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An implementation of the reverse Monte Carlo (RMC) method for the study of

crystalline materials from polycrystalline neutron total scattering data is

presented. The new feature is that explicit account is taken of the intensities

of Bragg peaks, which are extracted from the data using the Pawley method. The

use of Bragg peaks ensures that the RMC models reproduce both the long-range

and the short-range order re¯ected in the experimental data. The relative effects

of different contributions to the data sets in the RMC method are assessed and

successful applications are illustrated using the quartz and cristobalite

polymorphs of silica as examples.

1. Introduction

1.1. The reverse Monte Carlo method and its application to
crystalline materials

The reverse Monte Carlo (RMC) method was ®rst devel-

oped by McGreevy & Pusztai (1988) as an approach for

building atomic models based on diffraction data rather than

interatomic potentials. It was primarily designed for the study

of liquids and amorphous materials because of the lack of

other routes to obtain structural information in such cases, but

the method is, at least in principle, capable of providing a

powerful analysis tool for modelling crystalline systems.

The RMC method, at its most basic level, is a simulation

approach in which the positions of atoms in a con®guration

with periodic boundary conditions can be moved until the

calculated diffraction pattern (or its Fourier transform)

matches the experimental data. The basic equation of

diffraction is the scattering law:

S�Q� �P
i;j

bibj hexp�i Q � �ri ÿ rj��i: �1�

This contains information about the relative positions of pairs

of atoms, as given by riÿ rj. This information is exactly what is

needed in the study of liquids and amorphous materials,

because absolute positions have no meaning. However, the

study of the structure of crystals has been dominated by the

use of Bragg scattering. Technically, the S(Q) function de®ned

above is an integral over all energies. On the other hand, the

Bragg scattering function, which is given as

SBragg�Q� �
���P

j

bj hexp�i Q � rj�i
���2; �2�

is equivalent to the elastic (zero energy transfer) component

of S(Q) at Bragg hkl positions. SBragg(Q) contains information

about the distribution of atomic positions, but nothing about

the instantaneous positions between atoms. For harmonic (or

nearly harmonic) crystals, this is not a problem, because the

distribution function for the instantaneous distance between

any pair of atoms is simply given by the integral over the

respective single-particle distribution functions. However, for

highly anharmonic or disordered crystals, the distribution

function for interatomic separations cannot be obtained

directly from Bragg diffraction data. An example is given by

our recent work on quartz (Tucker et al., 2000; Tucker, Keen &

Dove, 2001). The average positions of the Si and O atoms can

be re®ned by ®tting to the Bragg peaks; the distances between

these average positions, here labelled hSiiÐhOi, are easy to

compute. On the other hand, the average instantaneous

separations of neighbouring Si and O atoms, here labelled

hSiÐOi, can be obtained by Fourier transformation of S(Q).

Our work using powder diffraction methods, obtaining the

average positions by Rietveld re®nement and the mean

separations by calculation of the pair distribution functions

from the Fourier transform of the full diffraction pattern, has

shown that there is a signi®cant discrepancy between hSiiÐ
hOi and hSiÐOi, which becomes larger on heating. This is

illustrated in Fig. 1.

For a crystal, S(Q) contains both the Bragg scattering and

the diffuse scattering, the latter of which may arise from static

defects or thermal motions. For this reason, S(Q) is called the

`total scattering function'. Experimental measurements are

much easier using polycrystalline samples than single crystals.

This does not simply follow the notion that powder diffraction

is easier than single-crystal diffraction. In using total scattering

measurements to provide information about interatomic

distances, we have to face the problem of resolution (the same

problem exists in standard structure solution, but it is not

often found to be necessary to confront it in this context!). The

resolution in the Fourier transform of S(Q) (assuming now the

use of polycrystalline samples in which measurements are



performed as an average over all orientations of Q) is given by

2�/Qmax, where Qmax is the largest value of Q in the data. For a

resolution of around 0.15 AÊ , which is around 10% of the

closest interatomic separation, it is necessary to extend the

data to a value of Qmax of slightly over 40 AÊ ÿ1. By comparison,

the maximum possible value of Q using a standard Cu K� X-

ray source is just over 8 AÊ . The increase in the range of Q by a

factor of 5 would give an increase in the volume of reciprocal

space by a factor of 125, and this massive increase in data for

single-crystal diffraction, spread over the whole volume of

reciprocal space rather than limited to the Bragg vectors,

would be very dif®cult to handle in terms of collection, storage

and analysis. As a result, there is much interest in using

powder methods for collection of good S(Q) data.

In this paper, we address some of the issues associated with

the analysis of S(Q) data from polycrystalline materials and

the use of RMC methods for the study of disordered crystals.

