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By framework structures are meant materials consisting of
relatively stiff units such as octahedra or tetrahedra, joined
by shared oxygen (or other) atoms at the corners. Examples
are ZrW 2O8 and many aluminosilicates. Rigid rotation of
the units often gives a reduction of the volume or of some
lattice constant as a purely geometrical effect. The theory of
this effect is developed and shown to give a negative con-
tribution to the thermal expansion coefficient. This is in
addition to the usual positive contribution from anharmo-
nicity of the interatomic forces. The negative effect varies
through the phonon spectrum, being strongest for low fre-
quencies, but the sign of the temperature coefficient may be
reversed above a soft mode phase transition.

I. Introduction

THE ability of a ceramic to withstand thermal shock depends
(inter alia) on the coefficient of thermal expansion (COTE).

A few have a negative COTE, of which ZrV2O7 and ZrW2O8
are currently arousing major interest because they have cubic
symmetry.1–4 Other materials have a small positive one or
nearly zero such that one infers a negative contribution to the
COTE in addition to the usual positive effect from anharmo-
nicity in the interatomic forces.5

The present work is a theoretical study of how negative
thermal expansion can arise as a geometrical effect in frame-
work structures. Detailed computations forb-quartz and their
analysis using the present theory are given elsewhere.6

By framework structures we mean crystal structures consist-
ing of rather stiff atomic units such as AX4 tetrahedra or/and
AX6 octahedra which are joined by shared X atoms (usually
oxygen) at the corners.7 Thus as well as in ZrV2O7 and
ZrW2O8,1,2 negative COTEs exist in cordierite 2MgO?2Al2O3?
5SiO2 in the c direction,8 b-eucryptite LiAlSiO4 also in thec
direction,9–11 b-quartz (i.e., above thea–b phase transition
temperature),6,12,13 some zeolites,14 and dehydrated anal-
cime.15 The list becomes longer if we include cases where the
COTE is approximately zero,16,17 much less than would be
expected from the normal anharmonicity of interatomic poten-
tials, and implying the presence of some additional negative
contribution.

We can easily see a qualitative picture of how a negative
contribution to the COTE arises. It is a geometrical effect in
framework structures, associated with the rotation of the rather

stiff structural units,18–22 or what is the same thing, the bond
bending at the shared oxygen (or other) corner atoms. Figure 1
shows the framework structure which we shall refer to as 2D-
perovskite. We can consider it either as a 2D (two-
dimensional) framework of linked squares or as a (001) section
through the octahedra of the cubic or tetragonal perovskite
structure. Figure 1(a) shows the ideal structure (lattice constant
a0), and Fig. 1(b) the result of rotating alternate squares by an
angleu. Clearly in the latter the areaA(u) of the unit cell is
reduced and we may write to lowest order

A~u! = a0
2~1 − hAu2! (1.1)

wherehA is a geometrically calculable constant (equal to unity
in this case). The important point is that the area or lattice
constant is reduced by the rotation as a straightforward geo-
metrical effect. If we now think of fluctuating positive and
negative rotations as being a manifestation of thermal agitation,
then we have a negative COTE. We have

^A~u!&T = A0~1 − hA^u2&T! (1.2)

where〈u2〉 increases and〈A〉 decreases withT.
We can develop this picture further. Most framework struc-

tures have maximum volume or maximum lattice constants
when in an ideal symmetrical form. This is not true of some
structures23 which we shall exclude from our consideration.
Analogous to Eq. (1.1) we can write for some lattice constant
a of our structure

a = a0~1 − hau2! (1.3)

whereu is again the rotation angle of the units and we expect
ha to be positive. Applying the principle of equipartition of
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Fig. 1. Rotational motion in “2D-perovskite,” showing the rotation
of the units by an angleu: (a) ideal structure before rotations, (b) after
rotations. Note the reduction, due to the rotation, of the size of the
square unit cell (dashed).
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energy to the potential energy of oscillation, we can write for
the rotation due to thermal fluctuation

1

2
IvE

2^u2&T =
1

2
kBT (1.4)

HereI is the moment of inertia of the units,vE is some average
or Einstein frequency for the rotations,〈u2〉T is the equilibrium
fluctuating value ofu2 at temperatureT, kB is Boltzmann’s
constant, and we have made the high-temperature approxima-
tion for the thermal excitation. From Eqs. (1.3) and (1.4) we
obtain the changeDa as

Da

a0
= −

hakBT

IvE
2

(1.5)

and the coefficientaa of linear expansion ofa as

aa = −
ha

I

kB

vE
2

(1.6)

So far we have lumped the whole dynamics of the system
into an effective Einstein frequencyvE in Eqs. (1.4) to (1.6). A
more detailed theory involves a summation over all phonon
modes (band indexj, and wavevectork in the Brillouin zone),
each with its own geometrical constanthakj analogous to Eq.
(1.3). The result is

Da~T!

a0
= −(

kj

Ck j kBT hak j

vk j
2 (1.7)

as will be shown in Section III, wherekBT andv2
kj enter from

the equipartition of energy as in Eq. (1.4) and whereCkj is
some constant which may depend on the mode. A negative
COTE results as before:

aa = −(
k j

Ck j kBhak j

vk j
2

(1.8)

The above outline already shows all the main features of the
theory, which we will enumerate as a guide through the algebra
to follow. First, the negative contribution to the COTE is a
geometrical effect inherent to many framework structures. The
angular fluctuations of the units about an ideal structure cause
a reduction in one or more lattice constants, because the struc-
ture in a sense folds up under rotation. The volume of the ideal
structure by symmetry usually has to be a minimum or a maxi-
mum, the former being perhaps a dense metallic structure and
the latter our more open framework structure. The measure of
the effect is anh coefficient in the sense of Eqs. (1.3), (1.7),
and (1.8).

