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DL_POLY_3 is a general-purpose massively parallel molecular dynamics simulation package

embedding a highly efficient set of methods and algorithms such as: Domain Decomposition

(DD), Linked Cells (LC), Daresbury Advanced Fourier Transform (DAFT), Trotter derived

Velocity Verlet (VV) integration and RATTLE. Written to support academic research, it has a

wide range of applications and can run on a wide range of computers; from single processor

workstations to multi-processor computers. The code development has placed particular emphasis

on the efficient utilization of multi-processor power by optimised memory workload and

distribution, which makes it possible to simulate systems of the order of tens of millions of

particles and beyond. In this paper we discuss the new DL_POLY_3 design, and report on the

performance, capability and scalability. We also discuss new features implemented to simulate

highly non-equilibrium processes of radiation damage and analyse the structural damage during

such processes.

Introduction

The molecular dynamics (MD) simulation technique has

developed rapidly in recent years to utilise emerging advance-

ments in hardware by better scalable numerical algorithms

based on novel mathematical concepts1–9 and better engi-

neered software solutions.10–12 Researchers have been pro-

vided with the power to simulate systems of sizes unthinkable

just a few years ago with a higher degree of realism and great

interaction complexity such as bio-molecules, phase-to-phase

interfaces, surface growth and deposition, and clusters.

In this article we present the DL_POLY_3 program that

blends a number of modern numerical techniques1–7,11,12 into a

program of great power and sophistication. The article

describes the design, new functionality, performance, and

capability and scalability limits of DL_POLY_3. The follow-

ing section outlines the origin and availability of the package.

Next described are the new code design and underlining

concepts with emphasis on the parallelisation strategy. The

subsequent section describes the new functionality available

in the simulation package. Then follows a section reporting the

simulation performance with three model systems on an IBM

SP4 cluster with discussion on performance and limitations.

The DL_POLY project

The project originated in 1994 by the effort of the UK’s

CCP513 to create an MD package to meet the needs of the UK

academic community for a general-purpose MD code. The

objective was to develop a new community code to exploit the

emerging parallel computers to the fullest advantage, which

supports a wide range of applications: for example macro-

molecules (both biological and synthetic), complex fluids and

ionic materials of high complexity, and permits verification

and extension by the user (meaning that the package should be

available in the form of source code—‘‘open’’ software policy).

The DL_POLY_3 program is one of the outcomes of these

requirements.{
The DL_POLY package is available free of cost to academic

scientists pursuing research of non-commercial nature and has

been applied in a broad range of scientific studies since its

first official release in 199614 as DL_POLY_2. Over 1400 user

licences have been taken out worldwide since then. The

original code, DL_POLY_2, was based on a Replicated Data

(RD)14 parallelisation strategy, but recent developments

have introduced the Domain Decomposition (DD)10 version,

DL_POLY_3, to permit simulation of systems of the order of

tens of millions of atoms and beyond. As we shall see in the

Performance and discussion section, DL_POLY_3’s inherent

parallelism allows close to perfect parallelisation up to

impressively high processor counts.

Design and concepts

Introduction

Nowadays, we more often speak of machine computing

power in terms of number of processors (CPUs) rather than

a single processor power. Although computer technology

evolves rapidly and new more powerful CPU solutions are

continuously appearing, it has long been recognised that the
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way to speed up computational applications is to harness the

power of multi-CPU assemblies simultaneously. This has led

to the appearance of power clusters of dedicated (multi-)CPU

nodes as well as development of technologies for utilizing the

collective power of non-dedicated single-CPU platforms such

as Condor pools.15 It is the former that has also driven the

development in network and network carrier solutions to

provide faster message passing interfaces (MPI). Computer

languages suitable for high-precision numerical calculations:

Fortran, C/C++, etc., have been supplied with extension

libraries providing means to deal with inter-CPU awareness

and communications. Currently, there are two mainstream

technologies, PVM and MPI,16,17 that provide these and only

Fortran and C/C++ are fully supported as they are the most

commonly used in coding ‘‘number-crunching’’ algorithms.

Many simulation codes have been upgraded to implement

parallelism in various ways in order to make it possible to

address problems with higher degrees of realism (larger sizes

and increased complexity) at minimal additional cost, which

was not an option when they were only available in serial form.