In many ways, the approach is very similar to that used in the

study of liquids and amorphous materials, but for crystalline

materials we can treat the Bragg scattering component as a

separate set of data. The full S(Q) data contain information

about the distribution of interatomic separations and the

Bragg diffraction data contain information about the single-

particle distribution functions. The merit in combining both

sets of data in the same analysis is that the ®nal result is

constrained with regard to both types of distribution function.

This is a particular advantage that is clearly not available in

the study of liquids and amorphous materials. We will present

an approach to combine both sets of data within the frame-

work of the RMC method. We will discuss one particular

strategy and how the two sets of data together are able to lead

to more reliable results from the RMC method.

Our approach is not the only one that has been applied to

the study of crystalline materials by the RMC method.

MellergaÊrd & McGreevy (1999, 2000) recently presented an

alternative approach, which we will discuss at the end of this

paper (x6).

1.2. Common problems associated with the RMC method

The RMC method has not been accepted without some

degree of controversy and there are two `popular' criticisms of

it. The ®rst is the lack of a unique solution, which effectively

means that there may be many con®gurations that give a good

agreement with the experimental data. Some would argue that

this `problem' arises because often there are more variables in

the con®guration than data points in the measurements. There

are two possible aspects to this issue. The ®rst is that it is

inevitable (and actually desirable) that many different

con®gurations will match the experimental data. The con®g-

urations will contain only a few thousand atoms, whereas a

sample in an experiment will contain of the order of 1024

atoms. The con®guration can only ever reproduce a small

subset of the atomic con®gurations that occur in a real sample.

However, it would be hoped that the con®gurations produced

by the RMC sample would give correlation functions that are

in close agreement with those of the real sample. The S(Q)

data give pair correlation functions, but there is an in®nite

hierarchy of higher-order correlation functions (for example,

the next level up would involve clusters of three atoms, such as

the SiÐOÐSi cluster in a silica sample) that are not directly

contained within the experimental data. If, in some untestable

way, the RMC method could reasonably reproduce the

complete hierarchy of correlation functions of the real sample,

there is no problem with uniqueness. However, there is no

guarantee that the form of the pair correlation functions can

constrain any of the higher-order correlation functions

appropriately, and if the RMC method were to generate

con®gurations with the same pair correlation functions but

quite different higher-order correlation functions, there is a

true uniqueness problem that has to be faced.

The second criticism of the RMC method is that, in being

based on methods in statistical thermodynamics, it is subject to

rules such as the maximization of entropy. In effect, the RMC

method will produce con®gurations with the largest amount of

disorder possible, while remaining consistent with the pair

correlation functions given by the experimental data. This

problem is related to the uniqueness problem outlined above,

i.e. there is no guarantee that the most disordered con®gura-

tions that satisfy the constraints of the experimental pair

distribution functions will be consistent with the true struc-

ture.

Because we have no experimental method to determine the

higher-order correlation functions in a crystal directly, it

cannot be possible to determine whether either of the afore-

mentioned problems (uniqueness or maximum entropy) can

be solved. However, it is possible to limit the scope of these

problems by appropriate use of constraints at the lower end of

the hierarchy of correlation functions; in this paper we outline

some such approaches.
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Figure 1
Comparison of the mean SiÐO distance, hSiÐOi, in quartz, obtained
from the T(r) pair distribution function, and the distance between the
mean positions of the Si and O distances, hSiiÐhOi, obtained from
Rietveld re®nement (Tucker et al., 2000; Tucker, Keen & Dove, 2001).
The important point is that the two distances quickly diverge on heating
from 0 K, with hSiÐOi showing a small increase on heating as a result of
normal thermal expansion of the bond, whereas hSiiÐhOi decreases on
heating in a manner that appears to follow closely the distortion of the
long-range structure caused by the phase transition.
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1.3. Outline of the paper

The main part of the paper has the following sequence. In

the next section (x2) we describe our implementation of the

RMC method for the study of crystalline materials. We follow

the earlier idea of Keen (1997) of using bond constraints and

we introduce a method of incorporating the intensities of

Bragg peaks directly. We will discuss how the data can be

treated in order to be able to incorporate these constraints and

intensities together. Two examples, taken from recent studies

on quartz and cristobalite, will be presented, including details

of the experimental methods and some speci®c details of the

corresponding RMC simulations (x3). This is followed by

analysis of the roles of the different components of the data on

the behaviour of the RMC simulation (x4). Finally, we present

some results for quartz and cristobalite, focusing on both real-

space con®gurations and the reciprocal-space analysis of

diffuse scattering (x5). The paper is concluded with a brief

discussion of an alternative approach to the application of the

RMC method to crystalline materials (x6).

