, as a
function simultaneously of and straine. The elastic energy

We now sum Eq. (3.11) over all 4-rings in our sample. Since Per unit volume ford = 0 is

each unit is a member of four 4-rings, we obtain for the aver- 1
agedA E=>ces (4.3)
SA 1 , . .
—=g= ‘M‘Eez (3.12) (with the summation convention as before) wheredhare the
Ao NS " elastic constants of our system due to the stiffness of the units,

evaluated in its equilibrium form with = 0. Let us now start

with the system in its ground state with no applied stresses, and
rotate the units: this costs zero energy because there are no
interunit forces by assumption and no stresses, but results in
contractions

where the summation extends over Bllunits ande, is the
areal strain.

We already see here that there is (very roughly, in view of all
the approximations) just one geometrigalconstant for all the
rotational modes. We can carry the analysis one step further by
((eaxpressingan in terms of the normalized phonon amplitudes g0t = —n,0° (4.4)

as
« where them, are geometrical constants analogous to the
enzz@k expik-l,) (3.13) constants of Eqg. (1.1), (1.3), and (3.3). If we now apply
K stresses, we first have to stretch the system to undo the con-
traction of Eq. (4.4) to reach a state of zero strain. Thus we

wherel,, is the positional lattice vector of theth unit. Hence have to substitute, — e°t for & in Eq. (4.3), giving an energy

we have
. 1
260= 2 2010 Zextlitk = k)l ) E(e,) = 5NQcs(es + nb7)(e + m6?) 4.5)
- Nz@k'z (3.14) for N cells of volume(). We expand Eq. (4.5) to ordé®r:
K 1
in the usual way* Combining Eq. (3.14) with Eq. (3.12) gives E(e,0) = NQ(@CS &+ cstesnt92> (4.6)
e\ = —~qAE|®kl2 (3.15) From Eq. (4.2) the frequency is given by
k
Q
Thus we conclude that each phorlohas the same geometrical w’(ey) = 2(_I>Cstesnt 4.7)
constantn,, within the various approximations made en route. r

There is no radical difference between theconstants for whence from Eq. (2.7) we have for our particular mode
modes which do and do not require substantial distortions of 0

the stiff units of the framework structure.
rsed == <_>Cstnt (4.8)

rl

IV. Relationship between the Two Approaches in agreement with Eq. (3.6) wherkis again an approximation

When a new theory is developed, it is often desirable to look to the inertia factor per cell.
at it from different points of view, if only to check the result. We can test the result Eq. (4.8) on the soft mode giving the
In the present instance, we can derive Eq. (3.6) directly along B — « transition ing-quartz. We use the simple one-parameter
a different route, and we shall discuss what is achieved therebymodel already described in Section 11l and used in Section VI,
at the end. with a valuex = 193.3 3m~2 for the spring constant in Eq.

Let us develop the model of a framework structure depicted (6.1). From the same model a calculation of the phonon spec-
very simply in Fig. 1. As in Section Ill we will take the units  trum gives the velocities of sound along a few of the main
as having a large internal stiffness, with negligible bond bend- crystallographic axes, from which we have deduced the elastic
ing force constant at the oxygen atoms joining the units, and we constants for the model,, = 247.4 GPag;; = 213.1 GPa,
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C» = 13.5 GPag,; = 50.4 GPa and,, = 0. A rotation of the w?(k) = VK2 (5.1)

tetrahedra by an angledin the manner of the soft mode gives ) . .
with the velocityv given by

1
= - g2 C
c(0) 00(1 50 ) (4.9) ¥ :%5 (5.2)
Wtr:ter_]cenC = 0.5. From a similar geometrical calculation we wherep is the density. For thermal strains (expansicag =
obtain 1, 2, 3) we will needbw?de, from Eq. (1.12). From Eq. (5.1)
\/é we expect this to be proportional kg, i.e., tow?, so that it is
M= —————=0.317 (4.10) more convenient to work in terms of the ‘@eisen constant

2(1+1/3)

To calcglate the moment of inertia of each’&®), tetrahedron From Eqg. (5.2) we will clearly need the elastic consteyt
we ascribe each oxygen atom half and half to the two tetrahedraas a function ok, to which we now turn. It is convenient to
which it joins, givingl = 1.78 x 10%°kg-m?. The cell volume  work in terms of an orthorhombic unit cell with = v3a. To
Q = 119 A3 for r = 3 tetrahedra in the ideal structure then calculatecss we apply anxz shear (Fig. 2) by applying the

vs(kJ, Egs. (1.12) and (2.8), instead of the reduggd(k,), Eq.
2.7).