Programming choices

We have chosen Fortran 90 as a standard for our new code.

The language offers all the functionality needed for numerical

coding and avoids the scripting and multi-concept error-

proneness of C/C++. We have found that software develop-

ment for scientific and engineering computing in Fortran 90 is

preferable as well as compiler optimisation of code is more

reliable than that in C18,19 due to its rigid, numerically

orientated syntax and limited variety of concepts. The Fortran

90 modularisation concept is fully employed to logically

separate and distribute common (science-, maths- and

semantics-wise) sets of variable declarations, methods and

initialisations in modules. Adopting modularisation allows

a lego-like build of further enhancements and new implemen-

tations such as force fields, scientific methodologies and

numerical algorithms. It can also provide various safety

features similar to those that object oriented programming

(OOP) languages provide, such as data encapsulation, over-

loading, etc. Other scientific codes, such as CASTEP,20 have

taken a similar engineering approach to build a safe, reliable,

and easy to maintain and develop further code infrastructure.

We have approached the modularisation of DL_POLY_3 in

the following manner:

1. kinds module—defining globally the bit precision for real

and integer parameters and variables at compile time

2. communication module—containing global communica-

tion routines and functions

3. setup module—defining global constants at compile time

as well as run time specific parameters used as array bounds to

all local arrays

4. domains module—containing a domain decomposition

manager and fundamental domain decomposition mapping

arrays

5. parse module—containing generic tools for parsing

textual input

6. site module—containing global configuration and con-

figuration related data

7. configuration module—containing domain localised

configuration and configuration related data

8. interaction modules (14)—defining global as well as local

parameters and variables for each specific interaction (e.g.:

van der Waals, metal, Tersoff, three-body, four-body; core–

shell, constraints, potential of mean force, tethers; chemical

bonds, bond angles, dihedral angles, inversion angles; external

force field)

9. statistics module—containing statistical arrays and

variables

10. defects module—containing parameters and variables

needed for defect detection algorithms and subroutines.

Fortran 90 also provides other safety features from which

we have benefited and which we have set as conventions for the

programming style in our code:

1. explicit type declaration and immediate initialisation of all

types of variables

2. explicit declaration of modular variables and methods

used in functions and subroutines

3. explicit declaration of intent for all arguments in calling

sequences

4. explicit declaration of privacy status of variables and

methods in modules

The adopted style has very few overheads in terms of code

size and it pays off in implementation and testing stages when

problem detection starts at compilation time.

The inter-CPU communication is implemented using MPI.

Most of the communication in the code is implicit, based on

dedicated functions and subroutines developed as methods in a

Fortran 90 module (comms_module). However, there are

a few subroutines that use explicit MPI calling, which

implement either non-parallelisable tasks such as reading and

writing to hard disk (HD), or somewhat intricate tasks of

exchanging domain boundary data (see below). The rest of the

subroutines incorporate parallelism automatically (see below).

It is important to note that the code can also run on serial

computers without any modification.

Parallelisation

DL_POLY_3 DD parallelisation10 is generally an extension of

the link-cell (LC) method1–3 in which the simulation cell is

divided into subcells, Fig. 1a, the width of which is not less

than the radius of the cut-off applied in the potential energy

and force calculations. Thus, by construction, an atom can

only interact with atoms in the same subcell or in a subcell that

is an immediate neighbour. This allows an inexpensive

building of a link list for fast location of interacting atoms,

leading to an overall algorithmic scaling of #O(N), where N is

the number of atoms. The parallel adaptation of this algorithm

requires a priori partitioning of the simulation cell into

geometric domains, each of which is allocated onto a processor

of the parallel machine. Although the mapping of the domains

on the array of processors can be a non-trivial problem in

general, an elegant solution for machines like hypercubes

exists. This solution imposes the partitioning into spatially

identical domains. The exchange of link-cell contents from the

borders of each domain (the halo data, Fig. 1b) between

neighbouring processors establishes the contiguity of the
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global system and simultaneously incorporates any periodic

boundary conditions. It is worth noting that for successful

building of domain halos, the boundary link-cell data are only

passed in successively complementary directions (in 3D:

north–south and back, east–west and back and up–down

and back) as at each pass (i.e. north–south and back) the

exchanged data must be re-sorted before the next pass. This is

necessary to ensure the corner and edge link-cell data are

correctly exchanged between domains sharing edges and

corners, rather than faces.

