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Abstract. The negative thermal expansion recently observed over a wide range of temperatures
in the ambient pressure phaseα-ZrW2O8 was attributed to the existence of low-frequency
phonon modes which propagate with minimal distortion of the WO4 tetrahedra and ZrO6
octahedra, the so-called ‘rigid unit modes’. The flexibility afforded this structure by these
modes raises questions about the structure’s behaviour with pressure. Further experiments
found a high-pressure phaseγ -ZrW2O8 which also exhibited negative thermal expansion.
Calculations using the rigid unit mode model have shown that the mechanism described earlier
in the context ofα-ZrW2O8 is consistent with the negative thermal expansion inγ -ZrW2O8.
Atomistic simulations have been used to calculate further properties of these two phases
(e.g. transition pressure, compressibilities) using interatomic potentials derived for the earlier
work on α-ZrW2O8. The reproduction of the cell parameters and bond lengths measured for
γ -ZrW2O8 does not imply a substantial change in the bonding character of the W–O interactions.

1. Introduction

Recently Maryet al [1] reported the discovery of an isotropic negative thermal expansion in
ZrW2O8 (cubic symmetry, space groupP213). In two previous papers [2, 3] we proposed
that this can be explained in terms of our ‘rigid unit mode model’ [4, 5]. The straightforward
idea, put forward by Maryet al [1], is that transverse vibrations of the oxygen atoms in
the Zr–O–W bonds will, by virtue of the relative stiffness of the Zr–O and W–O bonds,
pull the Zr and W cations towards each other. Since the amplitude will increase with
temperature, the effect will be an increased shrinkage on heating. The Zr–O and W–O
bonds are not independent entities, but are parts of nearly rigid ZrO6 octahedra and WO4
tetrahedra respectively. Thus the idea translates easily into our rigid unit mode model, in
which we consider the role of the thermal vibrations of a structure composed of rigid units
that are linked together at their vertices. The rigid unit modes (RUMs) are the phonon
modes that can propagate without the rigid units needing to distort. Since these will have
low energy, their role in a wide range of phenomena can be highly significant. Our RUM
model of thermal expansion is easily appreciated in figure 1, which shows a two-dimensional
representation of a linked array of octahedra. The rotation of any octahedron will pull its
neighbours inwards, causing a net reduction in volume. If this rotation is interpreted as a
thermal vibration, with a mean-square rotation that is proportional tokBT/ω

2, there will
be a volume reduction that is proportional to this mean-square rotation. This argument has
been developed and applied to the negative thermal expansion inβ-quartz by Heineet al
[6] and Welcheet al [7].
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Figure 1. An arrangement of linked octahedra as found in the perovskite structure; the oxygen
atoms form the corners of the octahedra. Rotation of one octahedron, as indicated by the arrows
showing the movements of the oxygen atoms, causes the local environment to be pulled inwards,
as shown by the bolder arrows marking the movements of the centres of the octahedra.

Although these ideas may appear at first sight to be almost intuitive, it is by no means
obvious that any RUMs can exist in a given structure. In fact, the standard theoretical
analysis used in the theory of glasses [8, 9] based upon the balance between the topological
constraints and degrees of freedom (which, incidentally, was introduced by Maxwell in
1864 [10]) implies that there should be no RUMs in a structure such as ZrW2O8, which
if true would invalidate both our specific RUM interpretation and the looser qualitative
interpretation based only on transverse flexing of Zr–O–W bonds. However, we have shown
elsewhere [4, 11] that when symmetry is properly taken into account there can be a small but
non-zero number of RUMs or modes that are nearly RUMs (quasi-RUMs or QRUMs). Our
previous papers [2, 3] showed that there are enough of these modes in ZrW2O8 to account
for the negative thermal expansion, and we supported our theoretical analysis with lattice
dynamics calculations of the thermal expansion based on a model interatomic potential. It
should, however, be appreciated that the symmetry argument does not always allow for
the existence of RUMs in structures containing linked polyhedra [12], and generally it
only applies when there is an exact balance between the numbers of topological constraints
and degrees of freedom, as in ZrW2O8, but not in the similar system ZrV2O7 [2]. The
additional cross-bracing in this latter structure caused by the linkage of tetrahedra that is
not present in ZrW2O8, as clearly seen in figure 2, is enough to destroy the RUM flexibility
of the structure, so that all phonon modes must involve distortions of the polyhedra. This
point is relevant when considering evidence for the formation of chemical cross-bracing in
high-pressure phases.