Second, we note from Eqs. (1.6) and (1.8) that the negative
contribution to the COTE is proportional tov−2 and hence is
largest for the low-frequency modes, which arises from the
way the frequency apears in the potential energy on the left side
of Eq. (1.4) and its generalization. Of course, one also has the
normal positive COTE due to the anharmonic form of inter-
atomic potentials, but this ends to be roughtly constant through
the phonon bands: it is the same for all phonons in a simple
linear chain model. Thus adding the two effects together, one
might expect a net negative effect from the lower frequency
phonon bands and a net positive one from the higher bands. For
example, inb-quartz it was found that the lowest 10 phonon
bands (out of 27) withk in the a* direction in the Brillouin
zone gave net negative contributions to the COTE.

Third, we can expect difficulties from Eq. (1.6) from the soft
mode (SM) in the case of a soft mode phase transition16,24

where onevSM goes to zero asT tends to the phase transition
temperatureTc from above, i.e., where atT > Tc

vSM
2 ~T! ~ T − Tc (1.9)

In differentiating Eq. (1.7) to obtain Eq. (1.8), we assumed that
vkj was effectively constant, but this cannot be a satisfactory

approximation in the case of a soft mode with the temperature
dependence of Eq. (1.9). It turns out that we still have a nega-
tive contribution toDa as in Eq. (1.7) of the form

contribution to
Da~T!

a0
= −~constant!

T

T − Tc
(1.10)

where we have substituted Eq. (1.9) into Eq. (1.7). However,
differentiating this with repect toT gives a positive COTE
because the increase in the denominator in Eq. (1.10) is faster
that that of the numerator:

contribution toaa = ~constant!
Tc

~T − Tc!
2

(1.11)

which is positive. Such an anomalous positive expansion is
seen inb-quartz just above itsTc (841 K).13

Fourth, we note that our geometrical ideas can be incorpo-
rated within the conventional theory of thermal expansion in
the harmonic approximation. This is expressed in terms of the
Grüneisen parameter

gs = −
1

2v2

­v2

­s
(1.12)

associated with a mode frequencyv and its behavior under
some strains, e.g., elongation of thea lattice parameter. The
normal anharmonicity of interatomic potentials gives a positive
gs. However, with a framework structure such as in Fig. 1,
stretching the structure would make it more difficult to rotate
the stiff units, i.e., would increasev2. Conversely squeezing
the structure would tend to make the units rotate, thus decreas-
ing v2. Either way, it leads to a negative Gru¨neisen parameter
for the mode, and hence a negative contribution to the COTE
from it.

In Section II we shall recapitulate the formal theory of ther-
mal expansion in the conventional Gru¨neisen form of the quasi-
harmonic approximation. We shall express it in a form suitable
for our purposes and formulate it for a hexagonal crystal (point
groupP6222 to be precise) with only two independent lattice
constantsa 4 b and c, with a view to later application to
b-quartz.6 This suffices to show how to treat more general
cases than cubic crystals, without the full panoply of elastic
tensors for triclinic crystals. In Section III we shall develop the
geometrical theory outlined in Section I and connect it with the
formal theory in Section IV.

We want to express our geometrical effect in terms of a
negative Gru¨neisen parameter Eq. (1.12), because in practice
that is what one might measure or compute and the objective of
our theory would be to give a geometrical interpretation of it,
as we shall forb-quartz elsewhere.6 In Section IV we go more
deeply into the geometrical effect from the point of view of the
general Gru¨neisen theory. The theme of Section IV is contin-
ued in Section V for the acoustic modes, one of which turns out
to give a surprisingly large contribution inb-quartz.6 In Section
VI we shall investigate how the negative geometrical effect
combines with the normal positive expansion due to anhar-
monic forces. We shall do this by analyzing a simple generic
one-dimensional model, namely one row of the structure of
Fig. 1. It turns out that the two contributions simply add, but
the geometrical effect is proportional tov−2 while the anhar-
monic one is more or less constant. This gives a characteristic
pattern for the variation of the Gru¨neisen parametergi(kj)
through the phonen spectrum, from large negative for the low-
est frequency bands to positive for the high-frequency ones, as
already mentioned.

II. The Grü neisen Theory

In this section we will recapitulate some of the conventional
theory of the COTE in the specific form in which we will need
it. With a view to subsequent application tob-quartz6 we shall
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write the theory in the form appropriate to hexagonal symme-
try. This differs sufficiently from the simplest cubic case so
that extension to any other symmetry should be trivial, while
avoiding the plethora of tensorial suffices needed for general
triclinic crystals.

We considerN unit cells of volumeV of a hexagonal crys-
talline material, and write for its Gibbs free energy

G = G0 + Gel~eab,ec! + Gvib~eab,ec,T! (2.1)

Gel = NVF~c11 + c12!eab
2 + 2c13eabec +

1

2
c33ec

2G (2.2)

Gvib = kBT(
kj

ln F2 sinhS"vk j

2kBTDG (2.3)

whereGel andGvib are the elastic and thermally excited vibra-
tional parts ofG.25 Since thermal expansion conserves the
assumed hexagonal symmetry, we have only two strain com-
ponentse3 ≡ ec 4 dc/c and e1 4 e2 4 eab = da/a, where
throughout we shall use the subscriptab to denote an equal
change in thea and b hexagonal axes. Thecij are the usual
elastic constants. The vibrational free energy is written in the
harmonic approximation as the usual free energy of a simple
harmonic oscillation, summed over all the phonon spectrum,
i.e., over normal modes of frequencyvkj in bandj at pointk in
the Brillouin zone. Eachvkj depends oneab andec, and may
depend explicitly onT due to anharmonicity, e.g., around a soft
mode phase transition.24 Elastic equilibrium gives

­G

­eab
= 0 = NV@2~c11 + c12!eab + 2c13ec# − (

kj

Ekjvkj
−2gab

red~kj!