gives from Eq. (4.8) the result displacement
QO u(r) =(0,00x) (5.3)
yod= _<H>(2013T]a + Ca3no) L
giving
=-78(4n”) THZ® 4.11 Il IU,
8( ) ( ) e = ZeXZ = E + 5
Note that then, for t = 4, 5, 6 are zero by symmetry for the =9 (5.4)

soft mode. This gives adequate agreement witH4m? = -74
THz2 in Table I, which was computed numerically by stretch- We imagine a stres; applied to hold thexzstrain but that the

ing the cell in thec direction and calculating'®® from the system is otherwise allowed to relax, which will result in spon-
change in soft mode frequency withas in Eq. (2.7). taneous strains

Let us recapitulate what the above algebra and numerical test ot 5
have achieved. The general @aisen theory of Section Il is, €% = sd (t=1,2,3 (5.5)

of course, perfectly general, and rigorous within the harmonic |, fact in our very simple model applied ®-quartz, thee,
approximation. Itis applicable to all materials and as such has shear can be achieved by the tetrahedra rolling over one an-
no predictive power. In contrast to that, our geometrical theory gther. The contractions of Eq. (5.5) are therefore completely
of Section Ill has predictive power in that the geometrical analogous to those in Fig. 1, Eq. (1.3). T fort = 4, 6 are
constants), andm of Egs. (3.4) can be calculated analytically, zerg by symmetry, anel is set externally as in Fig. 1. We now

or for complicated structures by some elementary computer apply straing, (t = 1 to 4, 6) which we think of as infinitesi-
modeling. The geometrical theory is only approximate and is mal, after applying the finite; strain of Fig. 2. In applying

written in different terms from the Gneisen theory, but from these strains, we first have to overcome éi#of Eq. (5.5) as
a comparison of the two results one has the connection (3.6)in section IV, so that the work done is

which indicates roughly the values of the reduced r&isen

parameters to be expected for particular modes in a particular . . 1 ro ro
framework material. What has been done in Egs. (4.1) to (4.8) E/astic energy per unit volunve (€ + & (e + 1)
is to take our grossly simplified model of a framework structure

in a form which can be treated by both methods. Giving the 1

units some finite stiffness and carrying out the @eisen —ECst(estTls,seé)(eﬁTh,seé)
analysis for the system allows one to derive rigorously the

connection Egs. (3.6), (4.8) of the Grisen parameters for 1 1

any given mode to its geometricglconstants. The mode sys- - ECSSeé + 5085

tem is grossly simplified in our model, but a recognizable

representation of many real silicates, namely stiff units rather + (cstesnt,s)eé +0(ed) (5.6)

loosely jointed at the corners. Furthermore, our numerical test
in Eq. (4.11) is a further check on the whole theory by choosing
a situation where thg" can be calculated in two ways.

To have verified the complete equivalence of the two ap-
proaches therefore underpins the whole theory. It will also
allow us to treat acoustic modes in the next section, and will
open the door in Section VI to combining our geometrical
effect with the usual positive contribution to the COTE from
the anharmonic nature of the interatomic forces.

V. Geometrical Effect from Acoustic Modes

Calculating the geometrical contribution to the COTE from
the acoustic phonon modes is a little more complicated. While
the negative geometrical effect from optic modes such as in
Fig. 1 is intuitively obvious, it was not so clear whether the
acoustic modes would be very interesting from this point of
view. However, it turned out that the acoustic J#odes in
B-quartz make the largest negative contribufidret us there- (a) (b
fore develop the theory specifically for the TAnodes for a
hexagonal system foe along thea* direction at |0ka, i.e., in Fig. 2. (a)xzshear of magr]i'[ude,5 = 9, pictured (b) by a cogwheel
the acoustic region. We have rolling over another.

el )
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where the second term is summed excepsfert = 5 and the
third term except fos = 5. Thuscsg is given as a function of
e, by the general relation