Evans et al [13] have recently discovered a high-pressure phase of ZrW2O8 (γ -
ZrW2O8) which also has negative thermal expansion. This phase is based on the ambient
temperature/pressureα-phase, with a 1×3×1 supercell and space groupP212121, figure 2.
The structure ofγ -ZrW2O8 is similar to that ofα-ZrW2O8, but involves reorientations of
some of the WO4 tetrahedra, so cannot be obtained fromα-ZrW2O8 by a simple displacive
instability. The existence of this phase offers an opportunity to test the interpretation of
the mechanism giving rise to negative thermal expansion. It also offers an opportunity to
validate our model interatomic potential, which was derived using only a minimal amount
of experimental data, and it is gratifying that our model is shown (below) to be able to
reproduce the details of the structure ofγ -ZrW2O8. Indeed, we are then able to use our
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Figure 2. Comparison of the crystal structures ofα-ZrW2O8, Zr(V,P)2O7, γ -ZrW2O8, and our
proposedα′-ZrW2O8 (7 GPa), viewed down [001], showing the ZrO6 octahedra (or ZrO7 units)
and WO4 tetrahedra (lighter shading) as shaded polyhedra, all viewed down the [100] axis.

model to interpret some of the crystal-chemical aspects of the structure of this phase.
In this paper we will also show how the RUM model will apply to this new phase.

It turns out that the basic RUM spectrum is barely altered by the existence of the phase
transition, for reasons that are easily understood, but the greater compaction of the structure
inhibits the amplitudes of the RUM fluctuations that give rise to the negative thermal
expansion, so that the effect is smaller than inα-ZrW2O8. We can identify the specific
details of the impaction of the structure that hinder the RUM amplitudes. The same model
also explains why the bulk moduli of the two phases are very similar in magnitude.

As a postscript to this work, we also show that there are potential displacive instabilities
of α-ZrW2O8 that could be induced by increasing pressure, which may be important in
analogue materials in which theγ -phase does not have its own stability phase. At very high
pressures we predict the possible stability of a new phase, which we denote asα′ because
it is based on the structure ofα-ZrW2O8, and which has Zr in sevenfold coordination with
oxygens. Because we have not searched for new phases in any systematic manner, we
cannot predict whether some other phase will itself have lower energy than our proposed
α′-phase, but we are able to predict that increasing pressure is more likely to produce new
phases with distortions of the ZrO6 octahedra rather than the WO4 tetrahedra.

2. Calculations using a model interatomic potential for ZrW2O8

2.1. Description of the model

The calculations have used a model interatomic potential developed in our previous paper
[2] and are based on the ionic model commonly used for the simulations of minerals and
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ceramic oxides. Short-range interactions are assumed to follow the functional form

φ(r) = B exp(−r/ρ)− Cr−6. (1)

We assumed formal ionic charges, and modelled the polarizability of the O2− anion with a
shell model. The charge on the O2− shell was−2.848 19 electron units, and the core and
the shell interacted through a harmonic potential in the core–shell separationu

φ(u) = 1
2ku

2. (2)

We used the valuek = 74.92 eV Å−2. The spirit of the model as first introduced into the
literature for oxides with tetrahedral coordination [14] is that the interatomic forces mostly
interact through the shell rather than the core, but it is the position of the core that defines
the position of the atom.