The exchange of halo data is the key communication step in

DL_POLY_3 as no further communication between the nodes

is necessary until after the equations of motion have been

integrated. However, if bond constraints are present in the

system, the equations of motions are modified to include

constraint solvers, RATTLE6 for velocity Verlet (VV4,5)

integrators and SHAKE21 for leapfrog Verlet (LFV22–24)

integrators. The constraint solvers are iterative algorithms

that add incremental corrections to the positions, velocities

and forces of constrained particles until the bond lengths for

all constraints in the system equal the corresponding pre-

defined constraint bond lengths to within a given tolerance.

In RATTLE there is a second iterative stage which adds

incremental corrections to the velocities and forces of

constrained particles so that the relative velocity of the two

particles in the constraint is zero along the constraint vector

within a tolerance.

Constraint algorithms involve extra communication at each

iteration when constraint bonds cross domains. A domain

crossing constraint bond is present in two domains as each

domain contains one of the constrained particles and the other

in its halo. As constraint particles change their positions,

velocities and forces at each iteration and each domain updates

these only for particles present in it, it is crucial to update these

for constraint particles that lie in their halo by additional

communication. This is why systems with constraints are

bound to have lower parallelisation efficiency than systems

without constraints. After the equations of motion have been

integrated the particles which have moved out of their original

domain must be reallocated to a new domain.

Although the DD algorithm is designed by construction to

treat only systems with short-range forces, the treatment of

coulombic forces (as well as any other long-ranged forces) can

also be fitted in easily. For the evaluation of the coulombic

interactions in molecular simulations, DL_POLY_3 incorpo-

rates an adaptation of the Smoothed Particle Mesh Ewald

method (SPME)7 as a means of enhancing the performance

of the traditional Ewald sum calculations.22 This adaptation

gains in performance over the traditional Ewald sum

implementations through the use of (complex) three dimen-

sional Fast Fourier Transforms (3D FFTs)25 when computing

the reciprocal space contributions to the sum. DL_POLY_3

uses the Daresbury Advanced Fourier Transform (DAFT),11

which is a novel, fully memory distributed, parallel imple-

mentation of the 3D FFT that conforms to the DD concept.

Portability

DL_POLY_3 is highly portable as compilation requires only a

Fortran 90 compiler and complementary MPI libraries to

handle communications. Although it is designed for memory

distributed parallel computers the package can also be used

on single processor machines (no MPI needed). The code

has been ported on a large variety of platforms including

propriety HPC such as Cray T3E, IBM SP4, Sun Fire 880, etc.

as well as clusters of dedicated CPUs such as Beowulf Linux

clusters.

Functionality

DL_POLY_3 is a general purpose package with continuously

increasing functionality.10,26 It will suffice here to outline only

some recently developed functionality in DL_POLY_3 such

as Tersoff interactions,27 relaxed shell model,28 Brownian

dynamics via Langevin thermostat29 for LFV integration and

Langevin impulse30 for VV integration, and potential of mean

force integration.31

Features driven by radiation damage research

Radiation damage (RD) research has long been required to

build theories, to explain experiments, and improve under-

standing of how the chemical nature of materials defines the

resistance to amorphisation by radiation damage and the

processes of damage recovery, and, ultimately, make predic-

tions of prospective materials for use in nuclear waste

encapsulation. Theoretical studies32–36 involve highly non-

equilibrium MD simulations—RD cascades of high-energy

ions propagating in crystalline and damaged structures. Such

simulations have not only benefited from the exceptional

capabilities of DL_POLY_3 to handle huge systems34–36

required by the high energies involved but also driven its

development. This development has resulted into the imple-

mentation of variable timestep, pseudo and defect detection

algorithms.

The variable timestep option requires the user to specify an

initial guess for a reasonable timestep for the system (in

picoseconds). The simulation is unlikely to retain this as the

operational timestep however, as the latter may change in

response to the dynamics of the system. The option is used in

Fig. 1 Sketch of DL_POLY_3’s link cell and domain decomposition.

Sketch (a) represents the division of the simulation cell into geometric

domains (shown by larger cubes dividing the volume) and the division

of domains into link cells (shown by smallest cubes dividing a domain).