Css(Es) = Cs5+ 2Cs€N1 5 (nott=15) (5.7

where only then, s of Eqg. (5.5) are nonzero for hexagonal

B-quartz.
We have in Eq. (5.7) thess as a function of the, but in

order to calculate the Gneisen constant of Eq. (1.12) we will
also need to know how the rest of Egs. (5.1) and (5.2) vary with

e, Since we are focusing on the effect of the Jiodes at
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1.5 are those in Eq. (5.5), to give the geometrical @isen
constants along thk, axis for the TA modes

1 1

Ya(ke) = _{C_(Clml,s +CiM2s5+ CiaMas) — 5} (5.140)
55
1 1

YKo == C_[Cls("ﬂl,s +Mp5) + Cagna sl + 5 (5.1%)
55

VI. Combined Anharmonic and Geometrical Effects
We now consider how the geometrical effect combines with

(k,,0,0), we have to distinguish between expansion in a per- the anharmonicity of interatomic forces, which is the usual

pendiculam or c direction and expansion in treedirection. Of
course by symmetry the total effect in theandb directions

source of thermal expansion. So far we have focused on the
geometrical effect in isolation whereas of course one has both

will be the same after summing over all phonons but we are contributions in any real framework material. Do the two sim-

here focusing on the effect from the phonons alkpgnly. Let
us first consider expansion in tleedirection. We have

M

p =m (5.8)

ply add?

Let us first sharpen our question. We have seen (Section Il1)
that it is y¢% Eq. (2.7), rather thary, Eq. (2.8), that is a
measure of the geometrical effect, i.e., without the factef.1/
This is a big difference, since? typically varies by a factor of
100 through the phonon band (excluding the acoustic modes

whereM is the mass per unit cell and we have included the wherew — 0). On the other hand, one has for acoustic phonons

factor 1 +e; to represent variation of the lattice parameter
with e;. Thus we have from Egs. (5.1), (5.2), and (5.7)

) K
w (kxveG) = CSS(GG)(]- + %) F (59)

e3=0
and the Gruoeisen constant
1 do?
20° 98
ad

1
= TS [Css(1 +€5)]

1[ 1 dcgg }
= ——+1
2 Cs5 0€3

'Yc(kx) ==

(5.10)

that+y (notv"9 is roughly constant through the phonon band.
This is exactly true for simple models having only one type of
(anharmonic) interatomic force, e.g., a linear chain of alternat-
ing A and B atoms, and remains approximately true more gen-
erally. Clearly the geometrical and anharmonic effects appear
to have somewhat different physical behavior, and their com-
bination is not a trivial question.

We will investigate the interaction of the geometrical and
anharmonic effects in the simplest possible model containing
both, returning at the end to enquire whether complicating the
model to make it more realistic will alter the qualitative con-
clusions. Our system is a single row of squares from the
perovskite model to Fig. 1. We will consider them rotating
about fixed centers a distaneg¢l + €) apart wheree is the
linear strain: remember we will need to calculate the variation
of the frequencies witle to obtainy or y¢ as in Sections IV
and V. Any pattern of rotations (phonon), except the simple

We have to take another aspect into account for the expan-gjternation shown in Fig. 1, will require distortions of the

sion in thea direction. In the diffel’entiatioﬁmz/ael we have to Squares_ Now there are five geome’[nca”y distinct Ways of

take the variation Of a paI’tICU|aI‘mOde which in thIS case in- distorting a square, with four different restoring force con-
cludes a change ik,. Let us define our modes in terms of

periodic boundary conditions on a rectangular blockNof=
N, x N, x N, cells. The values ok, in the Brillouin zone are
then

N, 2w
N, a
wheren, is an integer which defines the particulagth mode
along thek, axis. Thus as we apply stra@ in the x direction,

it is the productionKa) that remains constant, nktitself. We
therefore write analogously to Egs. (5.7) and (5.8)

K, (5.11)

1
w*(K,.€)) = c55(e1)—2(k§a2)
pa’

-1 kiaz
=Csge)(l+e) | —5 (5.12)
pa e1=0
which gives
k) = 1 dw?
'Ya( x) - 2(’)2 ael
1 1 dcss

] 519

in contrast to Eq. (5.10).

Finally, we substitute Eq. (5.7) into Egs. (5.9) and (5.12),
remembering that for our hexagonal system the only nonzero Fig. 3.

stants. We want to have a one-parameter model, as already
used in Sections Il and 1V, in which all types of distortion are
described in terms of a single average force constant. We will
define below a measurg of the distortion and write for the
energy the anharmonic form

1
V(s) = E)\sz -ps’ (6.1)
where the distortions are such thaf remains small compared
with ¥2As? and we will make expansions in terms of the an-
harmonicity .

