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Abstract. Molecular dynamics simulation techniques have been used to study the orien- 
tationally disordered phase of carbon tetrabromide at 345 K,  with particular emphasis 
placed on analysing the coupling between orientations and translations. The wave-vector 
dependence of this coupling has been calculated, showing that there are no couplings of any 
sort at k = 0,  and that over the surface of the Brillouin zone boundary there is a strong 
coupling between the transverse acoustic modes and the orientational variables that order 
in the low-temperature phase. The phase transition is discussed within the context of this 
coupling. The collective dynamics have been studied by calculations of various correlation 
functions, which become long-lived when the orientational-translation coupling becomes 
strong. It is shown that a simple Mori theory that includes this coupling is able to reproduce 
the observed behaviour. In particular, it has been found that when the coupling is strong, 
the acoustic modes appear in a coherent inelastic neutron scattering experiment as quasi- 
elastic scattering with full width at half-maximum height of less than 0.03 THz. 

1. Introduction 

In recent years there has been a growing interest in a class of materials that are essentially 
stable intermediate phases between liquid and crystalline phases, namely orientationally 
disordered (OD) crystals. The behaviour of these systems shows similarities with para- 
magnetic disorder, with the molecular centre-of-mass positions lying on an ordered 
crystallographic lattice, which is usually cubic or hexagonal, but with disorder in the 
molecular orientations. Like the magnetic analogues these systems undergo phase 
transitions to low-temperature ordered phases, but the analogy is far from perfect. The 
forces in OD crystals are far more complex than Ising- or Heisenberg-type interactions, 
often yielding a delicate balance between forces that favour order (e.g. crystal fields) 
and others that oppose order (which might arise from steric hindrance interactions). 
Moreover, there generally exists in OD crystals a coupling between the orientational 
variables and the acoustic phonons which is often sufficiently strong to radically alter the 
nature of the collective excitations, and which plays an important role in the transitions 
to the ordered state. A theory of OD crystals that takes explicit account of this coupling, 
usually known as rotation-translation coupling, has been developed by Michel and 
Naudts (1977, 1978), and this theory has explained many of the static and dynamic 
properties of the OD phases and phase transitions in KCN, NaNOz (Michel 1981) and 
thiourea (Parlinski and Michel 1984). 
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In this paper we analyse the coupling between the orientational variables and the 
acoustic phonons in the OD phase of CBr,, using the technique of molecular dynamics 
simulation (MDS). A realistic model inter-molecular potential was developed in the 
preceding paper (Dove 1986, referred to hereafter as I), and was used to study the 
single-molecule properties such as the distribution of molecular orientations and the 
reorientational dynamics. 

The OD phase of CBr, exists over the temperature range 320-365 K, and has a face- 
centred cubic structure with the molecules lying on sites of Oh symmetry (Dolling et a1 
1979, More et a1 1980). Both the OD phase and the low-temperature ordered structure 
have been previously studied using neutron and x-ray scattering techniques, and all 
relevant results are reviewed in I. We note here that the collective dynamics of the OD 
phase of CBr, have been studied experimentally by coherent inelastic neutron scattering 
(More e t a f  1980,1984, More and Fouret 1980). Acoustic phonons have been observed, 
but with rapid weakening and broadening of the phonon peaks with increasing wave- 
vector, and quasi-elastic scattering was observed at many points in reciprocal space (see 
also More 1982). No librational (optic) modes could be observed. 

The main conclusion of I was that the disorder and rotational dynamics of the OD 
phase of CBr, are more complex than previously thought. It had been suggested (e.g. 
by Coulon and Descamps 1980) that the molecules would in general have a DZd orien- 
tation, of which there are six ways of orienting a tetrahedral molecule (see I for a 
description), with the molecules undergoing reorientational jumps between these 
discrete orientations. This gives a discrete spin model for the disorder. However, the 
results of I show that this model must be modified; instead the range of orientations is 
wider and the molecular motions consist of slow rotational diffusion interrupted by short 
periods of free spinning. 

The rest of this paper follows this outline. In order to study the coupling between the 
orientational variables and the acoustic phonons we need to consider the collective 
properties of the systems. The formalism will be defined, and the wave-vector depen- 
dence of the static coupling will be analysed. We will then study the effect of this coupling 
on the collective dynamics, which can also be measured experimentally. These formal 
results will be incorporated into a Mori-type theory which will be used to describe the 
effects of the coupling on the correlation functions associated with the collective modes. 
Finally the phase transition to the ordered phase will be assessed in the light of these 
results. 