Sketch (b) represents the construction of halo data around a domain.

The central cube is a domain divided into link cells. The surrounding

cube incorporates atomic data from neighbouring domains and is

composed of the link cells from the edges of those domains.
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conjunction with the default values of maxdis (default 0.03 Å)

and mindis (default 0.10 Å), which can also be optionally

altered if used as directives (note the rule maxdis ¢ 2.5 mindis

applies). These distances serve as control values in the variable

timestep algorithm, which calculates the greatest distance a

particle has travelled in any timestep during the simulation. If

the maximum distance is exceeded, the timestep variable is

halved and the step repeated. If the greatest move is less than

the minimum allowed, the timestep variable is doubled and the

step repeated. In this way the integration timestep self-adjusts

in response to the dynamics of the system; the simulation slows

down to account accurately for the dynamics during the most

violent stages in radiation damage cascades and then speeds up

to utilise effectively CPU time when the system cools down.

The pseudo option attaches a Langevin (stochastic) thermo-

stat22,30,30 at the MD cell boundaries. It requires the user to

specify the width of the thermostat buffer, d, compliant with

the rule 2 Å ¡ d ¡ width/4, where width is the minimum MD

cell width. Every particle within the buffer is coupled to a

viscous background and a stochastic heat bath, such that

d

dt
ri tð Þ~vi tð Þ

d

dt
vi tð Þ~{l tð Þvi tð Þz 1

mi

fi tð ÞzRi tð Þ½ �
(1)

where l(t) is a friction parameter and R(t) is the stochastic

force with zero mean that satisfies the fluctuation–dissipation

theorem:

<Ra
i (t)R

b
j (t9)> = 2l(t)mikBTdijdabd(t 2 t9) (2)

where superscripts denote Cartesian indices, subscripts particle

indices, mi is the mass of particle i, kB the Boltzmann constant

and T the system target temperature. The algorithm is

implemented in two stages. First, random forces are generated

for all particles within the thermostat buffer. Here, care must

be exercised to prevent introduction of non-zero net force

when the random forces are added to those which arise from

the force field of the system. The second stage is to rescale the

kinetic energy of the thermostat bath so that particles within

have Gaussian distributed kinetic energy with respect to the

target temperature at the end of each MD step and determine

the pseudo thermostat friction

l(t)~Max 0,
X

i

fi tð ÞzRi tð Þ½ �:vi tð Þ
,
X

i

miv
2
i tð Þ

 !
(3)

for the first stage. Care must be exercised to prevent

introduction of non-zero net momentum. The effect of this

algorithm is to relax the buffer region of the system on a local

scale and to effectively dissipate the incoming excess kinetic

energy from the rest of the system, thus emulating a pseudo-

infinite environment surrounding the MD cell. Stochastic

boundary thermostats previously used in studies of chemical

reactions and other localised processes37,38 have now been

re-employed in radiation damage simulations39,40 to provide

effective energy dissipation and faster temperature relaxation

which help speed up simulations as well as simulate higher

energy impacts.

The defect detection tool uses an algorithm that compares

the simulated MD cell to a reference MD cell. The former

defines the actual positions of the particles and their atom

types and the latter is taken here to be the structure of the

undamaged lattice. If a particle, p, is located in the vicinity of a

site, s, defined by a sphere with its centre at this site and a user

defined radius, 0.3 Å ¡ Rdef ¡ 1.3 Å (default value 0.75 Å),

then the particles is a first hand claimee of s, and the site is not

vacant. Otherwise the site is presumed vacant and the particle

is presumed a general interstitial. If a site, s, is claimed and

another particle, p9, is located within the sphere around it, then

p9 becomes an interstitial associated with s. After all particles

and all sites are considered, it is clear which sites are vacancies.

Finally, for every claimed site, distances between the site and

its first hand claimee and interstitials are compared and the

particle with the shortest one becomes the real claimee. If a

first hand claimee of s is not the real claimee it becomes an

interstitial associated with s. At this stage it is clear which

particles are interstitials. The sum of interstitials and vacancies

gives the total number of defects in the simulated MD cell.