(2.4a)

­G

­ec
= 0 = NV@2c13eab + c33ec# − (

kj

Ekj vkj
−2gc

red~kj! (2.4b)

where

Ekj ~T! = Snkj +
1

2D"vk j (2.5)

with

nkj = FexpS"vk j

kBT D − 1G−1

is the energy in the modekj, which becomes

Ekj~T! ≈ kBT (2.6)

for

T .
"vk j

kB

in the classical high-temperature approximation. Thegred
ab and

gred
c are what we shall term “reduced” Gru¨neisen constants

gs
red~kj! = −

1

2S­vkj
2

­es
D

et,T
(2.7)

for the modekj defined for any straines (i.e., eab andec in our
case) and related to the conventional Gru¨neisen parameters

gs~kj! = vkj
−2gs

red~kj! = −S­ ln vkj

­es
D

et,T

(2.8)

Solving Eqs. (2.4) yields

eab ≡
da

a
=

c33jab − c13jc

~c11 + c12!c33 − 2c13
2 (2.9a)

ec ≡
dc

c
=

~c11 + c12!jc − 2c13jab

~c11 + c12!c33 − 2c13
2 (2.9b)

where jab and jc can be regarded as the thermally induced
stresses in thea, b, andc directions

jab = ~2NV!−1(
kj

Ekjvkj
−2gab

red~kj! (2.10a)

jc = ~NV!−1(
kj

Ekjvkj
−2gc

red~kj! (2.10b)

The extra factor1⁄2 appears in Eq. (2.10a) becausegab
red involves

changing both thea andb axes.
We can check that Eq. (2.10) reduces to the standard text-

book result for a cubic material

ea = eb = ec =
kBTgV

BVat
(2.11)

as follows, whereVat is the volume per atom andgV is the
standard Gru¨neisen constant Eq. (2.8) for differentiation with
respect to volume change. If we assume in Eq. (2.9) that thec
axis is elastically the same as thea andb axes, i.e.,c33 4 c11
andc13 4 c12, then the elastic symmetry is the same as in a
cubic material, which also makesjab 4 jc. Then Eq. (2.9)
becomes

ea = eb = ec =
jc

3B
(2.12)

whereB is the bulk modulus

B =
1

3
~c11 + 2c12! (2.13)

Let us also assume that all modes have the same Gru¨neisen
constant, as is true in the simplest model of a linear chain, or
thatgV is an appropriate average value. Note that in generalgV
is the average ofga, gb, andgc, not their sum. This is best seen
by thinking of the differentiation in terms of small finite dif-
ferences and noting that 1% strainsea 4 eb 4 ec give a 3%
volume changeeV. The summation in Eq. (2.10) contributes a
factor 3Nn wheren is the number of atoms in the unit cell. We
also use the classical limit Eq. (2.6), after which Eq. (2.12) then
reduces to Eq. (2.11).

Finally, we note that the differentiation in Eqs. (2.7) and
(2.8) is with respect to strain, so that the Gru¨neisen constants
are in the nature of stresses, as is also evident in Eqs. (2.9) and
(2.10).

III. Geometrical Effect

This section will develop more fully the geometrical effect,
which gives a negative contribution to the COTE as outlined in
Section I in an oversimplified form for pedagogic purposes.
The major simplification there was to lump all the phonons
together into one Einstein mode in Eq. (1.4), which we will
now avoid.

We consider a phonon modekj of frequencyvkj with energy
Ekj(T), Eq. (2.5), in the mode at temperatureT. As always in
simple harmonic motion, the energy is equally divided between
kinetic energy and potential energy, the latter having the form

1

2
Ekj~T! =

1

2
~inertia term!vkj

2 ^u2&kj (3.1)

There are only rotations in the mode depicted in Fig. 1 but in
general there will also be some translations If we neglect the
latter, we can substituterNI for the inertia term in Eq. (3.1),
wherer is the number of rigid units (considered identical) each
with moment of inertiaI in each of theN unit cells. We obtain
(for the rotational geometrical effect only!)
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^u2&T,kj ≈
Ekj~T!

NrIvkj
2 (3.2)

for the contribution of the particular mode to〈u2〉T. Of course,
there are usually concomitant translations along with the rota-
tions which can alter the arithmetic by a factor of 2, and in the
case of quartz6 we specifically point to this effect in connection
with the differences ingred for the soft mode atk 4 0 and the
Vallade mode alonga*. Because of the assumption about the
inertia term, our theory is still approximate and intended only
as an interpretation of detailed calculations with the Gru¨neisen
theory, e.g., for quartz6 and of the negative COTE phenom-
enon. In particular, Eq. (3.2) applies only to modes that are
primarily rotational, and not to longitudinal acoustic modes, for
example.

We will confine ourselves to the case of hexagonal symme-
try for the same reasons as in Section II, and write for thea and
c lattice parameters

a = a0~1 − hau2! (3.3a)

c = c0~1 − hcu
2! (3.3b)

Here we have introduced the crucial geometrical constantsha
and hc describing the reduction in lattice parameters due to
rotations. Substituting Eq. (3.2) into Eq. (3.3) and summing
over all modes we obtain

eab~T! =
da

a
≈ N−1(

kj

~rI !−1Ekjvkj
−2@−ha~kj!# (3.4a)

ec~T! =
dc

c
≈ N−1(

kj

~rI !−1Ekjvkj
−2@−hc~kj!# (3.4b)

It is immediately apparent that Eqs. (3.4) are rather similar to
the result in Eqs. (2.9) and (2.10) of the proper Gru¨neisen
theory, with the factorEkjvkj

-2 occurring in each. The relation-
ship becomes more evident if we rewrite Eqs. (3.4) and the
theory of Eqs. (2.1) to (2.10) for arbitrary strainset and elastic
constantscst (s, t 4 1 to 6) without special symmetry. Equa-
tions (2.9) and (2.10) become

js = cstet~T! (3.5a)

js =
1

NV(
kj

Ekjvkj
−2gs

red~kj! (3.5b)

and Eqs. (3.4) become

et~T! ≈ −
1

NrI(kj

Ekjvkj
−2ht~kj! (3.5c)

which when substituted into Eq. (3.5a) gives

gs
red~kj! ≈ −

V

rI
cstht~kj! (3.6)

where we have used the summation convention for the suffixt.
The approximation in Eqs. (3.5c) and (3.6) relates to the inertia
term rI because in general a phonon will involve translation of
the units as well as rotation.