2. Analysis method 

2.1. Simulation details 

Most of the technical details of the simulations are presented in I ,  and so we mention 
here only those features that are of direct importance to the present study. The cal- 
culations were performed on the ICL distributed array processor, which allows the use 
of samples with periodic boundary conditions and 4096 molecules. For reasons explained 
in detail elsewhere (Pawley and Thomas 1982) it is necessary to use triclinically-shaped 
samples. In the present case the shape of the MDS sample is defined by the three vectors 

x = (10, -1,O)a Y = (-2, 10.5, - 0 . 5 ) ~  z = (-2, -1,lO)a 

where a is the length of the FCC unit cell, and the vectors are defined with respect to the 
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three orthogonal axes of the cubic unit ce!l. The corresponding reciprocal-lattice vectors 
are thus 

X* = (104.5,21,23)/1024a 

Z* = (0.5,5,103)/1024a 

Y* = (10,100,12)/1024a 

where we have followed the practice in crystallography of omitting factors of 212. Any 
allowed reciprocal-lattice vector can be constructed as a linear combination of these 
three basis vectors. It is clear however that no such combination will give a vector that 
lies exactly along a symmetry direction, but in practice it is usually possible to find a 
combination that produces a vector lying close to a required vector. For example the 
vector 2 deviates from the 001 direction by only 2.8", and the sum of these three vectors 
deviates from the 111 direction by only 4.3". 

The inter-molecular potential used in this study is the f = 0.75 model of paper I. The 
potential is a sum of site-site Lennard-Jones interactions, with each molecule having 
four sites located three-quarters of the way along the C-Br bond. Only nearest- and next- 
nearest-neighbour interactions were included. The equations of motion appropriate for 
a microcanonical ensemble were used. The mean temperature and pressure were 
-345 K and =O kbar respectively, and the unit cell size used was 8.85 A. The simulation 
was carried out for 9730 time steps, which correspond to a simulated time length of 
97.3 ps. 

2.2. Essential formalism 

This study is primarily concerned with the collective variables of the system, which are 
simply the Fourier transforms of the corresponding real-space variables. The variable 
for the acoustic phonons u(k)  is obtained from the set of displacements of the molecules 
u(R,) from their equilibrium iattice positions R I ,  namely 

u(k) = N-"? Z u ( R , )  exp(ik - R I )  

where N is the number of molecules and the summation is over all molecules, and k is 
the associated wave-vector. Similarly the velocity variable l i (k)  can be obtained from 
the molecular velocities u(R,). The seven variables associated with the orientations 
Y,(R,) have been described in I as linear combinations of the 1 = 3 spherical harmonics, 
and are given as summations of unit vectors ( x ,  y ,  2) along the C-Br bonds in table 1. In 

Table 1. Definitions of the seven orientational variables expressed as sums over the four 
normalised C-Br bond vectors (xi, y ! .  2,). 

3'2 1 3 ' ?  1 

3(S)' 3'2 4 

3 7 2  J 3 ( 5 ) '  
Y ,  = - 

40 , = I  8 , = I  

3 ( 5 ) ' *  

Y ,  = - E z,(xf - y') 
8 1 = ~  

Y ,  = 4 c X , L , Z ,  
,=I 

Y ,  = 8 x x,($ - 2 ; )  
I =  I 

Y 2  = - ( 5 2 :  - 32 , )  40 , = I  

Y. = - y , ( $  - x f )  ( s x :  - 3x0 

y4 = - c (5 ) :  - 3 Y , )  40 , = I  

C l C G  
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I it is shown that the values of the variables Yj, Y6  and Y7 are associated with the D2d 
symmetry orientations that order in the low-temperature phase. As for the displacement 
variables, associated collective variables can be obtained by Fourier transformation. 

The dynamical properties of an ensemble of molecules are studied via correlation 
functions; for example we can describe a correlation function associated with the com- 
ponent of the displacement as(u,(k, r)u,( - k ,  0 ) ) .  Where different variables are coupled 
the cross-correlation functions will be non-zero. Of particular importance is the coupling 
between orientational and displacement variables, and formally this can be studied 
through the wave-vector-dependent parameter Aag(k) defined as (Lynden-Bell et a1 
1983) 

A&) = ( u , ( k ,  O)Y,(-k,  O))/((u&. O ) u , ( - k ,  0))’  (Y& O)Y,( -k ,  O)>l ’? )  

It is clear that IAos(k)l 6 1, and when Ana(k) = k 1  the two variables are completely 
coupled and a phase transition is precipitated. 

Of course, only variables with the same symmetry will be coupled. We give in table 
2 the relevant linear combinations of the variables together with their symmetry types 
for the two symmetry directions we have studied. 

3. Rotation-translation coupling 

The coupling coefficient Ao0(k) is shown in figure 1 as a function of wave-vector kfor the 
symmetry directions 001 and 111. These coefficients are consistent with the symmetry 
analysis given in table 2, with no observed coupling between variables of different 
symmetry. We note the following features to emerge from figure 1. 

Table 2. Relevant collective variables for symmetry points in reciprocal space with appro- 
priate symmetry species. Only modes with the same symmetry will couple. 