Note that the algorithm cannot be applied safely if Rdef is

larger than half the shortest interatomic distance within the

reference MD cell since a particle may: (i) claim more than one

site, (ii) be an interstitial associated with more than one site, or

both (i) and (ii). Low values of Rdef are likely to lead to slight

overestimation of the number of defects. If the simulation

and reference MD cells have the same number of atoms then

the total number of interstitials is always equal to the total

number of defects. It is worth noting that the implementation

of this algorithm makes extensive use of LC and DD methods

to achieve an overall algorithmic scaling of #O(N) rather

than #O(N2) which is not acceptable for large scale simula-

tions (#106 particles) as is the case in modern radiation

damage research.35,36

Performance and discussion

DL_POLY_3 performance was evaluated by a set of test MD

simulations performed on the HPCx (IBM SP4 cluster—http://

www.hpcx.ac.uk) super-cluster at Daresbury Laboratory (the

UK’s 3rd and world’s 28th fastest{) by exclusive use of its

resources. The tests were based on three model systems, at

conditions as outlined in Table 1: (i) solid Ar with Lennard-

Jones interactions between Ar–Ar, (ii) NaCl with van der

Waals interactions between Na+–Na+, Na+–Cl2 and Cl2–Cl2,

and Coulomb forces between the ions, and (iii) SPC (single

point charge) water with Lennard-Jones interactions between

O2–O2, Coulomb forces between the ions and three con-

straints per water molecule: O–H1, O–H2 and H1–H2. All

systems were generated with perfect crystal structures (apart

from SPC water) and lattice parameters with values obtained

from previously equilibrated structures at the same simulation

conditions as shown in Table 1.

The size-per-CPU and cutoff values for each system were so

chosen as to ensure all systems have the same domain halo

volume on average, so that relatively the same volume of MPI

messaging for domains boundary data exchange is required

{ At the time of writing!
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between neighbouring domains for each system at any

timestep. Thus the parallelisation performance is purely based

on the complexity of the different force fields and on the

additional communication the former involved.

To detect and compare the parallelisation efficiency between

systems and between different processor counts the following

construction was employed. Whenever the number of CPUs

was doubled the simulated systems were also doubled in size,§

ensuring that the link-cell algorithms" and the domain halo

volume for each system remained the same for any processor

count (this type of scaling is also referred as weak-scaling).

Thus, if parallelism were ideal the simulation time-per-timestep

for each system would be the same for any processor count. As

the effectiveness of the communication is known to worsen

with increasing processor count and increasing volume of

messages per processor, it is therefore expected to assume

that systems with constraints (requiring additional overhead

communication) will show faster decline of parallelisation

efficiency with processor count.

Tables 2, 3 and 4 present simulation performance data of the

investigated systems, as described above, on HPCx. The tables

list four main data values: time-per-timestep, start-up time,

close-down time and system size as functions of processor

count. From the first one, one can recalculate the relative

speed gainI (RSG) and (absolute) speed gain (SG) as

functions of processor count. These are plotted in Fig. 2 and

3. Perfect parallelisation corresponds to a constant relative

speed gain factor of 2 and good parallelisation corresponds to

a constant factor of 1.75. The results show clearly that the

parallelisation is excellent although it is not perfect as the

time-per-timestep increases slowly with increasing processor

Table 1 The model systems simulated using DL_POLY

System Size per CPU [particles] Ensemble [type] Cutoff/Å Temperature/K Pressure/k bar

Solid Ar 32 000 NVE 9 4.2 0.001
NaCl 27 000 NVE 12 500 0.001
SPC water 20 736 NPT Berendsen 0.5 0.75 8 300 0.001

Table 2 DL_POLY_3.04 scaling performance on HPCx for solid Ar simulations as described in the text. Time-per-timestep (in seconds, averaged
over 10 timesteps), start-up and close-down times are listed as a function of number of CPUs used in parallel. Based on time-per-timestep values per
different CPU counts, also listed are values of the speed gain and the relative speed gain

CPUs Speed gain Relative speed gain Time-per-timestep/s Start-up time/s Close-down time/s System size/atoms

1 0.59 1.02 0.73 32 000
2 1.97 1.97 0.60 1.44 1.59 64 000
4 3.87 1.97 0.61 1.92 3.09 128 000
8 7.96 2.06 0.59 2.95 9.84 256 000

16 15.69 1.97 0.60 5.62 10.50 512 000
32 29.96 1.91 0.63 10.37 20.30 1 024 000
64 59.14 1.97 0.64 20.71 43.13 2 048 000

128 116.50 1.97 0.65 43.16 88.34 4 096 000
256 231.86 1.99 0.65 86.08 178.13 8 192 000
512 448.44 1.93 0.67 195.03 361.18 16 384 000

1024 838.36 1.87 0.72 411.25 740.99 32 768 000

§ System sizes were doubled cyclically in x, then y and then z
directions.
" It is crucial to note that increased parallelisation efficiency remains
even when the link-cell algorithm is used inefficiently.