We note that Eq. (3.6) gives negative values ofgred as ex-
pected, and that it allows us to interpret a computed (or mea-
sured)gs

red(kj) (e.g., for quartz6) in terms of geometrical con-
stantsht. We also note from Eq. (3.6) that the geometrical
effect makes a roughly constant contribution to the reduced
Grüneisen constantsgred(kj), not to the usualg(kj), for all
rotational modes.

Table I gives some calculated results on an idealized model
of b-quartz, designed to pick up the geometrical effects. It
consists of regular tetrahedra joined at the corners into the
correctb-quartz structure, but there are no interunit forces. In
an arbitrary phonon, the tetrahedra will need to distort in vari-
ous ways, but in the present model all types of distortion are

represented by a single average stiffness parameter as de-
scribed in Section VI and elsewhere.26 Moreover, the stiffness
is described by a simple spring so that there are no anharmonic
contributions. The value of the parameter has been fixed to fit
the overall width of the phonon frequency band. Such a simple
model is obviously a gross oversimplification, but in fact the
phonon spectrum it gives is recognizably similar to that of the
most sophisticated calculations. The phonon frequencies were
calculated with this model atk 4 0 at two values of each of the
a andc lattice constants, with the reduced Gru¨neisen constants
Eq. (2.7) then calculated by differencing. The results in Table
I show that our geometrical effect is zero for many phonons,
and gives a negative reduced Gru¨neisen constant for phonons
where it is nonzero, as expected, which would lead to a nega-
tive COTE. The first three bands have been omitted from Table
I because they are rather meaningless atk 4 0, and the modes
only go up toj 4 18 in the model of stiff tetrahedra because
the internal motion of the silicon atoms has been eliminated.
We see from Table I that the geometrical effect is not limited
to low-frequency phonons but extends throughout the bands.
Moreover, it is the reduced Gru¨neisen parameters Eq. (2.7) that
are roughly of constant order of magnitude, not the traditional
Grüneisen parameters Eq. (2.8) themselves; note there is quite
a sizeable difference between them sincev2 varies by more
than a factor of 100 through the phonon band. This is all in
accordance with our expectations as expressed in Eq. (3.6).

We now turn to another issue. In Fig. 1 we have a phonon
mode which we have described as purely rotational. It is a rigid
unit mode (RUM) in the language of Refs. 18–21 involving no
distortion of the units, and it is in fact the only such mode for
the system of Fig. 1. It is easy to see that this RUM leads to
negative expansion in the manner shown in Fig. 1 and dis-
cussed in Section I. But what of the other modes that involve
the distortion of the units: Will they not give a severely smaller
geometrical effect? We have glossed over this question in go-
ing from the RUM in Eqs. (1.1) to (1.3) to an average over
modes in Eq. (1.4). The answer to our question is both “yes”
and “no”: yes to the extent that non-RUMs have higher fre-
quencies and there is a weighting factorv−2 in Eqs. (2.10), but
not beyond that. The geometricalgA

red is roughly the same for
all rotational phonons in the model of Fig. 1 which we can
understand in the following way. Lattice contraction is a local
effect. Consider one ring of four squares in Fig. 1 and rotate
them by +u, −u, +u, −u counting around the ring. Clearly the
area enclosed by the four squares will be reduced by the
amount given by Eq. (1.1) (withhA 4 1 as mentioned there).
We ignore the rotations of the other squares, assuming them to
be some random amounts; this of course will necessarily in-
volve distortions of the units and hence higher frequency of
phonons. Returning to our ring of four squares, let us number
them 1 to 4 and now suppose they are rotated by more general

Table I. Reduced Grüneisen Parameters from Split Atom
Model of b-Quartz at k = 0

j

1

2
gab

red/4p2

(THz2)
gc

red/4p2

(THz2)
gV

red/4p2

(THz2)

4 −44 −74 −53
5 −32 −73 −45
6 −32 −73 −45
7 −86 0 −56
8 −86 0 −56
9 −13 −37 −20

10 0 0 0
11 0 0 0
12 −7 −19 −11
13 −7 −19 −11
14 −11 −18 −13
15 −19 −56 −31
16 −86 0 −56
17 −47 −91 −60
18 −47 −91 −60
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anglesu1 to u4. We may expect the area of the enclosed square
to be reduced by something of order

dA ≈ −A0hAu2 (3.7)

where

u =
1

4
~u1 − u2 + u3 − u4! (3.8)

is an average amount of coherent rotation. We have

u2 =
1

16
~u1

2 + u2
2 + u3

2 + u4
2! +

1

8
~−u1u2 + u1u3 − u1u4 − u2u3

+ u2u4 − u3u4! (3.9)

Now very crudely we may write

−u1u2 ≈
1

2
~u1

2 + u2
2! (3.10)

by noting that we expectu1 andu2 to be roughly correlated with
u1 ≈ −u2 because that requires minimum distortion of the stiff
units. Substituting Eqs. (3.8) to (3.10) into Eq. (3.7) we have

dA ≈ −A0hA

1

4
~u1

2 + u2
2 + u3

2 + u4
2! (3.11)

We now sum Eq. (3.11) over all 4-rings in our sample. Since
each unit is a member of four 4-rings, we obtain for the aver-
agedA

dA

A0
= eA ≈ −hA

1

N(
n

N

un
2 (3.12)

where the summation extends over allN units andeA is the
areal strain.