2. Developments of the RMC method for the study of
crystalline materials

2.1. Overview of the basic equations

The basic equations for scattering from an isotropic mate-

rial (such as a liquid, but also applying to a polycrystalline

material) are (Keen, 2001):

S�Q� � 1

N

d�

d

� F�Q� �Pn

i�1

ci b2
i ; �3�

F�Q� � �0

R1
0

4�r2 G�r� sin Qr

Qr
dr; �4�

G�r� � Pn
i;j�1

cicj
�bi

�bj �gij�r� ÿ 1�; �5�

T�r� � 4�r�0

h
G�r� �

�Pn
i�1

ci
�bi

�2i
: �6�

Equation (3) gives the intensity of the scattered beam. F(Q) is

the contribution from pairs of distinct atoms. gij(r) is the pair

distribution function, de®ned such that g(r = 0) = 0 and g(r!
1) ! 1. G(r) combines the gij(r) from different pairs of

atoms, with ci representing the amount of each atom. The ®nal

function, T(r), has the functional form that is most closely

related to the Fourier transform of F(Q).

Finally, the intensity of a Bragg peak at Q = |Qhkl| is given by

IBragg�hkl� � mhkl

���P
j

bj exp�i Qhkl � rj�
���2; �7�

where mhkl is the multiplicity of the hkl re¯ection.

2.2. Basics of reverse Monte Carlo modelling

The RMC approach has been described in a number of

articles (McGreevy & Pusztai, 1988; McGreevy, 1995; Keen,

1997, 1998). In the general approach, a starting con®guration

of atoms is produced with periodic boundaries, using either a

random arrangement of atoms or the crystal structure. This

starting con®guration must have the correct density and

contain the correct ratio of atoms, i.e. 1:2 for SiO2. The RMC

simulation then proceeds by moving an atom selected at

random by an amount (within a set limit) also selected at

random. Standard Monte Carlo procedures are used to test

whether to accept or reject the move, through calculation of a

change in an appropriate `energy' function. In the general

approach, the energy function can be associated with either or

both of the following residuals:

� 2
F�Q� �

P
i

�Fcalc�Qi� ÿ Fexp�Qi��2=� 2
F�Qi� �8�

and/or

� 2
T�r� �

P
i

�Tcalc�ri� ÿ Texp�ri��2=� 2
T�ri�: �9�

In both equations, � is a weighting variable (often held

constant for neutron scattering data), which may be taken to

be the error of the particular point, or else may be set `by

hand'. Instead of using F(Q) or T(r) in the energy functions, it

would be possible to use another of the real- or reciprocal-

space functions associated with total scattering. Clearly it is

necessary to calculate the functions Fcalc(Q) and Tcalc(r) after

each step in order to make comparisons with the experimental

quantities.

In using either of these approaches, any move that reduces

� 2 is accepted, and any move that increases � 2 by an amount

�� 2 is accepted only with probability exp(ÿ�� 2/2). From the

equations, it is clear that increasing the set of values of � will

enable more moves to be accepted. Once a move has been

accepted or rejected, another move is proposed at random,

and the process repeated. This sequence continues until it is

clear that the energy function is oscillating about a stable low

value.

In using � 2
F�Q� in the RMC method, it has to be recognized

that the ®nite size of the sample imposes some restrictions.

The T(r) function can be calculated only to a maximum value

of r that is given by the smallest dimension of the RMC

sample. Thus Fourier transformation of the T(r) function over

a restricted range of r will lead to signi®cant truncation ripples

and broadening in the computed F(Q). To facilitate compar-

ison of the experimental and calculated F(Q) functions in the

light of this problem, the experimental F(Q) data are convo-

luted with the Fourier transform of the sample box function

(see, for example, data in Fig. 2):

F conv
exp �Q� �

1

�

R�1
ÿ1

Fexp�Q0�
sin��QÿQ0�L=2�

QÿQ0
dQ0: �10�

The basic approach of the RMC simulation suffers particularly

from the entropy problem outlined earlier. There may be

many unrealistic con®gurations that will nevertheless give a

reasonable reproduction of the experimental data overall, and

discrepancies that are associated with very unreasonable local

con®gurations of atoms may not contribute substantially to

the energy function. As a result, it is useful to incorporate



some constraints. One of the simplest is to de®ne a distance of

closest approach for atoms, which can be enforced in the RMC

simulation. This can be de®ned from known atomic or ionic

radii, or taken from the experimental T(r) function. Recently,

Keen (1997, 1998) applied bond constraints to the RMC

method. For silica, these consisted of constraints to ensure that

the SiÐO bond distances were not able to drift away from the

known distances and constraints to ensure that the OÐSiÐO

angles did not drift away from the ideal tetrahedral angle.