Table 3 DL_POLY_3.04 scaling performance on HPCx for NaCl simulations as described in the text. Time-per-timestep (in seconds, averaged
over 10 timesteps), start-up and close-down times are listed as a function of number of CPUs used in parallel. Based on time-per-timestep values per
different CPU counts, also listed are values of the speed gain and the relative speed gain

CPUs Speed gain Relative speed gain Time-per-timestep/s Start-up time/s Close-down time/s System size/ions

1 2.82 3.39 0.66 27 000
2 1.95 1.95 2.89 3.78 1.25 54 000
4 3.80 1.95 2.97 4.68 2.41 108 000
8 7.69 2.02 2.93 5.21 5.07 216 000

16 14.96 1.95 3.01 7.66 9.77 432 000
32 27.79 1.86 3.24 13.04 19.95 864 000
64 54.07 1.95 3.34 20.78 40.17 1 728 000

128 105.12 1.94 3.43 38.20 81.20 3 456 000
256 206.24 1.96 3.50 78.66 166.05 6 912 000
512 388.41 1.88 3.71 168.11 331.87 13 824 000

1024 705.81 1.82 4.09 340.86 664.33 27 648 000

I The relative speed gain at 2 N CPUs is defined as the ratio of time-
per-timestep for 2 N CPUs to that for N CPUs from the simulation on
the same system. Since the system size changes in the same fashion as
the processor count size, the definition in this case changes to ‘‘the
ratio of time-per-timestep for 2 N CPUs to that of N CPUs times two’’.
The (absolute) speed gain is a product of the relative speed gains and
reflects the simulation speed-up if the processor count increases from 1
to N at constant system size.
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count. This is a clear indication that there is time loss due to

slow-down in organising local MPI messaging (each-to-each)

as well as in collective (global) communication operations.

The SPME summation accuracy (1026)** was kept constant

for all NaCl and SPC water simulations together with the

constraint tolerance accuracy (1025) for all SPC water

simulations. This imposes some small extra memory overheads

as well as more expensive SPME electrostatics due to 3D FFT

calculations which scale as N log N rather than linearly (N)

with problem size. This is well shown in Fig. 2 where the

performance for NaCl and SPC water is worse than that for

solid Ar. We also see from Fig. 2 by the divergence of RSG

curves that the performance for the systems with Coulombic

forces decreases with increasing system size.

As expected, the SPC water system exhibits the worst

parallelisation performance. This is due to increased MPI

communications dictated by the increase in the total number of

constraint bonds crossing domain boundaries with increasing

the number of domains (CPUs). As mentioned in the

Parallelisation section, constraint bonds crossing domains

need to be refreshed during each iteration cycle of the

constraint algorithms.

A careful look at Fig. 2 shows an interesting behaviour of

the RSG at low processor count. To understand this we have

to take a slightly deeper insight into the HPCx’s architecture.

The HPCx system uses IBM p690+ Regatta H+ frames. Each

Regatta frame consists of 32 1.7 GHz POWER 4 CPUs.

In POWER 4 architecture, a chip contains two CPUs with

1.5 MB shared L2 cache as each processor has its own

192 kB L1 cache. Four chips (8 CPUs) are integrated in a

multi-chip module (MCM) with 128 MB shared L3 cache,

as each chip has a 3 6 3 distributed switch for fast L2

communication. An MCM has 8 GB of main memory

available as 2 slots by 4 GB shared per pair of chips. Four

MCMs comprise a Regatta frame and the total memory of

32 GB is shared between the 32 CPUs of the frame. Each

frame runs its own AIX operating system (OS), which

effectively decreases the available RAM for running non-OS

applications by #20%. Inter-frame communication is handled

by an IBM high performance ‘‘federation’’ switch.