We already see here that there is (very roughly, in view of all
the approximations) just one geometricalhA constant for all the
rotational modes. We can carry the analysis one step further by
expressingun in terms of the normalized phonon amplitudes
Qk as

un = (
k

Qk exp~ik?ln! (3.13)

whereln is the positional lattice vector of thenth unit. Hence
we have

(
n

un
2 = (

k
(
k*

Q*k*QkS(
n

exp[i(k − k*)]?lnD
= N(

k

?Qk?
2 (3.14)

in the usual way.24 Combining Eq. (3.14) with Eq. (3.12) gives

eA ≈ −hA(
k

?Qk?
2 (3.15)

Thus we conclude that each phononk has the same geometrical
constanthA, within the various approximations made en route.
There is no radical difference between theh constants for
modes which do and do not require substantial distortions of
the stiff units of the framework structure.

IV. Relationship between the Two Approaches

When a new theory is developed, it is often desirable to look
at it from different points of view, if only to check the result.
In the present instance, we can derive Eq. (3.6) directly along
a different route, and we shall discuss what is achieved thereby
at the end.

Let us develop the model of a framework structure depicted
very simply in Fig. 1. As in Section III we will take the units
as having a large internal stiffness, with negligible bond bend-
ing force constant at the oxygen atoms joining the units, and we

want to apply to this system the general methodology of Sec-
tion II. We consider some phonon with rotationu of the units.
The rotations of the units will not be all the same in some
general phonon but they all oscillate with a constant amplitude
ratio between them so that we can characterize the amplitude of
the whole mode by the angleu of one particular unit. To
calculate the phonon frequency we can use the general theory
of oscillations which gives for the energies

kinetic energy=
1

2
~inertia constant!Sdu

dt D2

(4.1a)

potential energy=
1

2
v2~inertia constant!u2 (4.1b)

We will again take our inertia constant asNrI for N cells with
r units per cell of moment of inertiaI, ignoring any transla-
tional motion attendant on the rotations. Thev2 is therefore

v2 =
2~coefficient ofu2 in potential energy!

NrI
(4.2)

We also note from Section II, in particular Eq. (2.7), that we
needv2 at varying strain.

Thus we need to develop the energy of the system, as a
function simultaneously ofu and strainet. The elastic energy
per unit volume foru 4 0 is

E =
1

2
csteset (4.3)

(with the summation convention as before) where thecst are the
elastic constants of our system due to the stiffness of the units,
evaluated in its equilibrium form withu 4 0. Let us now start
with the system in its ground state with no applied stresses, and
rotate the units: this costs zero energy because there are no
interunit forces by assumption and no stresses, but results in
contractions

et
rot = −htu

2 (4.4)

where theht are geometrical constants analogous to theh
constants of Eq. (1.1), (1.3), and (3.3). If we now apply
stresses, we first have to stretch the system to undo the con-
traction of Eq. (4.4) to reach a state of zero strain. Thus we
have to substituteet − et

rot for et in Eq. (4.3), giving an energy

E~et,u! =
1

2
NVcst~es + hsu

2!~et + htu
2! (4.5)

for N cells of volumeV. We expand Eq. (4.5) to orderu2:

E~et,u! = NVS1

2
csteset + csteshtu

2D (4.6)

From Eq. (4.2) the frequency is given by

v2~es! = 2SV

rI Dcstesht (4.7)

whence from Eq. (2.7) we have for our particular mode

gs
red = −SV

rI Dcstht (4.8)

in agreement with Eq. (3.6) whererI is again an approximation
to the inertia factor per cell.

We can test the result Eq. (4.8) on the soft mode giving the
b → a transition inb-quartz. We use the simple one-parameter
model already described in Section III and used in Section VI,
with a valuel 4 193.3 J?m−2 for the spring constant in Eq.
(6.1). From the same model a calculation of the phonon spec-
trum gives the velocities of sound along a few of the main
crystallographic axes, from which we have deduced the elastic
constants for the modelc11 4 247.4 GPa,c33 4 213.1 GPa,
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c12 4 13.5 GPa,c13 4 50.4 GPa andc44 4 0. A rotation of the
tetrahedra by an angle ±u in the manner of the soft mode gives

c~u! = c0S1 −
1

2
u2D (4.9)

whencehc 4 0.5. From a similar geometrical calculation we
obtain

ha =
=3

2~1 + =3!
= 0.317 (4.10)

To calculate the moment of inertia of each Si(1⁄2O)4 tetrahedron
we ascribe each oxygen atom half and half to the two tetrahedra
which it joins, givingI 4 1.78 × 10−45 kg?m2. The cell volume
V 4 119 Å3 for r 4 3 tetrahedra in the ideal structure then
gives from Eq. (4.8) the result

gc
red = −SV

rI D~2c13ha + c33hc!

= −78~4p2! THz2 (4.11)

Note that theht for t 4 4, 5, 6 are zero by symmetry for the
soft mode. This gives adequate agreement withgc

red/4p2 4 −74
THz2 in Table I, which was computed numerically by stretch-
ing the cell in thec direction and calculatinggc

red from the
change in soft mode frequency withc as in Eq. (2.7).

Let us recapitulate what the above algebra and numerical test
have achieved. The general Gru¨neisen theory of Section II is,
of course, perfectly general, and rigorous within the harmonic
approximation. It is applicable to all materials and as such has
no predictive power. In contrast to that, our geometrical theory
of Section III has predictive power in that the geometrical
constantsha andhc of Eqs. (3.4) can be calculated analytically,
or for complicated structures by some elementary computer
modeling. The geometrical theory is only approximate and is
written in different terms from the Gru¨neisen theory, but from
a comparison of the two results one has the connection (3.6)
which indicates roughly the values of the reduced Gru¨neisen
parameters to be expected for particular modes in a particular
framework material. What has been done in Eqs. (4.1) to (4.8)
is to take our grossly simplified model of a framework structure
in a form which can be treated by both methods. Giving the
units some finite stiffness and carrying out the Gru¨neisen
analysis for the system allows one to derive rigorously the
connection Eqs. (3.6), (4.8) of the Gru¨neisen parameters for
any given mode to its geometricalh constants. The mode sys-
tem is grossly simplified in our model, but a recognizable
representation of many real silicates, namely stiff units rather
loosely jointed at the corners. Furthermore, our numerical test
in Eq. (4.11) is a further check on the whole theory by choosing
a situation where thegred can be calculated in two ways.