Variable Symmetry type 

k = O  U,, U,. U: TI” 
Yl 
Yz, Y3. y ,  TI“ 
Yi .  Yb .  Y -  Tz” 

k = (00;) U,. U, E 
U: AI 
Yl Bz 
y , .  Y ,  E 
y2 A2 
Yg. Y7 E 
y5 B1 
( U ,  - ~ , ) / 2 ’  ’. ( U ,  + U, - 2~,),’6’ ’ E 
(U, + U, + u,)/31 AI 
Y1 AI 
(Y2 + Y ,  + Y4)/3’ AI 
( Y ,  - Y,)/2’ ’. ( Y ,  + Y ,  - 2YJ/6’ ’ E 
( Y ,  + Y 6  + Y7)/3’ A? 
(Yb - Y-)/2I ’. (Y6 + Y -  - 2Y,)/6‘ E 

k = ( ; E $ )  
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Figure 1 .  The rotation-translation coupling coefficient A,&k). ( a )  Modes along the 001 
direction. Curves A, B and C are for the TA mode coupled to TI, orientation, the LA mode 
coupled to TI, orientation, and the TA mode coupled to T2" orientation, respectively. (6) 
Modes along the 111 direction. Curves A and B are for the TA mode coupled to TI, and T2" 
orientations respectively. 

(i) In both symmetry directions the transverse acoustic (TA) modes, which are 
degenerate, couple to two orientational variables, one of which is from the TI, set and 
the other from the TZU set. The longitudinal acoustic (LA) mode in the 001 direction 
couples to one orientational variable, but in the 111 direction the LA mode does not 
couple to any variables although such coupling is not forbidden by symmetry. 

(ii) In both symmetry directions the TA modes couples more strongly to the TZU 
modes than to the TI, modes. This observation is important in view of the fact that 
the orientations associated with the TZU variables (the D,, orientations of I) are the 
orientations that order in the low-temperature structure (More er a1 (1980); see also I) ,  
and as the phase transition involves a change in the shape of the unit cell it is clear that 
the transition is associated with a coupling between the orientational variables and the 
acoustic phonons. In I it was shown that the DZd spin model, in which all molecules are 
only oriented in one of the D,,-type orientations, is too severe, and that instead the 
molecules have a wider range of continuously changing orientations. However? it was 
shown that there exists an incipient ordering of these orientations, and in figure 1 this 
incipient ordering is even more strongly revealed through the large rotation-translation 
coupling. 

(iii) The coupling parameters reach their maximum values at the Brillouin zone 
boundary points in both symmetry directions, and are all zero at the zone centre. This 
is the opposite behaviour to that found in NaCN (Lynden-Bell et a1 1983), where the 
maximum coupling was at the zone centre and the coupling vanished at the zone 
boundary because of symmetry constraints. It can be seen from table 2 that the coupling 
coefficient associated with the TZU orientational variables should go to zero at the zone 
centre for symmetry reasons. Although the second coefficient is allowed to have a non- 
zero value at the zone centre, there is no coupling to acoustic modes at k = 0 as they 
correspond to uniform displacements. Unlike the case of KCN, the ordering phase 
transition is not accompanied by a ferroelastic distortion. Of importance is the fact that 
the coupling coefficient associated with the Tzu orientational variables is close to unity 
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at the zone boundary. It is clear from the definition of A that a value of unity corresponds 
to complete correlation of the orientational and phonon variables, which would pre- 
cipitate a phase transition. This is consistent with the current theories of rotation- 
translation coupling (Michel and Naudts 1977, 1978), which show that strong couplings 
cause the acoustic phonon frequencies to soften and the mode to become unstable. The 
simulation sample is thus close to undergoing a phase transition associated with the 
ordering of the T,, orientational variables, which is probably not surprising since in 
Nature the disordered phase exists over a narrow temperature range (45 K) compared 
with the high-transition point (320 K). 

The phase transition can be considered as a two-stage process (Pick 1984). The 
molecular positions do not differ much from those of a FCC lattice but the monoclinic 
super-cell can be thought of as arising from an instability at the zone-boundary point in 
one of the 111 symmetry directions, followed by a second instability at a point half-way 
to the zone boundary along one of the other 111 directions. This transition pathway is 
consistent with the form of the associated A(k) shown in figure 1: the maximum is at the 
zone boundary, but in addition A(k),  rises steeply from the zone-centre point towards a 
large value at the point half-way to the zone boundary, with a much flatter variation with 
kin the region from ($ 4 $) to (4 1 $). However, similar behaviour is also found along the 
001 direction. This probably implies that there are a number of incipient instabilities in 
the OD phase, with the observed ordered phase having a slightly lower free energy than 
all other possible low-temperature structures. It is not surprising that this should be so, 
in view of the very delicate balance of competinginteractions present and the complexity 
of the stable ordered structure. 

4. Collective dynamics 

As stated in D 2.2 we have constructed a number of time correlation functions, the 
relevant ones being 

U , , ( k ,  t )  = (u , (k ,  W,( -k  0)) 

Y&, l )  = (Y,(k> t ) Y , d - k  0)) 

C . , ( k  t )  = ( u , ( k ,  W y - k  0)). 

The cross-correlation functions C,(k, t )  are non-zero where there is a static coupling 
between the phonon and orientational variables given by Aelj(k) ( $ 3 ) ,  and the orien- 
tational correlation functions YUIj(k,  r )  are non-zero for all LY = /3 and for LY # /3 where 
the variables Y,(k) and Yp(k)  are of the same symmetry. The existence of a coupling 
between the two different orientational variables that couple to the same acoustic 
phonon is expected, if only via their coupling to the phonon. 