Table 4 DL_POLY_3.04 scaling performance on HPCx for SPC water simulations as described in the text. Time-per-timestep (in seconds,
averaged over 10 timesteps), start-up and close-down times are listed as a function of number of CPUs used in parallel. Based on time-per-timestep
values per different CPU counts, also listed are values of the speed gain and the relative speed gain

CPUs Speed gain Relative speed gain Time-per-timestep/s Start-up time/s Close-down time/s System size/ions

1 1.90 1.98 0.53 20 736
2 1.81 1.81 2.10 2.35 1.03 41 472
4 3.36 1.85 2.26 2.87 2.06 82 944
8 7.11 2.12 2.14 3.55 3.81 165 888

16 13.54 1.90 2.24 5.40 7.64 331 776
32 23.53 1.74 2.58 9.28 15.45 663 552
64 43.80 1.86 2.77 16.84 30.48 1 327 104

128 84.24 1.92 2.89 34.62 59.23 2 654 208
256 158.97 1.89 3.06 64.63 122.30 5 308 416
512 285.41 1.80 3.41 133.03 247.98 10 616 832

1024 495.35 1.74 3.93 274.72 506.67 21 233 664

Fig. 2 DL_POLY_3 relative speed gain plotted as a function of

processor count from simulation data as shown in Tables 2, 3 and 4.

The upper dotted line indicates the parallelisation limit also called

perfect or embarrassing parallelisation. The lower dotted line indicates

the standard for a good parallelisation.

Fig. 3 DL_POLY_3 speed gain plotted as a function of processor

count from simulation data as shown in Tables 2, 3 and 4. The upper

dotted line indicates the parallelisation limit also called perfect or

embarrassing parallelisation. The lower dotted line indicates the

standard for a good parallelisation.

** This corresponded to a 64 6 64 6 64 grid for the FFT on 1 CPU
that increased cyclically by a factor of 2 as the CPU count increased by
a factor of 2.
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As we see in Fig. 2 the RSG behaviour is dictated by

the internal frame architecture. The population of a Regatta

frame is done in a round-robin way which tries to satisfy quasi-

equal load per MCM. Apparently, the internal communica-

tions are suited to perform better on a fully rather than

partially loaded MCM due to the distributed switches. Also,

the memory distribution is maximised at 1 CPU per MCM

(totals to 4 per Regatta frame) and 2 CPUs per MCM but on

different chips (totals to 8 per Regatta frame). The last two

facts explain why the RSG exhibits the ‘‘outstanding’’

performance on 8 CPUs. However, Fig. 2 also shows that

RSG for 16 CPUs is approximately the same as that for

4 CPUs which suggest a cancellation of three competing

trends on 16 CPUs: (i) decreasing the availability of L2 and L3

cache memory per CPU, (ii) increasing the usage of MCM

internal L2 cache communications via distributed switches

and (iii) increasing the usage of MCM external communica-

tions. However, once a Regatta frame is loaded fully there

is a drop in RSG which can be explained by sharing work

with the copy of the OS on the frame and increased

communication latency due to triggering the inter-frame

communication switch. After this point, however, the RSG

seems to remain constant up until 256 CPUs (8 frames)

after which a slight decline in performance is observed.

Nevertheless, the DL_POLY_3 performance is extraordinary.

As shown in Fig. 2 the RSG does not decrease below 1.75 even

for high processor counts and furthermore the SG, Fig. 3, for

the most CPU consuming system (SPC water) displays a

performance better that the high standard of sequential

1.75 RSG (lower dashed line).

Maximum load tests involving the three test systems were

also run on HPCx. We increased the MD simulation size

load on one CPU incrementally until execution failed. As

mentioned above the available memory per CPU on HPCx is

#0.8 GB. The maximum load for the solid Ar system was

#700 000 particles per 1 GB. This on 1024 CPUs on HPCx

would add up to #610 million particles, which is well below

the limit (2 147 483 647) DL_POLY_3 can handle on

conventional 32-bit machines. Even this, of course, can be

exceeded with careful effort and system sizes of 9.2 6 1018

made possible but then the package must be compiled in a

64-bit mode and run on a 64-bit (enabled) platform with

considerable hard disk space required. For a one million

particle system a configuration file (lattice parameters,

positions, velocity and forces) in textual format is #0.25 GB.