To have verified the complete equivalence of the two ap-
proaches therefore underpins the whole theory. It will also
allow us to treat acoustic modes in the next section, and will
open the door in Section VI to combining our geometrical
effect with the usual positive contribution to the COTE from
the anharmonic nature of the interatomic forces.

V. Geometrical Effect from Acoustic Modes

Calculating the geometrical contribution to the COTE from
the acoustic phonon modes is a little more complicated. While
the negative geometrical effect from optic modes such as in
Fig. 1 is intuitively obvious, it was not so clear whether the
acoustic modes would be very interesting from this point of
view. However, it turned out that the acoustic TAz modes in
b-quartz make the largest negative contribution.6 Let us there-
fore develop the theory specifically for the TAz modes for a
hexagonal system fork along thea* direction at lowkx, i.e., in
the acoustic region. We have

v2~kx! = v2kx
2 (5.1)

with the velocityv given by

v2 =
c55

r
(5.2)

wherer is the density. For thermal strains (expansions)es (s4
1, 2, 3) we will need­v2/­es from Eq. (1.12). From Eq. (5.1)
we expect this to be proportional tokx

2, i.e., tov2, so that it is
more convenient to work in terms of the Gru¨neisen constant
gs(kx), Eqs. (1.12) and (2.8), instead of the reducedgs

red(kx), Eq.
(2.7).

From Eq. (5.2) we will clearly need the elastic constantc55
as a function ofes, to which we now turn. It is convenient to
work in terms of an orthorhombic unit cell withb 4 √3a. To
calculatec55 we apply anxz shear (Fig. 2) by applying the
displacement

u~r ! = ~0,0,ux! (5.3)

giving

e5 = 2exz =
­ux

­z
+

­uz

­x
= u (5.4)

We imagine a stressj5 applied to hold thexzstrain but that the
system is otherwise allowed to relax, which will result in spon-
taneous strains

et
rot = −ht,5u

2 ~t = 1, 2, 3! (5.5)

In fact in our very simple model applied tob-quartz, thee5
shear can be achieved by the tetrahedra rolling over one an-
other. The contractions of Eq. (5.5) are therefore completely
analogous to those in Fig. 1, Eq. (1.3). Theet

rot for t 4 4, 6 are
zero by symmetry, ande5 is set externally as in Fig. 1. We now
apply strainset (t 4 1 to 4, 6) which we think of as infinitesi-
mal, after applying the finitee5 strain of Fig. 2. In applying
these strains, we first have to overcome theet

rot of Eq. (5.5) as
in Section IV, so that the work done is

Elastic energy per unit volume=
1

2
cst~es + ?es

rot?!~et + ?et
rot?!

=
1

2
cst~es + hs,5e5

2!~et + ht,5e5
2!

=
1

2
c55e5

2 +
1

2
csteset

+ ~cstesht,5!e5
2 + 2~e5

4! (5.6)

Fig. 2. (a) xzshear of magnitudee5 4 u, pictured (b) by a cogwheel
rolling over another.
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where the second term is summed except fors4 t 4 5 and the
third term except fors 4 5. Thusc55 is given as a function of
es by the general relation

c55~es! = c55 + 2cstesht,5 ~not t = 5! (5.7)

where only theht,5 of Eq. (5.5) are nonzero for hexagonal
b-quartz.

We have in Eq. (5.7) thec55 as a function of thees, but in
order to calculate the Gru¨neisen constant of Eq. (1.12) we will
also need to know how the rest of Eqs. (5.1) and (5.2) vary with
es. Since we are focusing on the effect of the TAz modes at
(kx,0,0), we have to distinguish between expansion in a per-
pendicularb or c direction and expansion in thea direction. Of
course by symmetry the total effect in thea andb directions
will be the same after summing over all phonons but we are
here focusing on the effect from the phonons alongkx only. Let
us first consider expansion in thec direction. We have

r =
M

abc~1 + e3!
(5.8)

whereM is the mass per unit cell and we have included the
factor 1 +e3 to represent variation of thec lattice parameter
with e3. Thus we have from Eqs. (5.1), (5.2), and (5.7)

v2~kx,e3! = c55~e3!~1 + e3!Skx
2

r
D

e3=0

(5.9)

and the Gru¨neisen constant

gc~kx! = −
1

2v2

­v2

­e3

= −
1

2c55

­

­e3
@c55~1 + e3!#

= −
1

2F 1

c55

­c55

­e3
+ 1G (5.10)

We have to take another aspect into account for the expan-
sion in thea direction. In the differentiation­v2/­e1 we have to
take the variation of a particular mode which in this case in-
cludes a change inkx. Let us define our modes in terms of
periodic boundary conditions on a rectangular block ofN 4
Na × Nb × Nc cells. The values ofkx in the Brillouin zone are
then

kx =
na

Na

2p

a (5.11)

wherena is an integer which defines the particularnath mode
along thekx axis. Thus as we apply straine1 in thex direction,
it is the production (kxa) that remains constant, notkx itself. We
therefore write analogously to Eqs. (5.7) and (5.8)

v2~kx,e1! = c55~e1!
1

ra2~kx
2a2!