Experimentally, the collective dynamics of a solid or liquid would be studied by 
coherent inelastic neutron scattering, which probes the correlation function associated 
with density fluctuations through measurements of the inelastic scattering function 
S ( Q ,  0): 

where Q is the wave-vector transfer of the neutron beam (=Bragg vector k k ) .  The 
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density operator p(Q. t )  is given by 

dQ, r )  = b, exp(iQ * r , )  

where r, is the position of the ith atom and b, is the scattering length of that atom. 
Formally S(Q, w) gives the neutron scattering intensity as a sum of single- and multiple- 
phonon scattering processes, whereas in general a neutron scattering experiment will be 
designed to observe the one-phonon scattering in the most favourable experimental 
configuration since this gives most information (phonon frequencies, lifetimes, disper- 
sion etc). The correlation functions U,,(k.  t) etc are essentially those probed by single- 
phonon scattering, and in the Appendix we show the relationship between these cor- 
relation functions and the one-phonon inelastic scattering function. However, we will 
mainly concentrate on the time correlation functions rather than their Fourier 
transforms. 

We point out at the outset that there are problems in the study of dynamics that are 
associated with the use of periodic boundary conditions which have been discussed in 
some detail by Dove et a1 (1986). In  summary. a propagating fluctuation will travel 
through the periodic boundaries and interact with itself after a time delay. The smallest 
such time delay is given by the period of the longitudinal acoustic mode with the 
lowest allowed wave-vector, which defines a critical time for the analysis of correlation 
functions; correlation functions can only be considered reliable for times less than this 
critical time. In the present case the period of the lowest4 LA mode in the 111 direction 
is = 2  ps. Although there will be no harmonic coupling between this mode and other 
modes, there will nevertheless almost certainly be some anharmonic effects that cannot 
be ignored. This feedback effect causes problems when it is intended to study the Fourier 
transform of a correlation function as good resolution in the frequency domain requires 
long times in the correlation function, and for this reason we leave this aspect of the 
work to the next section. Of course, there is no problem if the correlation function has 
significantly decayed in a time less than the critical time, which is the case with some of 
the variables. 

We consider the behaviour of the time correlation functions for three cases, 

4.1. Variables that do not couple to anjj others 

Here we consider the LA variable in the 111 direction and some of the orientational 
variables. The LA variable is shown for each wave-vector in figure 2. The behaviour is 
that of a well defined normal mode that increases in frequency but becomes more 
damped on increasing k .  This mode has been observed by coherent inelastic scattering 
by More and Fouret (1980), and it was found to have the same k-dependence as outlined 
above, with the phonon peaks becoming weaker and broader with increasing k .  As there 
is no coupling of this mode to an orientational variable, this damping must arise from 
anharmonic interactions and dynamic coupling to the orientational disorder. We should 
remark that More and Fouret have used their data on this mode to fit an expression for 
S(Q, w) with rotation-translation coupling (Michel and Naudts 1978). They obtained a 
good fit to data fork  = (0.1,0.1,0.1) with a value of an undefined coupling parameter 
of 0.8, despite the fact that the model expression was inappropriate in this case as this 
mode does not directly couple to any orientational variable in this symmetry direction. 

On the other hand, the orientational variables that do not couple to the phonons 
show little k-dependence. In general, the decaying orientational correlation functions 
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Figure 2. The LA mode correlation function ( u ( k ,  O)u( - k ,  t ) )  along the 11 1 direction. The 
reduced wave-vectors are (h. A. A) (heavy curve), (4, 4, f )  (broken curve), (a .  3 ,  a )  (dotted 
curve) and ( 4 . 4 . 1 )  (fine curve). 

f ( p s i  

Figure 3. Correlation functions for LA T,, coupling along the 001 direction. ( a )  The dis- 
placement-displacement correlation function. (6) The orientation-orientation correlation 
function. (c) The cross-correlation function. Full, dotted and broken curves refer to the 
reduced wave-vectors (0 ,  0,0.3), (0, 0,0 .6)  and (0, 0, 1) respectively. 
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are either approximately gaussian-like (A2u, TI") or  exponential-like (T2J in form, with 
half-widths at half-maximum height of 1 ps or less. 

4.2.  Variables with LA mode coupling 

In the 001 direction the LA mode couples to the orientational variable Y 2 ,  with the 
coupling parameter reaching a maximum value of 0.7 (figure 1). As this is not as strong 
as for the TA modes (see below), it is unlikely that this coupling is connected with the 
phase transition. The behaviour of the time correlation functions U33(k, t )  and Y22(k ,  t )  
are shown in figure 3. U33(k, t )  behaves as the corresponding correlation function in the 
111 direction, showing a normal-mode behaviour that becomes damped with increasing 
wave-vector. The orientational correlation function is seen to broaden by a factor of two 
on increasing k from the zone centre to  the zone boundary but otherwise remains the 
same across the Brillouin zone. Also shown in figure 3 is the cross-correlation function 
C32(k, t ) .  This is similar to Y22(k, t )  in structure, and similarly does not vary much other 
than in amplitude. In the low4  regime the amplitude is not much greater than the noise 
and so the correlation function is ill defined in the simulations. 