These constraints are enforced by using the following energy

function:

� 2
poly �

P
SiÿO

jrSiÿO ÿ RSiÿOj2=� 2
SiÿO

� P
OÿSiÿO

j�OÿSiÿO ÿ�OÿSiÿOj2=� 2
OÿSiÿO; �11�

where RSiÐO is the expected mean SiÐO distance and

�OÐSiÐO is the ideal tetrahedral angle, 109.47�. By taking the

value of RSiÐO from the ®rst peak in the T(r) data, the

constraint is made to be data-based. Furthermore, if all

weightings in the other � 2 functions are given by the experi-

mental errors, the value of �OÐSiÐO could re¯ect the width of

the peak in T(r).

The point of these constraints is to ensure that deformations

of the SiO4 tetrahedra in the ®nal con®guration are reduced to

a minimum. This enabled the development of better RMC

models for silica glass, starting from a random con®guration of

atoms. However, when the constraints are applied to crystal-

line materials with initial con®gurations obtained from the

known crystal structure, the role of these constraints is to

ensure that the SiO4 tetrahedra are not unreasonably

deformed by the RMC procedure. In short, they hold the

tetrahedra together. One of us (Keen, 1997, 1998) has pointed

out that when these constraints are applied to a structure

formed from an initial crystal structure, the RMC procedure

acts to `re®ne' the average structure in the con®guration, in

contrast to the normal use of the RMC method, which

produces models via a wider sampling of con®guration space.

2.3. Extension of the RMC method for crystalline materials

The RMC methods outlined above can be applied directly

to crystalline materials, as we have described in earlier

publications. However, we now have to face new aspects of the

entropy issue. In a topologically disordered material, the

entropy issue is concerned with generating structural disorder

in terms of inappropriate local atomic coordinations. This does

not present any problem for crystalline materials when the

bond distance and bond angle constraints are used. However,

although the local structures may be consistent with the T(r)

and F(Q) data, it is still possible for the long-range structure to

be different from the real structure. For example, the mean-

square displacements of atoms from their average positions

may not be properly modelled within the RMC procedure. Of

course, the information on long-range order is contained

within the Bragg peaks that are found in the F(Q) data, but

not in a useful form, because of the aforementioned problem

with the effects of truncation on the Fourier transform of the

calculated T(r). This means that the resolution in the Fourier

transform of T(r) is broadened by roughly 2�/rmax and the

crystalline diffraction pattern resembles more that of an

amorphous diffraction pattern (and we note that the diffrac-

tion from amorphous silica looks like that of crystalline �-

cristobalite with a broadening of the Bragg peaks). The scat-

tering associated with the Bragg peak will then be mixed with

the diffuse scattering with similar Q. Speci®cally, it would be

useful to separate the contribution from the elastic Bragg

intensity,

IBragg�Q� �
���P

j

�bj hexp�i Q � rj�i
���2; �12�

from that of the total scattering (Bragg plus inelastic),

Itotal�Q� �
D���P

j

�bj exp�i Q � rj�
���2E: �13�

Our approach is to de®ne a new energy function,

� 2
Bragg �

P
hkl

j� I
exp

Bragg�hkl� ÿ I calc
Bragg�hkl�j2=�2 ��hkl�2; �14�

where I
exp

Bragg�hkl� is the intensity of the hkl Bragg peak

extracted using the Pawley (1981) method, and I calc
Bragg�hkl� is

the intensity calculated using equation (7). �(hkl) is the esti-

mated error of the extracted Bragg intensity. � is a scale factor.

In principle, the value of � can be obtained from the

normalization of the data, but if not, it can be treated as an

adjustable parameter in the RMC procedure. Speci®cally, if

the value of � is chosen to minimize � 2
Bragg, it can be shown that

it is given by

� �
P

hkl I calc
Bragg�hkl� I exp

Bragg�hkl�=��hkl�2P
hkl I calc

Bragg�hkl�2=��hkl�2 : �15�

We can now obtain an overall � 2 by summing over all the

individual values:
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Figure 2
Measurements of QF(Q) for �-quartz at 1073 K, convoluted with the
Fourier transform of the sample shape function (points), along with the
calculated function from the RMC re®nement using all the data and
constraints (curve). The inset shows the unconvoluted data.
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� 2 � aF�Q� �
2
F�Q� � aT�r� �

2
T�r� � apoly �

2
poly � aBragg �

2
Bragg; �16�

where the coef®cients aF(Q), etc., can be treated as switches

that allow the particular set of data or constraints to be

included or excluded. In this paper, we will explore the effects

of including or excluding the different components of � 2.