= c55~e1!~1 + e1!−1Skx
2a2

ra2 D
e1=0

(5.12)

which gives

ga~kx! = −
1

2v2

­v2

­e1

= −
1

2F 1

c55

­c55

­e1
− 1G (5.13)

in contrast to Eq. (5.10).
Finally, we substitute Eq. (5.7) into Eqs. (5.9) and (5.12),

remembering that for our hexagonal system the only nonzero

ht,5 are those in Eq. (5.5), to give the geometrical Gru¨neisen
constants along thekx axis for the TAz modes

ga~kx! = −H 1

c55
~c11h1,5 + c12h2,5 + c13h3,5! −

1

2J (5.14a)

gc~kx! = −H 1

c55
@c13~h1,5 + h2,5! + c33h3,5# +

1

2J (5.14b)

VI. Combined Anharmonic and Geometrical Effects

We now consider how the geometrical effect combines with
the anharmonicity of interatomic forces, which is the usual
source of thermal expansion. So far we have focused on the
geometrical effect in isolation whereas of course one has both
contributions in any real framework material. Do the two sim-
ply add?

Let us first sharpen our question. We have seen (Section III)
that it is gred, Eq. (2.7), rather thang, Eq. (2.8), that is a
measure of the geometrical effect, i.e., without the factor 1/v2.
This is a big difference, sincev2 typically varies by a factor of
100 through the phonon band (excluding the acoustic modes
wherev → 0). On the other hand, one has for acoustic phonons
that g (not gred) is roughly constant through the phonon band.
This is exactly true for simple models having only one type of
(anharmonic) interatomic force, e.g., a linear chain of alternat-
ing A and B atoms, and remains approximately true more gen-
erally. Clearly the geometrical and anharmonic effects appear
to have somewhat different physical behavior, and their com-
bination is not a trivial question.

We will investigate the interaction of the geometrical and
anharmonic effects in the simplest possible model containing
both, returning at the end to enquire whether complicating the
model to make it more realistic will alter the qualitative con-
clusions. Our system is a single row of squares from the
perovskite model to Fig. 1. We will consider them rotating
about fixed centers a distancea(1 + e) apart wheree is the
linear strain: remember we will need to calculate the variation
of the frequencies withe to obtaing or gred, as in Sections IV
and V. Any pattern of rotations (phonon), except the simple
alternation shown in Fig. 1, will require distortions of the
squares. Now there are five geometrically distinct ways of
distorting a square, with four different restoring force con-
stants. We want to have a one-parameter model, as already
used in Sections III and IV, in which all types of distortion are
described in terms of a single average force constant. We will
define below a measures of the distortion and write for the
energy the anharmonic form

V~s! =
1

2
ls2 − ms3 (6.1)

where the distortions are such thatms3 remains small compared
with 1⁄2ls2 and we will make expansions in terms of the an-
harmonicitym.

The geometry of the distortion is depicted in Fig. 3, with
adjacent squares rotating by anglesu1 and u2. Of course, in
reality the squares are joined at the cornersP1 andP2, but we
will consider for a moment notional separate rotations of each
square as completely rigid units which open up a gapsequal to
the distanceP1P2 in the figure between the corners. In reality
the units will have to distort to keep the two units joined at the

Fig. 3. Geometry of adjacent squares rotating by anglesu1 andu2.
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cornersP1, P2, and we will take the distances 4 P1P2 as our
measure in Eq. (6.1) of how much they have to distort. To
summarize: we consider notional rigid rotations of the units
which would open a gaps between corners, and we therefore
have to apply a distortion of magnitudes to join the corners
together again. This is a convenient way to construct a one-
parameter model, but there are others. We need to calculate

s2 = sx
2 + sy

2 (6.2)

wheresx and sy are the components of the vectors 4 P1P2
along the axes (Fig. 3). The semidiagonalsO1P1 andO2P2 are
of length (1/2)a, whence

sy =
1

2
a sin u1 +

1

2
a sin u2 (6.3)

Remembering that the distanceO1O2 is a(1 + e), we have

sx = ae+
1

2
a~1 − cosu1! +

1

2
a~1 − cosu2! (6.4)

The potential energy in our anharmonic “spring” is now
given by substituting Eqs. (6.3) and (6.4) into Eq. (6.2). To
lowest order inu2 we have

s2 = a2e2 +
1

4
a2~u1 + u2!2 +

1

2
a2e~u1

2 + u2
2! (6.5)

In order to derive the equation of motion, we need to calculate
the torqueG1,2 acting on unit 1 due to the anharmonic potential
energy Eq. (6.1):

G1,2 = −
­V

­u1

= −F1

2
l −

3

2
m~s2!1/2G­~s2!

­u1
(6.6)

where we have takens2 as the variable and writtens3 as (s2)3/2.
We have from Eq. (6.5)

­s2

­u1
=

1

2
a2~u1 + u2! + a2eu1 (6.7)

This expression is of orderu, and hence to obtain the phonon
frequencies as simple harmonic motions we need to evaluate
the square bracket in Eq. (6.6) only to zeroth order inu to give
the torque

G1,2 = −
1

4
a2~l − 3mae!~u1 + u2 + 2eu1! (6.8)

We can now set up the equations of motion for the linear
chain of squares. Thenth square will experience torques from
its coupling to the (n + 1)th and (n − 1)th squares, giving its
equation of motion as

I
d2un

dt2
= Gn,n+1 + Gn,n−1

= −
1

4
a2~l − 3mae!~2un + un−1 + un+1 + 4eun! (6.9)

whereI is the moment of inertia, and whereGn,n+1 is just given
by Eq. (6.8) andGn,n−1 can be derived similarly. We now take
un proportional to exp(ikna) and replace d2/dt2 by −v2 as
usual24 to obtain the phonon spectrum

v2~k,e! =
a2

2I
~l − 3mae!~1 + 2e + coska! (6.10)

From Eq. (6.10) we have the reduced Gru¨neisen parameter

ga
red~k! = −

1

2S­v2

­e De=0

= S3ma

2l
Dv2~k! − Sa2l

2I D (6.11)

The second (negative) term is the geometrical effect corre-
sponding exactly to Eq. (3.6). The length in thex direction
varies as cosu, giving ha 4 1⁄2. The “volume” V of the unit
cell is a, and the elastic constantc11 4 la. Thus Eq. (6.11)
agrees with Eq. (3.6) for the pure rotational mode of Fig. 1, as
it should.