4.3. Variables with TA mode coupling 

The correlation functions for variables that couple to the TA variables are the ones that 
are of most interest. These exist in both the 001 and 111 symmetry directions, and 
representative correlation functions for a number of wave-vectors are shown in figures 4 
and 5 respectively. Because one of the coupling coefficients in each direction approaches 
unity (figure 1) the effects of the coupling are more dramatic than in the previous case. 
As has also been stressed in § 3, the displacement variables couple to two orientational 
variables, so in each direction we must consider the behaviour of six correlation 
functions, four of which are shown in figures 4 and 5. At low k ,  where the coupling is 

.................. ' .  - - - 1  \ 
..... I " C  

1 .( 
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0 
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.... ........... 
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Figure 4. Correlation functions for TA orientation coupling along the 001 direction. (a )  
The displacement-displacement correlation functions. ( b )  The Tzu orientation-orientation 
correlation function. (c) The Tlu orientation-orientation correlation function. (d)  The T2" 
cross-correlation function. Full, dotted and broken curves refer to the reduced wave-vectors 
(0, 0 , 0 . 3 ) ,  (0 ,  0 ,0 .6)  and (0.0, 1) respectively. 
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Figure S. As for figure 4,  but along the 11 1 direction. Here the full, dotted and broken curves 
refer to the reduced wave-vectors ( A ,  1, A ) ,  (a, a, a) and ($,$, 1 )  respectively. 

small, the displacement variable correlation functions correspond to normal modes 
which, presumably because of anharmonic effects, become heavily damped on in- 
creasing wave-vector. The orientational correlation functions show the two types of 
behaviour discussed in case (i), depending on whether they are the TI, or Tzu variables. 
However, as k increases beyond the low-k regime the various wave-vector-dependent 
coupling parameters increase, and the effects of the coupling are seen in the various 
correlation functions. Thus on increasing k the TA correlation functions become more 
relaxational in character rather than being damped oscillations, with widths that increase 
with k .  The orientational correlation functions and the cross-correlation functions simi- 
larly increase in lifetime with increasingk. In the strong-coupling limit the three relevant 
correlation functions become very similar in form and lifetimes. Experimentally, this 
would be seen in the narrowingin the frequency domain of quasi-elasticcoherent neutron 
scattering on approaching the critical points in the Brillouin zone at appropriate points 
in reciprocal space. 

4.4. Comparison with experimental data 

Some coherent inelastic neutron scattering data from the OD phase of CBr, are available 
(More and Fouret 1980, More 1982, More eta1 1984), but unfortunately they cannot be 
considered to be extensive. Essentially the data represent two aspects of the collective 
dynamics: studies of the acoustic modes in the low-wave-vector limit, and measurements 
of widths of quasi-elastic scattering peaks in the vicinity of the strong anomalous diffuse 
scattering peak (More er a1 1980). 

The frequencies of the acoustic modes in the 001 and 111 directions have been 
measured by coherent inelastic scattering in a ‘constant-energy’ experiment (More and 
Fouret 1980). Results for the phonon wave-vector at selected frequencies for both 
experiment and similation are given in table 3. The calculated frequencies have either 
been obtained from the oscillations in the correlation function U,,(k, t )  or indirectly 
from the standard quasi-harmonic result (see, e.g., Cowley 1980): 

V y k )  = kBT/(41cm(u=(k)u,(-k))). 
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Table 3. Reduced phonon wave-vectors for acoustic phonons at constant frequency for the 
two symmetry directions (001) and (111). The upper and lower parts of the table are results 
from experiments (More and Fouret 1980) and simulation respectively. 

Frequency (THz) kLA( l l l )  kTA(l l l )  kLA(OO1) kTA(OO1) 

0.1 0.044 0.086 0.071 0.153 
0.2 0.073 0.164 0.118 0.305 
0.4 0.134 0.298 0.210 0.611 

0.1 0.025 0.086 0.070 0.106 
0.2 0.049 i 0.131 0.206 
0.4 0.101 0.261 

t Inapplicable as the acoustic phonon has softened below this frequency. 

The calculated dispersion curves are given in figure 6 .  The most striking point is that the 
TA modes soften considerably towards the zone boundary. As this effect is not indicated 
in the data presented by More and Fouret (1980), complete comparison in table 3 is not 
possible. Nevertheless, the agreement between calculated and measured frequencies, 
particularly at low k, is satisfactory, the main discrepancies being that the calculated TA 
modes soften at lower wave-vectors than apparently observed experimentally. On the 
other hand, More and Fouret (1980) highlight an apparent softening of the velocity of 
sound at the zone centre, about which the simulations are unable to give any information. 
Since the rotation-translation coupling approaches zero at this point, some other mech- 
anisms must be responsible for any softening. Moreover, the apparent extent of this 
softening is much less than in crystals with a true elastic softening (e.g. KCN, Rowe et a1 
(1975); s-triazine, Dove et a1 1983). 

