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A new implementation of the program MCGR [Pusztai & McGreevy (1997).

Physica B, 234±236, 357±358] for the calculation of pair distribution functions

from neutron total scattering data using an inverse Monte Carlo algorithm is

presented. The new implementation, called MCGRtof, incorporates the

resolution functions for time-of-¯ight neutron diffractometers, and is suitable

for analysis of data from instruments such as GEM at the ISIS spallation neutron

source. The effect of including resolution correctly is to increase the magnitude

of the pair distribution function at larger distances. The working program is

illustrated with total scattering measurements from crystalline AlPO4.

1. Introduction

The pair distribution function, G(r), contains information about the

distribution of instantaneous interatomic distances. It is obtained by

Fourier transform of the total scattering, which for crystalline mate-

rials will be the sum of the Bragg scattering and the diffuse scattering.

Formally we can write (Keen, 2001)
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S(Q) is the basic measurement, after a number of essential correc-

tions have been carried out (Howe et al., 1989). D(r) is an alternative

representation of the information contained with G(r), giving a more

balanced presentation of the information in the sharp peaks at low r

and the broader features over intermediate values of r. Similarly, it is

common to plot the function Qi(Q) instead of i(Q) in order to present

better both the low Q and high Q together. Moreover, the transfor-

mation equations above effectively link D(r) to Qi(Q). The formalism

of the analysis of total-scattering experiments can be expressed in

many different ways, as reviewed by one of us (Keen, 2001).

G(r) is essentially the Fourier transform of S(Q) after accounting

for the isotropic average, namely the average over all relative

orientations of Q and r. One important correction is that due to

resolution. Writing R(Q) as the instrument resolution function, the

measurement is actually of

SE�Q� � R�Q� 
 S�Q�; �5�

where the superscript E denotes the experimental function. Without

accounting for resolution, the Fourier transform of SE(Q) will be

GE�r� ' FT�R�Q�� �G�r�: �6�

In short, the derived value of G(r) will be the true value modulated

by the Fourier transform of R(Q). Technically, this is only exact if the

resolution function is equivalent for all points in S(Q), which is not

actually the case. The width of R(Q), �Q, will vary with Q, and for a

time-of-¯ight diffractometer, the ratio �Q/Q will be roughly

constant. This precludes performing a direct deconvolution of SE(Q)

prior to the determination of G(r).

In this note we propose that the best solution to the problem of

instrument resolution is the use of an inverse transformation method

(Soper, 1990; Pustzai & McGreevy, 1997). We present a version of the

MCGR program previously developed for inverse transformation,

with resolution corrections properly incorporated.

There is increasing interest in measuring G(r) for crystalline

materials, particularly for disordered crystalline materials where true

instantaneous bond lengths may differ signi®cantly from the distances

between the mean atomic positions given by Rietveld re®nement.

Our own work on the crystalline polymorphs of silica has shown how

the instantaneous SiÐO bond lengths are much larger than would be

given by the distances between the mean Si and O positions, even if

care is taken in setting up a crystallographic model for the re®nement

that takes account of presumed structural disorder (Tucker et al.,

2000, 2001).

2. Inverse transformation method with resolution corrections

The inverse transformation method involves generating a numerical

form of G(r), and adjusting it point by point until its Fourier trans-

form is in best agreement with the experimental data. Pusztai &

McGreevy (1997) argue that there are a number of inherent advan-

tages in this approach, particularly in that it is possible to apply

constraints to the form of G(r), such as on its value at low r, and the

possibility of performing the transform to G(r) from total-scattering

data with a restricted range of Q. Even with the highest quality data,

for example from a time-of-¯ight instrument with data to maximum Q

of Qmax ' 50 AÊ ÿ1, the use of the inverse transformation method
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ensures that there are no transformation ripples and avoids the need

for a smoothing function.

Incorporation of resolution corrections within an inverse trans-

formation method is reasonably straightforward. The model G(r) is

computed with a very large value of r to avoid truncation ripples

when transformed to produce a model i(Q). The model i(Q) can then

be convolved, point by point, with a model R(Q), which can easily

vary across the range of Q in the data. The resultant i(Q) 
 R(Q) can

then be compared with the experimental i(Q). The quality of the

agreement can be quanti®ed by

�2 �P

j

imodel�Q� ÿ iexp�Q�
�
�

�
�2=�2; �7�

where `model' and `exp' indicate the model and experimental func-

tions, respectively. � is a weighting function, which could be related to

the actual experimental errors if these are properly propagated

through the data correction and normalization procedures. The

Metropolis Monte Carlo algorithm is used to allow the model G(r) to

give a better i(Q) by treating �2 as an energy function.

The resolution function for time-of-¯ight instruments is relatively

complex but well established. We use the formalism used in the

popular GSAS Rietveld re®nement code, which is described in detail

in the GSAS manual. We have coded this into the MCGR program of

Pusztai & McGreevy (1997); our version is called MCGRtof.