We also included bond-bending potentials for atoms within tetrahedra and octahedra
that were of the form

φ(θ) = 1
2K(θ − θ0)

2. (3)

The values used for the parameterK in the bond-bending potential were 0.4 and 0.5 eV
for the O–Zr–O (equilibrium angle 90◦) and O–W–O (equilibrium angle 109.47◦) bonds
respectively.

The values for the parameters in the shell model and for the short-range O...O potentials
were taken from a good empirical model for SiO2 [14] and were not modified in the present
study. The remaining parameters (table 1 and above) were optimized for ZrW2O8 in our
previous work [2] and the reader is referred there for further information. The optimization
was based upon comparison of calculated and experimental crystal structures ofα-ZrW2O8

at ambient pressure, together with information from the known vibrational frequencies of
the WO4 molecular ions in the mineral scheelite, CaWO4. With additional information,
such as the availability of the bulk modulus, or the structures of high-pressure phases [13],
it should be possible to improve the model. This, however, is outside the scope of the
present study.

Table 1. Values for the parameters of the short-range pair interactions in the model interatomic
potential for ZrW2O8.

Ion pairs B (eV) ρ (Å) C (eV Å−6) Reference

W–O 1305.22 0.375 0.0 [2]
Zr–O 9× 106 0.140 0.0 [2]
O–O 22764.0 0.149 27.879 [14]

Models such as the present model have been used with considerable success in the
simulation of oxide minerals and ceramics over the past decade [15]. For aluminosilicates,
bond lengths and lattice parameters can be predicted with an accuracy to within 2% and
often values of the elastic constants can be predicted to within 10–20% [15]. These models
have primarily been used for materials with tetrahedral and octahedral structural units, as in
ZrW2O8, and they appear to capture most of the essence of the real forces in these materials.

In our previous study [2] our model was shown to give a reasonable prediction of the
crystal structure ofα-ZrW2O8 at ambient pressure. More strikingly, from calculations of
the phonon spectra to give the crystal free energy, it was possible to calculate the thermal
expansion, and the results were in remarkable agreement with the negative value obtained
by experiment. With the availability of new high-pressure data [13], it is worth giving
further evaluation of the model.
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2.2. Simulation methods

We have performed two types of simulation with our model interatomic potential. In the first
the lattice energy was minimized by relaxing the atomic positions and unit cell parameters
starting from an assumed crystal structure, which is typically the experimental structure (the
positions of the oxygen cores and shells were allowed to relax separately). At the point
of lowest energy, information about structure and energies could be extracted. The second
type of simulation involved calculations of phonon frequencies, both to calculate Grüneisen
parameters and to calculate possible phonon instabilities (soft modes). All these simulations
were performed using the GULP program [16]. One point to note is that in lattice energy
relaxation calculations, the space group is constrained not to change; whilst it is possible
for the structure to relax to a higher symmetry (parent space group), it is not possible for
the structure to relax to a lower symmetry.

2.3. Calculation of the crystal structure ofγ -ZrW2O8

The model interatomic potential was used to calculate the structure ofγ -ZrW2O8 at zero
pressure. Table 2 compares the observed [13] and calculated cell parameters ofγ -ZrW2O8

and table 3 compares the observed [13] and calculated bond lengths. It is gratifying that our
model, which was derived using only a minimal amount of experimental data, can reproduce
the details of the structure ofγ -ZrW2O8 reasonably well.

Table 2. Comparison of calculated and measured lattice parameters inα- and γ -ZrW2O8

(experimental data obtained at ambient pressure and temperature, calculations correspond to
T = 0 K andP = 0 GPa).