2.4. Overlap of information

It can be remarked that the different � 2 functions in

equation (16) have a considerable amount of overlap of the

same information. For example, since T(r) is obtained from

F(Q), there can hardly be any difference in the information

content of the two functions. However, what is different is the

weightings that both functions give to different aspects of the

structure. Our use of T(r) places special weight on the short-

range structure, whereas F(Q) is weighted across all length

scales. Similarly, the information about the Bragg peaks is

contained in F(Q), but the effect of separating out � 2
Bragg is to

unmix the information about the long-range order from the

information about the short-range order. Moreover, the

polyhedral constraints used in � 2
poly are generated by the T(r)

data, but by separating out the constraint terms, higher weight

is added to the low-r part of T(r) and the particular inter-

pretation of this information [namely that the SiÐO bond

length and integral of the peak in T(r) imply tetrahedral

coordination of Si]. As well as direct information overlap, the

different sets of data can provide constraints that impinge on

other data sets. For example, in a perfectly ordered structure,

the high degree of order seen in T(r) at medium to long

distances is likely to be modelled only by moving the atoms in

a way that also gives agreement with � 2
Bragg. Thus inclusion of

� 2
Bragg will not provide a completely new data-based constraint

on the re®nement, but it will act in concert with the T(r) data.

On the other hand, in disordered materials, it is less likely that

the individual terms in equation (16) will have such a high

correlation with the other terms, and it is in these cases that

the wide range of terms in equation (16) has particular value.

3. Details of experimental methods and RMC
refinements

3.1. Experimental details

Total-scattering experiments were performed using both

cristobalite and quartz as the samples, using the (now

decommissioned) LAD diffractometer at the ISIS pulsed-

neutron source (Howells & Hannon, 1999). Full details of the

measurements are given elsewhere (Tucker et al., 2000;

Tucker, Keen & Dove, 2001). These include details of the

standard procedures (Wright, 1993, 1997; Howe et al., 1989)

followed to correct the data for background scattering and to

normalize the data to give an absolute measurement of F(Q)

for values of Q between 0.5 and 50 AÊ ÿ1. Data were collected

at ®ve temperatures for cristobalite (473±950 K) and at 13

temperatures for quartz (20±1073 K).

The F(Q) data were converted to T(r) using an inverse

Monte Carlo method (Pusztai & McGreevy, 1997). This has

the main advantage of reducing the termination ripples that

arise from a standard Fourier transform. Fig. 2 shows QF(Q)

data for �-quartz at 1073 K, convoluted with the Fourier

transform of the sample shape function [according to equation

(10)] and ®tted using the RMC re®nement (as described

earlier, with speci®c details given below). In Fig. 3, the

corresponding transform to T(r) is presented and compared

with the function calculated by the RMC re®nement.

In addition to converting the data to F(Q), we also

converted the data into a form suitable for Rietveld analysis

and for extraction of the intensities of the Bragg peaks. Both

procedures were performed using the CCSL code developed

at ISIS (Brown & Matthewman, 1987; David et al., 1992).

Values of IBragg(hkl) were obtained from the powder diffrac-

tion data using the Pawley (1981) method, which also gives an

associated error, up to a maximum Q of 12.5 AÊ ÿ1. In cases

where there is overlap of a few peaks, the Pawley method will

give the intensity of a group of re¯ections. However, at higher

values of Q, there may be considerable overlap of re¯ections

with no clear structure in the diffraction pattern; then it is not

possible to extract Bragg intensities. In this approach, the

Lorentz factor is removed as part of the same process.

Rietveld analysis was used to obtain accurate lattice para-

meters, needed to de®ne the size and shape of the atomic

con®guration used in the RMC modelling. When comparing

the average atomic positions from the RMC re®nements, it is

probably most sensible to compare them with the results of the

Rietveld re®nement from the same basic set of data.

3.2. Reverse Monte Carlo refinements

The starting point for each RMC re®nement was a sample

containing 10 � 10 � 10 unit cells with orthogonal axes. For

quartz, this meant an orthorhombic supercell of the trigonal or

hexagonal structure, with 18000 atoms in the sample; for cubic

�-cristobalite, the sample contained 24000 atoms, while for

tetragonal �-cristobalite, the sample contained 12000 atoms.

In each case, the lattice parameters and starting positions for

the atoms were those given by the preliminary Rietveld

Figure 3
T(r) for �-quartz at 1073 K (points), with the ®tted function from the
RMC re®nement using all the data and constraints (curve).



re®nements. The RMC re®nement using the full � 2 function of

equation (16) was run for 80 h on a Silicon Graphics R5000

processor, and the test re®nements excluding different

contributions to equation (16) were each run for 40 h. The

re®nement for 80 h generated �1.5 million atom moves, with

an acceptance rate of around 1/3. The values of � in the

equations for � 2 were held ®xed throughout the re®nements.