More et a1 (1984) have measured quasi-elastic scattering at a number of points 
in reciprocal space, observing lorentzian scattering profiles with half-widths at half- 
maximum height in the range 0.03-0.05 THz. This suggests the existence of relaxation 
collective fluctuations of the form e-'''', where the relaxation time t i s  of the order of 3- 
5 ps. This relaxation time is consistent with the relaxation times for some of the cor- 
relation functions shown in figures 4 and 5. However, the experimentally determined 

k [reduced units) 
Figure 6 .  Acoustic phonon dispersion curves in the 001 direction ( a )  and 111 direction (b) .  
The upper curves are for the LA modes, and the curves are drawn as guides to the eye. 
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relaxation times did not vary with k as much as was observed in this simulation study, a 
point that we discuss later. 

5. Analysis of the effect of coupling on the dynamics 

It is the purpose of this section to tie together the results of the two previous sections in 
order to analyse more generally the effect that rotation-translation coupling has on the 
dynamics of the OD phase of CBr,. In order to do this we follow the work of Michel and 
Naudts (1978) and Lynden-Bell er a1 (1983) and employ a Mori-type formalism. In this 
section we develop the relevant equations of motion and assess the extent to which 
the theory together with parameters extracted from the simulations gives a realistic 
representation of the calculated correlation functions. Finally, with the assumption that 
the Mori theory at least qualitatively contains the essential physics of the problem, we 
use the theory in an exploratory manner to explain the overall effects of the coupling. 

The essence of this approach is that a set of dynamical variables expressed as avector 
V(t) obey a simple equation of motion: 

dVt/dt = (R - R)V(t) 

where R is a restoring force matrix and R is a relaxation matrix. In our analysis we 
follow Michel and Naudts (1978) and construct the elements of vector V(t) as linear 
combinations of the variables u,(k ,  t ) ,  t.i,(k, t ) ,  YB(k, t )  and Y,(k, t ) ,  the only difference 
being that we now have to consider two orientational variables instead of just one. In 
order that the components of V are all orthogonal and normalised, we define 

V I ( ( )  = u , ( k .  t ) / ( u , ( k ,  O)u,(-k, O))"* 

V z ( t )  = zi,(k, r)/(zi ,(k,  O)ti,(--k, O))'/* 

vdt) = [Y& t ) / ( y , d k ,  o ) y , ( - k ,  o ) P *  - A,B~l( t ) ]a; l  
v,(t) = [Y#,  t ) / ( Y : , ( k ,  o ) Y , ( - ~ ,  0))1/2 - AmBv,(t) - y ~ ~ ( t ) ] a ; '  

where 
2 - 2 1'2 Y a3 = (1 - I&)' @4 = (1 - A n y  

and 

Y = [(Y&, 0)Y;J-k .  O))l(Yp(k, O)Y,(-k, 0))' 2 ( y , ( k  O)Y,(-k,  0 ) P 2 -  LypA,,]a;' 

The equation for V(t) can be solved by diagonalisation of the matrix (R - R), and the 
correlation functions of interest (0 4) can be easily constructed as linear combinations 
of the correlation functions V,(t)V,(O). 

is assumed to contain the harmonic restoring forces, 
and with the variables above is given by 

The restoring force matrix 

0 0 1 
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where 

w ,  = (Li*(k, O)Li,(-k, O))l/2/(u*(k, O)u, ( -k ,  O))1’2 

= (kgT/m)”z/(u,(k, O)u, ( -k ,  O))”* 

and T and m are the temperature and molecular mass respectively. We assume that the 
relaxation matrix has only three non-zero values: R22, R33 and R44. The latter two 
correspond to the damping of the orientationalvariables which represents the continuous 
rotational diffusion of the molecules, and Rz2 absorbs all effects of anharmonicities on 
the acoustic modes. Michel and Naudts (1978) and de Raedt and Michel(l980) neglect 
this term in their analysis of the OD phase Of KCN, and although Lynden-Bell et a1 (1983) 
included it in their study of NaCN they found the appropriate value of R22 to be small 
compared with R33. In the present case, however, such a term is necessary as it is clear 
that there is significant decay of all acoustic modes through anharmonic effects. In 
principle one should expect that other elements of the matrix R should be non-zero, 
which would represent relaxation effects on the acoustic modes and the orientations 
because of the orientation disorder, but in practice it is easier to assume that all such 
effects can be subsumed into appropriate values of the diagonal components. Moreover, 
the neglect of the orientational cross-terms 5234 and R34 can be justified as in practice the 
value of y is very small (see below). 