Observed (̊A) Calculated (̊A)

a 9.067 9.082
b 27.035 27.069
c 8.921 8.881

In fact, the success of our model interatomic potential in reproducing the crystal structure
of γ -ZrW2O8 actually gives us insights into the chemistry of this structure. In particular,
if we focus on the W–O bond lengths, it can be seen that for each W atom there are four
bonded O atoms with bond lengths of around 1.8Å and in some cases there is another close
O atom at a separation of around 2–2.4Å. Evanset al [13] interpreted this as indicating the
formation of additional W–O chemical bonds. The fact that our model has reproduced the
same close distances without needing to invoke a separate interaction potential to do so (for
example, we did not extend the three-body bond-bending potentials to these atoms) implies
that there needs to be no new chemical bonding involved. Instead, the compactness of the
structure ofγ -ZrW2O8 forces the close separation of the W atoms and non-bonded O atoms,
more in the sense of the packing of hard spheres than in the sense of forming new chemical
bonds. This point is critical to understanding why negative thermal expansion is possible in
γ -ZrW2O8—if additional cross-bracing chemical bonds were formed, the structure would
not have enough flexibility to allow for the existence of RUMs (recall the discussion in
section 1). Instead, the impaction of close oxygen atoms towards WO4 tetrahedra may limit
the amplitude of RUM rotations of the tetrahedra, which in turn will limit the size of the
negative thermal expansion. We develop this discussion further below.
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Table 3. Comparison of calculated and measured bond lengths inγ -ZrW2O8 (experimental
data obtained at ambient pressure and temperature, calculations correspond toT = 0 K and
P = 0 GPa). The fifth W–O distance given in some cases represents the closest non-bonded
distances that Evanset al [13] have interpreted as actual chemical bonds.

Observed (̊A) [13] Calculated (̊A)

Zr1–O 1.975, 2.047, 2.055 2.125, 2.098, 2.099
2.088, 2.090, 2.109 2.117, 2.157, 2.111

Zr2–O 1.953, 2.030, 2.055 2.113, 2.104, 2.100
2.074, 2.125, 2.150 2.104, 2.115, 2.111

Zr3–O 1.979, 2.011, 2.023 2.093, 2.102, 2.090
2.079, 2.096, 2.121 2.101, 2.107, 2.121

W1–O 1.712, 1.743, 1.855, 1.870 1.798, 1.750, 1.756, 1.760
2.300 2.124

W2–O 1.739, 1.751, 1.792, 1.801 1.770, 1.763, 1.789, 1.758
2.241 2.059

W3–O 1.777, 1.778, 1.792, 1.801 1.748, 1.764, 1.721, 1.755
W4–O 1.786, 1.791, 1.795, 1.825 1.748, 1.771, 1.770, 1.754

2.341 2.375
W5–O 1.839, 1.855, 1.855, 1.861 1.774, 1.760, 1.808, 1.762

2.181, 2.331 2.156, 2.447
W6–O 1.729, 1.798, 1.828, 1.870 1.742, 1.756, 1.773, 1.757

2.394 2.189

2.4. Calculation of thermal expansion

In our previous study ofα-ZrW2O8 the thermal expansion was calculated using a free-
energy minimization method. When this method was applied toγ -ZrW2O8 it turned out
to be impossible to obtain convergence of the minimized structure within a reasonable
computing time and so we used the simpler method of calculating the thermal expansion
of both α- and γ -ZrW2O8 (at both T = 0 K and P = 0 K, which are close to the
experimental conditions of ambient temperature and pressure) through calculations of
the phonon Gr̈uneisen parameters [17]. The calculated value of the thermal expansion
coefficient ofγ -ZrW2O8 was−3.6× 10−6 K−1, which is close to the experimental value
of −3.0× 10−6 K−1 [13]. For comparison, our calculated value of the thermal expansion
coefficient ofα-ZrW2O8 calculated with the Gr̈uneisen parameters is−24.6× 10−6 K−1,
which is close to our previous value calculated by free-energy minimization methods [2] and
close also to the experimental value of−26.4× 10−6 K−1 [1, 13]. The fact that our model
interatomic potential has reproduced the size of the negative thermal expansion coefficient
of both phases of ZrW2O8 supports our argument above that we have properly captured
the chemistry within the model, including the difference between real chemical W–O bonds
and simple close W...O contacts arising from the impaction of the structure.