In principle, the values could be systematically reduced during

the re®nement procedure, as in standard simulated-annealing

methods, but in practice a good set of values could be prese-

lected from earlier experience, and it was found not to be

necessary to force them to vary.

4. Tests of the different contributions to equation (16)

4.1. Quality of the refinements

In order to investigate the effects of the different terms in

the expression of � 2 by equation (16), a number of test RMC

re®nements were carried out in which selected contributions

were excluded. The data used for these tests were from quartz

at 20 K and 1073 K; these two data sets were chosen since they

are the two end members of the series of measurements

spanning the �±� phase transition, and as such represent

materials with low and high thermal disorder. Initially, both

sets of data were re®ned using the total � 2 of equation (16);

these results were then used as a standard against which to

measure the quality of subsequent re®nements. Table 1

presents the different re®nements that were performed. After

40 h of ®tting, all the individual � 2 terms in equation (16) were

calculated for each con®guration and scaled according to the

results obtained with all contributions included. The results

are plotted in Fig. 4 in the form of a bar chart. The name of the

re®nement is given on the vertical axis and � 2/� 2
0 ÿ 1 is

plotted on the horizontal axis, where � 2
0 is obtained from the

standard re®nements with all contributions included. With the

data plotted in this way, when the magnitude of the bars is

negative, the ®t with that model is better, and vice versa when

the bar magnitude is positive. The oscillation when equili-

brium has been reached would give a bar of magnitude 0.05 on

the scale of this bar chart.

If we compare the re®nements labelled `Raw' and `Poly-

hedra', the former being the initial con®guration and the latter

being a re®nement using the polyhedra constraints without the

diffraction data directly [although we noted above that the

polyhedra constraints are generated by the T(r) data], we see

from Fig. 4 that the constraints on the size and shape of the

SiO4 tetrahedra have a large effect on the ®nal ®t. Effectively,

we have allowed the tetrahedra to move as nearly rigid units in

a random way, which to some extent mimics thermal disorder.

The effects are particularly large for the data at 1073 K, where

it is known that the values of hSiiÐhOi obtained from the

Rietveld re®nements are signi®cantly lower than the values of

hSiÐOi obtained from the T(r) data (Tucker et al., 2000). The

effects are not negligible for the 20 K data either, although

they are considerably smaller, because it is known that the �-

quartz structure still contains some degree of framework

¯exibility (Hammonds et al., 1996), which allows motion of the

tetrahedra in the re®nement.

By way of contrast, the re®nement labelled `No polyhedra

constraints', which takes account of all direct diffraction data

but without the contribution � 2
poly, gives low values for the

data � 2 but high values of � 2
poly, as seen in Fig. 4. It appears

that the polyhedra constraints are needed to prevent the

polyhedra from distorting. It should be noted that some

degree of polyhedra distortion is generated in the 20 K

re®nement, even though the agreement with the T(r) data

appears to be good. For the remaining tests, we always include

� 2
poly.

The addition of only the � 2
Bragg term, labelled `Bragg' in

Table 1 and in Fig. 4, improves the ®t to the Bragg data but

appears to have little effect on the other terms in the overall

� 2 expression. In contrast, inclusion of the F(Q) data without

the Bragg intensity data in the RMC re®nement, namely the

case labelled `F(Q)' in Table 1 and Fig. 4, has an effect on both

� 2
F�Q� and � 2

Bragg. Inclusion of both � 2
F�Q� and � 2

Bragg in the ®t, the

case labelled `F(Q) + Bragg', gives an even lower value of

� 2
Bragg. The point is that some information about the long-

range structure as seen in the intensities of the Bragg peaks is

included in F(Q), as expected, but by separating the Bragg

peaks from the total diffraction data, the re®nement is able to

match the long-range order better.

An analogous picture is seen with the T(r) data alone

[labelled `T(r)'] and with a combination of the T(r) and Bragg

intensity data [labelled `T(r) + Bragg']. The T(r) data alone

lead to a reduction of � 2
Bragg. There is a greater reduction when

the Bragg intensity data are included. By comparing the two

sets of re®nements with either the F(Q) or the T(r) data, it can

be seen than the corresponding values of � 2 are different in

each case. This re¯ects the different weightings exerted by the

two functions, as discussed above.