The geometry of the distortion is depicted in Fig. 3, with
adjacent squares rotating by anglgsand 6,. Of course, in
reality the squares are joined at the correysand P,, but we
will consider for a moment notional separate rotations of each
square as completely rigid units which open up a gagual to
the distance,P, in the figure between the corners. In reality
the units will have to distort to keep the two units joined at the

Geometry of adjacent squares rotating by an@leando.,.
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cornersP,, P,, and we will take the distance = P,P, as our 1/ dw?
measure in Eqg. (6.1) of how much they have to distort. To veed(k) :—§<—>
summarize: we consider notional rigid rotations of the units 9€ Jeo
which would open a gap between corners, and we therefore 3ua a2\

have to apply a distortion of magnitudeto join the corners - (L)wz(k) - < )
together again. This is a convenient way to construct a one- 2\ 2l

parameter model, but there are others. We need to calculate The second (negative) term is the geometrical effect corre-
sponding exactly to Eq. (3.6). The length in thelirection

(6.11)

S Si 6.2) varies as co$9, giving n, = ¥2. The “volume” () of the unit
wheres, ands, are the components of the vecter= P;P, cell is a, and the elastic constan{, = Aa. Thus Eq. (6.11)
along the axes (Fig. 3). The semidiagon@i®, andO,P, are agrees with Eq. (3.6) for the pure rotational mode of Fig. 1, as
of length (1/2, whence it should. _ o _

We note that the geometrical contribution in Eq. (6.11) is not
1 1 . just constant to order of magnitude: it is constant throughout
§ =5asinf, +3asinb, (6.3) the band, even for the modes witHar fromk = w/a having
large distortions of the units. This is completely in accordance
Remembering that the distan€gO, is a(1 + €), we have with the expectation developed at the end of Section Ill. The

positive first term of Eq. (6.11) comes from the anharmonicity,
and is proportional ta? so that it corresponds to a constant
Grineisen parameter through the band, not a reducédesru
sen parameter. That is a well-known result for longitudinal

The potential energy in our anharmonic “spring” is now modes of a linear chain of point masses, and it is interesting
given by substituting Egs. (6.3) and (6.4) into Eq. (6.2). To that it also applies here to the rotational modes.

1 1
s ,=ae+ éa(l —Cco0s6,) + Ea(l —C0s6,) (6.4)

lowest order ind2 we have We return now to the question of whether we can expect the
1 1 form of Eq. (6.11) to apply qualitatively quite generally, i.e.,
— 20202 2, 2,202 0 02 that y*4kj) consists of a positive anharmonic part roughly
g=aes 4% (0, +62)"+ 22 &(01 + 62) (6.5) proportional tow? and a negative geometrical part of roughly

. . . constant order of magnitude. The fact that the anharmonic part
In order to derive the equation of motion, we need to calculate for the rotational modes has the same form as in ordinary

the torques, , acting on unit 1 due to the anharmonic potential  gisplacive modes makes this very likely. We can enlarge our

energy Eq. (6.1): simple model to allow translation of the units along thaxis
oV as well as the rotations. The equations of motion will give a 2
Lp= —— x 2 dynamical determinant of which one diagonal element is
' 90, the same as in our model and the other as for acoustic longi-
1 3 1o a(sd) tudinal modes, i.e., of the same form. The same will be true of
=-| 5N —EM(SZ) T (6.6) the off-diagonal elements because they all arise from the po-
1 tential Egs. (6.1) and (6.5), i.e., from the same force: what
where we have takest as the variable and writtes$ as €232 differs is whether we take the rotational moment of the force as
We have from Eq. (6.5) in Eq. (6.6) or take the force directly as producing linear ac-
celeration. The anharmonic part scales withbecause it is of
08 1 5 5 higher order irsin Eq. (6.1): a small/large? implies a small/
20, 2% (6, +6,) +a%ed, (6.7) large restoring force in the simple harmonic motion, which

implies a small/largs, which implies a small/large ratio of the
This expression is of order, and hence to obtain the phonon anharmonic to harmonic part of Eq. (6.1). We conclude that the
frequencies as simple harmonic motions we need to evaluatecombination of anharmonic and geometrical effects is expected
the square bracket in Eq. (6.6) only to zeroth ordef to give to show qualitatively the same form as in Eq. (6.11) quite
the torque generally.