The way that the Gr̈uneisen parameters scale with phonon frequency for a single
wavevector is indicated in figure 3. It is clear from this figure that the low-frequency
modes dominate the negative thermal expansion for both phases of ZrW2O8, consistent
with our earlier analysis from the RUM model [2, 3].

2.5. Calculation of bulk modulus

Cell parameters and bond lengths forα- and γ -ZrW2O8 were calculated for a range of
pressures, and the results were used to give the bulk modulus. For the two phases we
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obtained values of 0.59× 10−2 (α) and 0.68× 10−2 (γ ), which are rather smaller than the
experimental values of 1.44× 10−2 (α) and 1.47× 10−2 (γ ) [13]. As noted above, the
measured value of the bulk modulus, which was not available at the time of our earlier
paper, could now be used to further optimize the model interatomic potential, but this is
outside the scope of the present study. What is clear, however, is that our model gives very
similar values for the bulk moduli of the two phases, exactly as found by experiment. We
discuss this point further below.

2.6. Calculation of transition pressure and phase diagram

To determine a value for the critical pressureP0 for the α–γ transition, the difference in
the lattice enthalpy,1H , between the two phases at 0 K was calculated for a range of
pressures. The solution of1H = 0 gaveP0 = −4.25 GPa. At this pressure, the volume
change,1V , associated with the transition was calculated to be 3% (compared with an
experimental value of 5% [13]) and the lattice energy difference was−0.16 eV per formula
unit. The difference in entropy of the two phases,1S, was calculated from the partition
function using phonon frequencies calculated over a grid of wavevectors in reciprocal space.
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Using the Clausius–Clapeyron equation the slope of the phase boundary in theP–T diagram
for the system was determined as dP/dT = 1S/1V = 4.5 MPa K−1 above 200 K. The
resultant fixed point of theP–T diagram, i.e.P0 = −2.9 GPa atT = 300 K, does not
agree well with experiment,P0 = 0.2 GPa [13]. This is actually a common problem in
calculating pressure-induced phase transitions using empirical potentials, which arises from
the fact that very small errors in the model interatomic potentials can be magnified to give
large errors in calculated energy differences between two phases.

3. Rigid unit modes

As noted in section 1, the RUMs are the phonon modes that propagate without distortion of
the linked polyhedra (in this case the WO4 tetrahedra and ZrO6 octahedra). If there are no
forces other than those that maintain the rigidity of the polyhedra, the RUMs will have zero
frequency and all other phonons will have frequencies that are determined by the extent to
which the phonon eigenvectors required distortions of the polyhedra. We have developed a
numerical method to calculate the zero-frequency RUMs for any general structure containing
a framework of linked polyhedra [11]. In short, the essence of the approach is to represent
each atom shared by two polyhedra (for example, at the corners) as a spring connecting two
halves of a ‘split atom’, with equilibrium separation of zero. No other forces need to be
used. The dynamical equations for this model give zero-frequency solutions for all RUMs.
Formally, the size of the spring constants represents the stiffness of the polyhedra and it
is tuned to give reasonable phonon frequencies for other phonon modes. This method has
been programmed into our CRUSH program [11, 18]—see also [19]—and has been applied,
among other things, to a number of studies of the phase stability in aluminosilicate minerals
[4, 5] and to the issue of localized framework deformations in zeolites [20–22].

Using CRUSH we have calculated the RUM spectrum forγ -ZrW2O8. Since the basic
topology of the structures of theγ - andα-phases is identical, it would be expected that the
RUM spectrum should be the same in both cases and our results confirm this. In figure 4 we
show the phonon density of states calculated for the two phases with our split-atom model
[11]. The important point to note is that the calculated densities of states are very similar
for both models, in particular that both have an excess of low-frequency modes down to
zero energy above the normal Debye parabolic form. This is due to the RUMs and QRUMs
described earlier (see [12] and also our earlier paper [2] on ZrW2O8 for comparisons of the
computed density of states for examples with and without RUMs).