The ®nal result concerns the effect of including or not

including the Bragg intensities when both the F(Q) and the

T(r) data are used in the RMC re®nement. It can be seen that

there is only a marginal improvement when including the

Bragg intensity data (more so for the 1073 K data). The point

of including the Bragg intensity data is not to provide an

improved RMC re®nement per se, but to instil more con®-

dence in the realism of the con®gurations generated by the

re®nement. That the inclusion of the Bragg intensity data has

only a small effect shows that the information about the long-

range order is obtained from the combined use of the T(r) and
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Table 1
De®nitions of the � 2 terms used in test RMC re®nements.

Re®nement name � 2 terms used

Raw Initial con®guration, not re®ned

Polyhedra � 2
poly

Bragg � 2
poly + � 2

Bragg

F(Q) � 2
poly + � 2

F�Q�
F(Q) + Bragg � 2

poly + � 2
F�Q� + � 2

Bragg

T(r) � 2
poly + � 2

T�r�
T(r) + Bragg � 2

poly + � 2
T�r� + � 2

Bragg

T(r) + F(Q) � 2
poly + � 2

T�r� + � 2
F�Q�

No polyhedral constraints � 2
T�r� + � 2

F�Q� + � 2
Bragg
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F(Q) data, but the cases when we did not use the combined

data did show that it is possible for the Bragg intensity to have

a signi®cant effect on the RMC re®nement. In the present

example, the inclusion of the Bragg intensities has increased

our con®dence in the outcome of the RMC re®nement, but we

anticipate that there may be cases where it has a real effect on

the ®nal con®gurations. The issue of con®dence is important in

the light of the earlier discussion about the possibility that the

RMC method can generate too much disorder.

To summarize the results of these tests, the main effects on

the RMC re®nements arise from the bond constraints. When

also using either the F(Q) or the T(r) data with the constraints,

inclusion of the Bragg intensity data improves agreement with

the data. When using both the F(Q) and the T(r) data with the

constraints, inclusion of the Bragg intensity data has less

effect, but improves our con®dence in the ®nal model. Two

things should be noted about this point. First, we should

reiterate the need for models of structural disorder to be

formed within the scheme of the average structure; models

which do not reproduce the Bragg intensities should be

questioned. Secondly, part of the reason that the F(Q) and

T(r) models described here produce good agreement without

recourse to the Bragg constraint is that the data are of high

quality. With more limited data (e.g. a smaller Q range), the

Bragg constraints may be more important. The tests show a

correlation with the temperature at which the data were

collected. The 20 K data correspond to an ordered structure,

while the 1073 K data correspond to a disordered structure. In

the ordered structure, the local structure produced by the T(r)

data is able to constrain the long-range order, which is why the

T(r) data have a signi®cant effect on the agreement with all

data sets at low temperature, but not at high temperature, as

seen in Fig. 4.

4.2. Speed of convergence

During the study of cristobalite, it was noticed that the

inclusion of the Bragg intensities had a signi®cant effect on the

speed at which the RMC re®nement converged to an equili-

brium value of � 2. Whereas it might be expected that

including an additional energy term in the re®nement might

increase the computational time per step, it was found that the

total time for the simulation to reach equilibrium was reduced.

Fig. 5 shows the value of � 2 plotted against CPU time for the

simulations that included or excluded the Bragg peak inten-

sities. This shows how the Bragg peak intensities increase the

speed of convergence. The inset in Fig. 5 gives the number of

moves generated during the re®nements. The rate at which

moves are performed is slightly less where the Bragg inten-

sities have to be calculated, since it takes longer to calculate

the extra parameter for each move. This shows that equili-

brium is achieved in fewer moves as well as in less time in the

case where the Bragg intensities are included explicitly. The

interpretation is that the Bragg intensities exert additional

constraints on the model, so that moves that cause the average

structure to deviate are not accepted. This ensures that the

path to a ®nal ®t is smoother and thus quicker. Wicks et al.

(1997) noted a similar effect when using appropriate coordi-

nation constraints for a glass.

Figure 5
Variations of � 2 without Bragg constraints (solid line) and with Bragg
constraints (dashed line) with CPU time used. The inset graph shows the
total number of moves generated with time.

Figure 4
Results of the tests based on different combinations of data using the
RMC re®nements, as de®ned in Table 1.