In order to solve the differential equations for V we have used the values for w,, A 
and yas obtained from the simulations for different valuesof wave-vector kand described 
in previous sections. The only datum we have not given previously is the k-dependence 
of the static correlation function 

rgy(k> = (Yg(k, O)Y,(-k, O))/(Yg(k,  O)Y,(-k, 0) )1 ’2 (Yy(k  O)Y, ( -k ,  0))1:2 
which we show in figure 7. Also in this figure we show the function A+(k)A,,(k) for the 

---l 

k (reduced u l i t s  ) 

Figure 7. Static cross-orientation correlation functions 

V a p ( k )  = (Y , (k ,  O)Yp(-k, O))/(Y,(k, O)Y,(-k, 0))’ 2 ( Y p ( k .  O)Yp(-k,  0))’ ‘ 
for the 001 ( a )  and 111 ( b )  directions, for the variables Y ,  and Ys  associated with the TI, and 
Tlu sets of table 1. Circles show simulation data, and the curves are the functions Ac(k)AB(&) 



3356 M T Dove and R M Lynden-Bell 

acoustic mode variable u,(k) which couples to both YB(k) and Y,(k) .  It can be seen that 
the two functions are indistinguishable for the 001 direction and are very similar for the 
111 direction. Hence it is clear that y is always close to zero. The remaining three 
variables R22, R33 and R44 were obtained from fitting the correlation functions obtained 
from the solution of V to the six correlation functions given in § 4.3 .  Because of the 
uncertainties caused by the use of periodic boundary conditions we limited the analysis 
of the correlation functions to data for less than 2 ps. The values of the fitted parameters, 
together with the variance between the fitted and observed correlation functions are 
given in table 4. Representative functions are shown in figure 8. In general the agreement 

Table 4. Results of fitting the Mori theory model to the correlation functions in the two 
symmetry directions. The last column gives the variance for the fits. 

Reduced 
wave-vector 

P O 1 1  
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o  
[I111 
0.125 
0.25 
0.375 
0.5 

0.603 
1.232 
1.634 
1.847 
1.835 
1.810 
1.910 
1.992 
1.715 
1.652 

0.230 
0.430 
0.577 
0.698 
0.825 
0.865 
0.885 
0.885 
0.928 
0.938 

0.040 
0.090 
0.133 
0.182 
0.230 
0.276 
0.320 
0.390 
0.470 
0.480 

0.012 
0.043 
0.090 
0.145 
0.207 
0.218 
0.325 
0.372 
0.410 
0.440 

0.0985 
0.5602 
0.9687 
1.5336 
2.0342 
2.1351 
2.8182 
2.9550 
1.981 1 
2.7620 

0.5001 
0.8274 
1.0264 
1.1435 
1.5803 
1.5482 
1.7286 
1.7261 
1.9095 
2.3669 

2.5071 
2.3945 
2.1677 
1.9687 
1.8570 
1.6443 
1.4731 
1.6741 
1.8324 
1.7297 

0.0039 
0.0040 
0.0032 
0.0017 
0.0013 
0.0016 
0.0010 
0.0028 
0.0015 
0.001 1 

0.848 0.620 0.212 0.078 1.1372 0.9506 1.9550 0.0027 
1.241 0.815 0.433 0.222 2.5981 1.4602 1.4108 0.0016 
1.414 0.868 0.549 0.365 3.1252 1.9952 1.4899 0.0010 
1.225 0.925 0.623 0.472 1.0590 2.5305 0.9939 0.0014 

between the observed and calculated correlation functions is reasonable, although the 
fitted values of the relaxation parameters vary somewhat erratically with wave-vector. 
Nevertheless, the parameters do show a marked trend. It can be seen from figure 8 that 
the model fits least well to the T,,-type orientation modes, which are the modes that 
couple less to the acoustic modes. It is clear that these correlation functions show a more 
complicated behaviour than the simple relaxational decay of the model, and possibly 
point to the necessity to use a time-dependent relaxation force or to include Y among 
the slow variables in the Mori theory. A frequency-dependent coefficient has been 
incorporated into a model for KCN by de Raedt and Michel (1980), but such a degree 
of sophistication was considered to be inappropriate here when the effects of other 
approximations (e.g. the total absorption of anharmonic effects into simple relaxation 
parameters and the neglect of off-diagonal relaxation effects) may be of comparable 
importance. On the other hand, the model reproduces the acoustic mode behaviour, 
the T2, orientational correlation functions and the cross-correlation functions extremely 
well, although there still remain slight discrepancies as seen for the T1, orientational 
correlation functions. Of particular note is the fact that the model correctly reproduces 
the feature that the correlation functions become relaxational and longer-lived as the 
rotation-translation coupling coefficient increases towards unity. This includes the 
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~~ 

0 1 1 2 2 0  
f (ps )  

Figures. Representative correlation functions calculated using the Mori theory (full curves) 
as obtained by fitting to the simulation data (full circles). 1. 2 and 3 refer to the reduced 
wave-vectors (0,0,  0.5). (0.0, 1) and (0.5,0.5.0.5) respectively. The different functions are 
(a) TA displacement-displacement; (b) T2,, orientation-orientation; (c) T,, orientation- 
orientation; (d) Tzu orientation-displacement cross-term; (e) T,, orientation-displacement 
cross-term; (f) T,,-T2. orientation cross-term. 