We note that the geometrical contribution in Eq. (6.11) is not
just constant to order of magnitude: it is constant throughout
the band, even for the modes withk far from k 4 p/a having
large distortions of the units. This is completely in accordance
with the expectation developed at the end of Section III. The
positive first term of Eq. (6.11) comes from the anharmonicity,
and is proportional tov2 so that it corresponds to a constant
Grüneisen parameter through the band, not a reduced Gru¨nei-
sen parameter. That is a well-known result for longitudinal
modes of a linear chain of point masses, and it is interesting
that it also applies here to the rotational modes.

We return now to the question of whether we can expect the
form of Eq. (6.11) to apply qualitatively quite generally, i.e.,
that gred(kj) consists of a positive anharmonic part roughly
proportional tov2 and a negative geometrical part of roughly
constant order of magnitude. The fact that the anharmonic part
for the rotational modes has the same form as in ordinary
displacive modes makes this very likely. We can enlarge our
simple model to allow translation of the units along thex-axis
as well as the rotations. The equations of motion will give a 2
× 2 dynamical determinant of which one diagonal element is
the same as in our model and the other as for acoustic longi-
tudinal modes, i.e., of the same form. The same will be true of
the off-diagonal elements because they all arise from the po-
tential Eqs. (6.1) and (6.5), i.e., from the same force: what
differs is whether we take the rotational moment of the force as
in Eq. (6.6) or take the force directly as producing linear ac-
celeration. The anharmonic part scales withv2 because it is of
higher order ins in Eq. (6.1): a small/largev2 implies a small/
large restoring force in the simple harmonic motion, which
implies a small/larges, which implies a small/large ratio of the
anharmonic to harmonic part of Eq. (6.1). We conclude that the
combination of anharmonic and geometrical effects is expected
to show qualitatively the same form as in Eq. (6.11) quite
generally.

Because of thev2 factor in the first term of Eq. (6.11), we
may expectgred to be negative for low-frequency phonons in a
framework structure, and positive near the top of the phonon
band. That is exactly the situation found in the detailed atom-
istic calculations forb-quartz6 using the interatomic forces of
Tsuneyuki.27 Table II shows the calculated results at the point
k 4 (1/4)a*, and we see the gradation from most negativegred

at low v to most positive for highv. Note that the top six
modes correspond to optic modes of the Si atoms vibrating
inside the tetrahedra, which fall outside the present discussion.
There should, of course, be nine such modes for three tetrahe-
dra per unit cell, but three have gotten inextricably mixed with
the translational and rotational modes of the tetrahedra.

VII. Discussion and Conclusions

In Section I we put forward a qualitative picture of how a
negative coefficient of thermal expansion (COTE) can arise in
the kind of framework structures which are common among
aluminosilicates and other ceramics. We call it the geometrical
effect because it can be visualized quite simply as a contraction
of the network as its units rotate and fold together (Fig. 1).
Indeed, it had already been suggested earlier by various au-
thors2,16,18,22and in even more qualitative form as bond fluc-
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tuation, e.g., by Maryet al.1 in connection with ZrV2O7 and
ZrW2O8.

The present paper has added flesh and blood around that
qualitative skeleton. It had not been at all clear initially how
this geometrical effect could be incorporated within the stan-
dard, more or less rigorous, general theory of thermal expan-
sion which we refer to conveniently as the Gru¨neisen theory,
since one thinks of the latter more in terms of anharmonic
interatomic forces. However, the Gru¨neisen theory as a general
formulation must be able to encompass the geometrical effect,
and the present work shows how the geometrical theory can be
developed and fitted into the standard Gru¨neisen framework.
That adds confidence that the geometrical effect is indeed real!

The most important finding is that the geometrical negative
contribution to the COTE extends throughout the whole pho-
non spectrum. It is due to rotation of the tetrahedral and octa-
hedral units of the framework, and does not depend specifically
on these being “floppy modes”28 or “rigid unit modes”18–21of
very low frequencyv. However, the geometrical negative con-
tribution to the COTE is weighted by a factorv−2, so that the
low-frequency phonons have a disproportionate effect. The
theory also shows how the geometrical effect adds to that from
the anharmonicity of the interatomic forces (Section VI).

All of these points will be demonstrated in more quantitative
detail in a computational study ofb-quartz6 using the best
available potentials. This material is sufficiently simple that
one can calculate the geometrical constantsh for some modes
to check that the computed reduced Gru¨neisen constants work
out more or less as the present theory expects. It is important to
make such a check. An important point in quartz concerns the
behavior of the COTE near a displacive, soft mode, phase
transition. As mentioned in Section I, a negative Gru¨neisen
parameter can give a positive COTE due to the temperature
dependence of thev−2 weighting factor.

The geometrical effect can be visualized most easily in terms
of optic mode phonons, for example in Fig. 1. Indeed, origi-
nally the acoustic modes had not been expected to be very
interesting. It therefore came as a surprise in the calculations of
quartz6 that the band giving the largest overall negative con-
tribution to the COTE is an acoustic band. Section V therefore

shows how the theory of the geometrical effect can be devel-
oped for acoustic modes.
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18 19.1 181 269 204 0.47 0.70 0.53
19 20.3 325 239 303 0.75 0.55 0.70
20 21.8 261 223 251 0.53 0.45 0.51
21 23.4 248 416 291 0.48 0.81 0.57
22 29.0 1450 1636 1497 1.59 1.80 1.65
23 29.4 1448 1250 1396 1.55 1.34 1.50
24 29.5 1232 1396 1275 1.32 1.49 1.36
25 32.3 1284 1455 1328 1.22 1.38 1.26
26 33.2 1388 1497 1416 1.23 1.33 1.26
27 33.2 1433 1420 1430 1.26 1.25 1.26
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