Because of the? factor in the first term of Eq. (6.11), we
may expecty®to be negative for low-frequency phonons in a
framework structure, and positive near the top of the phonon
band. That is exactly the situation found in the detailed atom-

We can now set up the equations of motion for the linear istic calculations foi3-quart? using the interatomic forces of
chain of squares. Theth square will experience torques from Tsuneyuki’ Table Il shows the calculated results at the point
its coupling to therf + 1)th and ¢ - 1)th squares, giving its  k = (1/4)a*, and we see the gradation from most negatj{rs

1
Gy o= —Zaz()\ - 3nae)(h, + 0, + 2e9,) (6.8)

equation of motion as at low o to most positive for highn. Note that the top six
modes correspond to optic modes of the Si atoms vibrating
dzen inside the tetrahedra, which fall outside the present discussion.
'F =Gnnia* Gnna There should, of course, be nine such modes for three tetrahe-
1 dra per unit cell, but three have gotten inextricably mixed with
= a®(\ - 3uae)(20,, + 0,1 + 0., +4€0,)  (6.9) the translational and rotational modes of the tetrahedra.

wherel is the moment of inertia, and whe®, ., is just given VIl Discussion and Conclusions

by Eq. (6.8) and5,, .-, can be derived similarly. We now take In Section | we put forward a qualitative picture of how a
0, proportional to exgkna) and replace #Hdt? by -0? as negative coefficient of thermal expansion (COTE) can arise in
usuaf“ to obtain the phonon spectrum the kind of framework structures which are common among

aluminosilicates and other ceramics. We call it the geometrical
effect because it can be visualized quite simply as a contraction
of the network as its units rotate and fold together (Fig. 1).
Indeed, it had already been suggested earlier by various au-
From Eg. (6.10) we have the reduced @eisen parameter  thors161822and in even more qualitative form as bond fluc-

2
a
w?(ke) = o7 (A ~3pae)(1+2e+coska) (6.10)
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Table Il. Calculated Reduced Grineisen Parameters of3-Quartz at k = %a*

wl2m Y4 e Y4m® Vo Y4n
j (TH2) *(THZ?) (THZ?) (THZ?) Hab Yo W
1 0.4 -36 -39 -37 -65.12 -70.31 -66.35
2 1.6 -57 -67 -59 -23.17 -27.03 -24.13
3 4.1 -44 -53 -47 -2.68 -3.22 -2.81
4 4.1 -69 -78 -71 -4.14 -4.70 -4.29
5 4.7 -65 -60 -64 -3.05 -2.82 -2.99
6 5.5 -56 -59 -57 -1.90 -2.02 -1.94
7 8.0 -34 -67 -43 -0.55 -1.08 -0.69
8 8.2 -43 -73 -51 -0.65 -1.10 -0.77
9 10.0 9 -19 2 0.10 -0.20 0.02
10 135 -13 35 0 -0.07 0.19 0.00
11 13.9 -18 -56 -28 -0.09 -0.28 -0.14
12 14.6 67 216 106 0.31 0.99 0.48
13 15.2 33 8 27 0.14 0.04 0.12
14 15.4 166 212 178 0.68 0.87 0.73
15 16.3 72 226 112 0.27 0.83 0.41
16 17.1 23 -184 -30 0.08 -0.61 -0.10
17 18.9 220 190 212 0.59 0.51 0.57
18 19.1 181 269 204 0.47 0.70 0.53
19 20.3 325 239 303 0.75 0.55 0.70
20 21.8 261 223 251 0.53 0.45 0.51
21 23.4 248 416 291 0.48 0.81 0.57
22 29.0 1450 1636 1497 1.59 1.80 1.65
23 29.4 1448 1250 1396 1.55 1.34 1.50
24 29.5 1232 1396 1275 1.32 1.49 1.36
25 32.3 1284 1455 1328 1.22 1.38 1.26
26 33.2 1388 1497 1416 1.23 1.33 1.26
27 33.2 1433 1420 1430 1.26 1.25 1.26

tuation, e.g., by Manget al* in connection with ZryO, and shows how the theory of the geometrical effect can be devel-
ZrW,0g. oped for acoustic modes.

The present paper has added flesh and blood around that
qualitative skeleton. It had not been at all clear initially how
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