As noted above, an important result evident from the model calculations of the crystal
structure ofγ -ZrW2O8, table 3, is the good agreement between the calculated and the
measured structures ofγ -ZrW2O8. Since the model was derived usingα-ZrW2O8, it only
contains information relevant for WO4 units. This implies that in the denser high-pressure
γ -phase, the tungsten atoms remain fourfold coordinated and there is no change in their
chemical bonding. Therefore we are suggesting that the structure is not cross-braced by
additional W–O bonds as described by Evanset al [13], but that instead the structure is
simply more impacted with additional interatomic contact between oxygen atoms. Were
the structure ofγ -ZrW2O8 to contain cross-bracing W–O bonds, this would remove a great
deal of flexibility from the structure. For such a structure, in which no RUMs are permitted,
the coefficient of thermal expansion according to our mechanism would be positive rather
than negative. On the other hand, it is expected that the impaction to which we refer will
inhibit the amplitude of some of the RUMs, and we suggest that this is the origin of the
difference in the relative magnitudes of the two negative thermal expansion coefficients of
α- andγ -ZrW2O8. Furthermore, the similarity of the observed and calculated bulk moduli



Simulation studies ofZrW2O8 at high pressure 8425

Relative frequency

D
en

si
ty

 o
f 

st
at

es

0.0 0.2 0.4 0.6 0.8
0

1

2

3 γ-ZrW2O8

α-ZrW2O8

1.0

0

1

2

3

Figure 4. The vibrational density of states forα-ZrW2O8 andγ -ZrW2O8 calculated using our
split-atom method. The RUM spectra are similar in many respects most notably that in both
cases the density of states has a continuum of states at low frequencies arising from the RUMs
and QRUMs present in both structures.

for the two phases given earlier is consistent with our view that there are no additional bonds
between tungsten and oxygen atoms in the high-pressure phase cross-bracing the structure.

4. Other instabilities under pressure

4.1. Displacive (soft mode) instability

Our simulations ofα-ZrW2O8 under pressure indicate that were this phase not to undergo
the reconstructive transition to theγ -phase, it would develop soft modes associated with a
displacive instability. The first mode to become soft under pressure falls to zero frequency
at a pressure ofP0 = 1.53 GPa at the wavevectork ∼ a∗/10, figure 5. The origin of a
potential incommensurate instability is very similar to that of the actual incommensurate
instability in quartz [23, 24]. An optic mode softens under pressure (this is the mode that
is double-degenerate atk = 0 in figure 5). This mode is actually soft across the whole
branch fork along [100]. Atk = 0 the soft optic mode has a different symmetry to that of
the acoustic modes. However, for a generalk along [100] the symmetry of the soft optic
mode is the same as that for one of the transverse acoustic modes, and as the frequency of
the acoustic mode increases withk it will want to cross the optic branch in the dispersion
curves. However, because the two modes are of the same symmetry they cannot actually
cross, and the dispersion curves will ‘repel’ each other in a way that is seen as typical
‘anti-crossing’. This is clearly seen in figure 5. The interaction that determines the size of
the repulsion of the two phonon branches varies ask2, and therefore increases for largerk.
The softening of a flat optic branch will therefore force the acoustic mode branch to soften
to a greater extent ask increases, leading to a complete softening to zero frequency at an
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Figure 5. Calculated dispersion curves along(1, 0, 0) for α-ZrW2O8 at 1.53 GPa showing the
soft mode at the wavevectork ∼ a∗/10.

incommensurate wavevector.
With further increasing pressure, the branch softens for a wider range of wavevectors,

including k = a∗/3. At 2 GPa, the structure which results when the soft mode ata∗/3
‘freezes-in’ has a lattice enthalpy 0.24 eV per formula unit lower than that of cubicα-
ZrW2O8 but only marginally larger, 0.01 eV per formula unit, thanγ -ZrW2O8. While
this phase is not expected to materialize in ZrW2O8, the marginal energy difference which
prevents its formation may be overcome in an analogue material and the displacive instability
would then become important.