5. Sample results using the RMC refinement method

5.1. Quartz

The results of the RMC re®nements on quartz are shown in

Fig. 6 as cuts through the ®nal three-dimensional con®gura-

tions. The insets give the average structures of �- and �-quartz

as obtained from the RMC re®nements. These are consistent

with the results of the Rietveld re®nements and with the

average structures. The �-quartz con®guration produced at

20 K shows very little disorder. This, of course, is expected at

such a low temperature. However, since the RMC method

moves the atoms in the con®guration randomly through

hundreds of thousands of steps, it is not obvious, a priori, that

the RMC re®nement would retain the ordered structure. This

example shows that the data and constraints include enough

information to produce the universally accepted ordered

structure. On the other hand, it might then be possible that the

data and constraints could over-constrain the simulation,

giving no room for disorder. That this is not the case is shown

by the con®guration obtained from the 1073 K data. Here the

picture is of a structure that contains a high degree of local

disorder, while remaining consistent with the higher-symmetry

average structure of �-quartz. It is clear from the comparison

of the RMC con®guration with the average structure that the

local disorder is achieved through rotations of the SiO4

tetrahedra. More detailed analysis of the RMC re®nements

across the whole range of temperatures is discussed in detail

elsewhere (Tucker et al., 2000; Tucker, Keen & Dove, 2001).

5.2. Cristobalite

The second system investigated with this new structure

re®nement method was cristobalite, the � and � phases of

which were simulated. From the detailed analysis of Tucker,

Squires et al. (2001), calculations of the three-dimensional

diffuse scattering from the RMC con®gurations were selected,

covering all temperatures. Sample results are shown in Fig. 7,

where they are compared with the experimental data of Hua et

al. (1988) and Welberry et al. (1989) for �-cristobalite. The

agreement between the calculated and measured diffuse

scattering of the � phase is very good, with the RMC re®ne-

ment picking up the streaks of diffuse scattering with the

correct intensity modulation.

Once again it might be thought that the random nature of

the RMC approach produces diffuse scattering because of its

natural ability to produce the most disordered structure that is

consistent with the data and constraints. The fact that the

Bragg intensities are now being ®tted reduces the likelihood

that this is the case. Furthermore, the pattern and intensity of

the diffuse scattering calculated for the �-cristobalite con®g-
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Figure 7
Maps of the three-dimensional diffuse scattering from cristobalite,
showing the a*±b* plane in reciprocal space. The plot for �-cristobalite
is indexed as �-cristobalite in order to highlight the common aspects. The
single-pixel white spots are the Bragg peaks. The intensity scale of the
diffuse scattering, as indicated by the shading (light for higher intensity,
dark for lower intensity) is the same for all plots. The plot in the bottom
right-hand corner represents experimental TEM measurements for
�-cristobalite (Hua et al., 1988; Welberry et al., 1989).

Figure 6
(100) layers of instantaneous RMC atomic con®gurations of quartz
represented by SiO4 tetrahedra for one temperature above Tc and two
below. The inserts show the `average' structures obtained from the same
con®gurations. In this projection, the small parallelopiped gaps between
tetrahedra become orthogonal in the �-phase, giving a clear representa-
tion of the symmetry change at Tc.
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uration is clearly different from that of the �-phase con®g-

uration (all plots in Fig. 7 are on the same scale). It is known

from the RMC analysis (Tucker, Squires et al., 2001) and other

experiments that �-cristobalite is more disordered than the �
phase, and the RMC re®nements are able to respond to the

data and constraints to produce the correct degree of order or

disorder.

6. Discussion

The tests and results show that the RMC method can be

applied successfully to crystalline solids. The new develop-

ment in this paper is to take explicit account of the intensities

of the Bragg peaks extracted from the diffraction pattern

using the Pawley (1981) method. Our tests showed that if

either F(Q) or T(r) are used as the primary data, the inclusion

of the Bragg peaks plays a signi®cant role in changing the

degree of long-range order in the RMC con®gurations. For the

examples described here, the inclusion of the intensities of the

Bragg peaks has less effect when both F(Q) and T(r) data are

used in the RMC method, but the inclusion of the Bragg peak

data increases the con®dence that the con®gurations do not

suffer from increased disorder. This is backed up by the

examples that cover a range of inherent structural disorder.

Both examples are network structures, where the constraints

play a large role. The Bragg peaks may play a more direct role

in cases where such a three-dimensional network is not

present.

As mentioned before, the application of the RMC method

to crystalline materials has also been tackled by MellergaÊrd &

McGreevy (1999, 2000). These authors took a different

approach. In their approach, called RMCPOW, the three-

dimensional scattering is calculated (cf. the calculation of the

total scattering shown for one reciprocal-lattice plane in Fig. 7)

over a uniform grid in Q; then the three-dimensional diffuse

scattering is reduced to the one-dimensional F(Q). This

approach differs from ours in that we separate out the

intensities of the Bragg peaks explicitly, whereas in RMCPOW

these are folded into the calculated F(Q) data with no real loss

of Q-space resolution. The data presented here extend to a

high Q value. The application of RMCPOW over this entire Q

range would be computationally prohibitive; therefore, in this

instance, our method would be more ef®cient.

We are grateful for support from EPSRC.
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