In operation, the parameters of the time-of-¯ight line shape are

obtained by performing a Rietveld or Le Bail analysis on the

diffraction data in normal time-of-¯ight mode (that is, the ¯ight time

is treated as the variable). The ®tted line-shape parameters can easily

be transformed into the Q domain.

Time-of-¯ight instruments have several banks of detectors and the

spectra from all detectors in a single bank are grouped together. The

result of a single measurement will be spectra from each of the banks

of detectors. The original MCGR program is able to handle several

sets of i(Q) spectra and in MCGRtof a different set of resolution

parameters can be obtained for each spectrum.

For polycrystalline materials, the parameters of the resolution

function can easily be obtained for the sample from the total-scat-

tering measurement. On the other hand, the parameters for non-

crystalline materials will need to be obtained from a standard sample.

In both cases, it should be noted that the parameterization of the

resolution function will only involve ®tting to diffraction data over a

limited range of Q. Beyond that, we are relying on the theoretical

extrapolation of the line-shape function. This is unlikely to lead to

signi®cant problems, particularly because the features in i(Q) will be

both weak and broad.

3. Example: measurement on crystalline AlPO4

Fig. 1 shows measurements of the total-scattering function Qi(Q) of

crystalline AlPO4, obtained on four different banks of detectors on

the GEM diffractometer at the ISIS spallation neutron source

(Williams et al., 1997). These data are ®tted using the MCGRtof

program using resolution corrections obtained using the procedures

outlined above. The data from the different detector banks cover

different ranges of Q. The banks at lower scattering angles (mean

scattering angles of 17 and 63.5� for banks 2 and 4, respectively)

extend the range to lower values of Q, with a reduction in the reso-

lution. The banks at higher scattering angles (mean scattering angles

of 91.5 and 159.5� for banks 5 and 7, respectively) extend the range to

higher values of Q (without the low-Q data) and give greatly

improved resolution at the lower values of Q within the range of data.

However, the highest-angle bank (7) also has the worst counting

statistics at higher values of Q. There is a slight systematic mismatch

between the measured and calculated Qi(Q) at the highest values of

Q in the highest-angle bank. This is not seen in the ®t of bank 5. We

believe that the much poorer statistics of the data in bank 7 have led

to dif®culties in obtaining a completely accurate correction.

However, the much lower statistical accuracy of the high-Q data in

bank 7 has meant that its contribution to the ®tting procedure in

MCGRtof is greatly reduced compared

with the contribution from the data over

the same range of Q from bank 5, which

have a much better statistical accuracy.

Fig. 2 shows the D(r) function for AlPO4

obtained using the MCGRtof program, with

and without the use of resolution correc-

tions in order to highlight the effect they

have. The difference between the two sets

of results is that the pair correlation func-

tions obtained with the resolution correc-

tions have higher values at larger values of

r, exactly as expected from the discussion

in x1.

It is interesting to note that the D(r)

function in Fig. 2 has suf®cient resolution to

see separate ®rst-neighbour P±O and Al±O

peaks. The positions of these peaks differ

by 0.2 AÊ . The actual resolution of the

function, given by �r = 2�/Qmax, is only

0.13 AÊ , which is about one half of the peak

separation. The peaks corresponding to the

O±O distances in both the PO4 and the

AlP4 tetrahedra are also separately

resolved in Fig. 2. It is interesting to note

that the positions of these ®ve ®rst peaks in

D(r), namely P±O at 1.52 AÊ , Al±O at
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Figure 1
Experimental Qi(Q) functions of AlPO4 for four banks of detectors on the GEM diffractometer, ®tted by
MCGRtof. The mean scattering angles for banks 2, 4, 5 and 7 are 17, 63.5, 91.5 and 159.5�, respectively. The
smoother curves are the ®tted functions, while the experimental data are the lines with statistical scatter.
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1.74 AÊ , O±O within the PO4 tetrahedra at 2.48 AÊ , O±O within the

AlO4 tetrahedra at 2.83 AÊ , and P±P and Al±Al at 3.09 AÊ , all match

exactly the mean distances obtained by Rietveld re®nement of the

diffraction data (multi-bank) to within one digit of the second

decimal.

4. Availability of MCGRtof

Like the original MCGR program, MCGRtof is written in Fortran,

and will run under Unix or on a PC. We have linked the output to a

graphics display using the PGPLOT routines, which allow real-time

visualization of the ®tting procedure. We anticipate that MCGRtof

will be of particular value for the new generation of time-of-¯ight

instruments such as GEM at ISIS (Williams et al., 1997). MCGRtof is

available from the authors. The original MCGR program, together

with details of the method, can be obtained from http://www.

studsvik.uu.se/Software/rmc/mcgr.htm.

We are grateful to Bob von Dreele for e-mail discussion on the

GSAS implementation of the time-of-¯ight line shape, and to EPSRC

for support.
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Figure 2
D(r) function for AlPO4 obtained from the data shown in Fig. 1 using MCGRtof.
The data with the thicker curve represent the analysis taking account of instrument
resolution, while the data with the thinner curve represent the analysis without
taking account of instrument resolution.
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