4.2. Reconstructive instability

Further application of pressure toα-ZrW2O8 in our model caused a reconstructive phase
transition to a structure with sevenfold coordinated zirconium atoms, which we denote as
α′-ZrW2O8. Figure 2 and table 4 show the crystal structure ofα′-ZrW2O8 at 7 GPa. It can
be seen that the tungsten atoms have remained fourfold coordinated. The critical pressure
P0 for the α′–γ transition was calculated as 1.56 GPa and the associated change in lattice
energy was 0.19 eV per formula unit. The increased coordination of the zirconium atoms
in α′-ZrW2O8 causes a substantial volume contraction resulting in a volume difference of
11% betweenα′- andγ -ZrW2O8.

It is interesting to note that we have calculated a positive coefficient of thermal expansion
for our hypotheticalα′-ZrW2O8 of 8.7×10−6 K−1, and a bulk modulus of 1.04×10−2 GPa−1

that is about twice as large as that ofα′- andγ -ZrW2O8.
While we may not be able to predict that there will not be some other phase with a yet

still lower energy, we can note the result that increasing pressure is more likely to result
in distortions of the ZrO6 octahedra than the WO4 tetrahedra, and any high-pressure phase
is likely to retain the WO4 tetrahedra in its structure but may lose the ZrO6 octahedra.
Distortions of the ZrO6 octahedra will indeed give a mechanism for any high-pressure
reconstructive phase transition.

5. Summary

The observation of a new high-pressure phase in ZrW2O8 which also has negative thermal
expansion has enabled us to confirm the mechanism we described earlier to explain the
negative thermal expansion inα-ZrW2O8. It has also provided an opportunity to validate
our model inter-atomic potentials thereby gaining insight on the crystal chemistry ofγ -
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Table 4. Comparison of calculated crystal structures ofα-ZrW2O8 and α′-ZrW2O8

(experimental data obtained at ambient pressure and temperature, calculations correspond to
T = 0 K andP = 0 GPa).

α-ZrW2O8 α′-ZrW2O8

a (Å) 9.054 8.602
x (Zr) 0.0093 0.0214
x (W1) 0.3324 0.2889
x (W2) 0.5879 0.5470
x (O1) 0.2062 0.1534
y (O1) 0.4374 0.3512
z (O1) 0.4375 0.4292
x (O2) 0.7748 0.7416
y (O2) 0.5532 0.4871
z (O2) 0.5582 0.5405
x (O3) 0.4783 0.4321
x (O4) 0.2212 0.1667
Zr–O (Å) 3 × 2.086, 3× 2.113 3× 2.128, 3× 2.142, 2.165
W1–O (Å) 1.744, 3× 1.764, (2.288) 3× 1.762, 1.820, (2.134)
W2–O (Å) 1.719, 3× 1.742 1.712, 3× 1.752

ZrW2O8. We have concluded that the WO4 tetrahedra remain fourfold coordinated and that
oxygen atoms from different polyhedra in the structure become more impacted rather than
forming additional cross-bracing bonds. We suggest that this impaction is the origin of
the observed relative magnitudes of the thermal expansion coefficient and bulk modulus in
γ -ZrW2O8 both of which are inconsistent with the picture in which cross-bracing bonds
have been formed.

As an aside we have described possible instabilities inα-ZrW2O8 under pressure which
may be of importance in analogue materials and in so doing gained the insight that the ZrO6

octahedra are more liable to distort and change coordination than the WO4 tetrahedra in the
structure.
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