The maximum load per CPU for the NaCl and SPC water

systems amounted to #220 000 and #210 000 ions per 1 GB

memory respectively. These cannot be scaled so directly to

1024 CPUs since some extra memory per CPU will be needed

for the 3D FFTs in the SPME summations driven by the

constant SPME precision. However, our estimate is a 1000

fold load on 1024 CPUs.

The reduced maximum load per CPU for the latter two

systems to that of the solid Ar system can be easily explained.

The maximum load per CPU is dependent on the available

memory per CPU after force field arrays are allocated. The

larger the complexity and/or the higher the accuracy of the

force field description, the lower the limit of the maximum

load per CPU. In DL_POLY_3, the memory demand for force

field description as well as the CPU time for force calculations

is proportional to the following factors:

1. number of atoms (reflecting inclusion of shells to account

for polarisation via core–shell models)

2. number of intermolecular interactions

3. number of intramolecular interactions (including core–

shell units, bond constraints, PMF constraints and tethers)

4. precision of Ewald summation

5. tolerance for constraint algorithms.

That is also why the time-per-timestep for the NaCl

and SPC water systems is much larger than that of the solid

Ar one, even though the latter has a larger number of particles

per CPU.

It is worth noting that the parallelisation efficiency as

defined and discussed above was defined in terms of weak

scaling—when the ratio of particles (system size) to processor

count remains a constant. Therefore, it does not match the

strong scaling parallelisation efficiency defined by the code

performance for a fixed size system. In general, we can write

the time-per-timestep, t, for a system without constraints and

long-range forces as

t~a: D:
Mxz2ð Þ: Myz2

� �
: Mzz2ð Þ

Mx
:My

:Mz

{1

� �� �b:Nc

:

r: Mxz2ð Þ: Myz2
� �

: Mzz2ð Þ
� �l : r:Mx

:My
:Mz

� �vzf

(4)

where M is a link cell dimension per domain in a designated

direction (x,y,z), N is the processor count, r the particle

density per link cell volume, f a constant dependent on the

force-filed complexity, v an integration constant dependent on

the integration complexity, l a link cell algorithm constant, D

the network latency, and a, b and c constants dependent on the

platform. It is clear that for a fixed size system when N

increases M decreases and therefore the dominant contribution

to t is the overheads in communication at high processor

counts and/or at low values of link cell dimensions per domain.

In practice, the parallelisation efficiency of strong scaling

could be considered to be very close to that of weak scaling if it

was guaranteed that the link cell decomposition of the system

in question does not drop below 4 link cells per dimension at

any high processor count.

It is important to stress that there is some time penalty

associated with loading up the simulation (start-up time) and

dumping down the simulation (close-down time) since reading

and writing to hard disk as well as inter-CPU communication

one-to-all and all-to-one are serial tasks. These are problem-

size dependent: system-size (number of particles) and domain

count (number of CPUs). It is clear from Fig. 4 that they are

linearly proportional to both, as indicated by the constant, but

different slopes for different systems, of the start-up and close-

down time plots. However, these are ‘‘one-off’’ operations

during simulation and in real production runs (thousands of

steps) their contributions can be neglected.

Last but not least we note that our tests to compare

performance between DL_POLY versions 3.03 and 3.05 on the

same three systems showed that the newer version was #25%

faster and allowed #50% larger maximum load per CPU

than the older one. In this way the design transition of
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DL_POLY_3 code structure from functional Fortran 77 to

modularised Fortran 90 was proved beneficial.

Conclusions

DL_POLY_3 is a modern molecular simulation package

incorporating a wide range of functionality allowing for a

vast potential range of applications.41 Based on the forward

domain decomposition concept the code exhibits excellent

parallelism to thousands of processors and makes it possible to

simulate systems of tens of millions of particles. In the new

adaptation of DL_POLY_3 the code is couched in a modular,

free-format Fortran 90 manner allowing for easier support and

development as well as better compiler optimisation and

completely self-contained, shedding any previous dependence

on vendor libraries. It also includes new optimised memory

allocation and domain decomposition mapping management,

and additional functionality to help highly non-equilibrium

simulations. This new adaptation excels in performance over

any previous non-modularised versions of DL_POLY_3 by

increased speed of calculations (#25%) and data handling

loads (#50%).
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