acoustic mode correlation functions, which with increasing wave-vector (and hence 
coupling coefficient) change from oscillatory to relaxational behaviour. That this behav- 
iour in the model does not simply result from the fitting procedure is seen in the fact that 
the fitted values of the relaxation coefficients (table 4) increase with increasing wave- 
vector, opposing the trend towards the slower relaxational behaviour. We conclude that 
at least qualitatively the Mori theory applied here provides a reasonable description of 
the behaviour observed in the simulations, with the discrepancies being understood 
within the approximations used. These approximations affect only the fine detail (mainly 
in the limit of t + 0 )  and do not affect the overall behaviour. 
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Having established that the theory is a reasonable description of the behaviour of 
the dynamic properties of the OD phase of CBr4, we summarise here the main features 
that the model reproduces. These have been confirmed by using the freedom to chose 
any value for any parameter. In the limit of small coupling, the acoustic mode is 
oscillatory ( phonon-like) and the orientational modes are relaxational-like. In the 
absence of phonon damping = 0), the increase of rotation-translation coupling 
causes the acoustic phonon to become more relaxational, and the decay of the relax- 
ational phonon and the orientational modes becomes slower as the coupling increases, 
even when the relaxational coefficients R33 and Rd4 remain constant. In the large-coupling 
regime the displacement and orientational correlation functions decay with similar 
characteristic times. The behaviour of the acoustic modes that do not couple to the 
orientational variables (see figure 2) shows that relaxational processes are an important 
part of the dynamic behaviour. Adding these to the model via a non-zero value of 
Rl2 smooths out residual fine detail (e.g. superimposed oscillations) on the phonon 
correlation functions, in accord with the observed correlation functions. 

The phenomena of rotation-translation coupling has been studied in depth theor- 
etically mainly for the alkali cyanides (Michel and Naudts 1977,1978, Lynden-Bell et a1 
1983). The case of CBr, is more complicated in three regards. Firstly there are now two 
orientational variables that couple to the acoustic modes and that must be taken account 
of. Much of the analysis of the dynamics in KCN focuses on those symmetry directions 
for which only one mode is coupled. Secondly, the phonon frequencies U are generally 
of the same size as either or both of the two relaxation frequencies R33 and R44. Thus 
neither of the two limiting cases discussed by Michel and Naudts (1978) (U S R or 
w 4 R ) ,  which have well defined behaviour, are relevant here. Thirdly there is a strong 
phonon damping in the present case, which to date has always been neglected (Powell 
er a1 1983, Lynden-Bell er a1 1983, Rowe er a1 1978). Thus it is clear that in the application 
of the theory of rotation-translation coupling it is important to take careful note of the 
subtleties of the case in hand! 

Experimentally these correlation functions can be studied through coherent inelastic 
neutron scattering (see the Appendix), where the scattering cross section is related to 

m 

Frequency I THzl 
Figure 9. Fourier transforms of the TA displacement-displacement correlation functions 
(calculated from Mori theory) along the 111 direction. The values 4, t ,  1,d are to indicate the 
reduced wave-vector. 
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the time Fourier transforms of these functions. We consider here the scattering from the 
acoustic modes, which experimentally can be selected by using appropriate momentum 
transfers. Because of the problems encountered when considering long-time behaviour 
in the simulations ( B  4) we have used the correlation functions generated by the Mori 
theory. Fourier transforms for the TA modes propagating along the 111 direction are 
shown in figure 9. At the lowest wave-vector some structure can be seen in the scattering 
function, corresponding to scattering centred on zero frequency with two unresolved 
broad peaks at non-zero frequencies either side of zero frequency. However, at larger 
wave-vectors the scattering consists primarily of quasi-elastic scattering, with the width 
of the scattering function becoming more narrow as the coupling coefficient increases. 

6. Discussion 

6.1. Potential model 

We comment, as in I, that in the few cases where it has been possible to compare the 
results of the simulations with experimental data the two sets of results have been in 
reasonable agreement. This gives confidence in the realism of the model we have 
developed, particularly as the model was parametrised using only two pieces of infor- 
mation concerning static averages. The potential model has now been tested over a wide 
range of independent static and dynamic properties. 

6.2. The phase transition 

One of the main results of I was to show that a model of the OD in CBr,, in which each 
molecule was ‘randomly’ oriented with any of the six orientations of the low-temperature 
phase with frequent reorientations between different orientations whilst taking account 
of steric hindrance effects, gave an over-simplified description. The appeal of this model 
was that it enabled a fairly straightforward explanation of the phase transition to be 
given. However, in I it was shown that the single-molecule correlation functions for the 
variables associated with these orientations decayed more slowly than those for variables 
associated with other orientations. This implies that there exists an incipient orien- 
tational ordering in the OD phase, although somewhat hidden in the disorder! This 
observation has been confirmed in this study through the calculations of the coupling 
between the relevant orientationalvariables andTA modes, and as a result of thiscoupling 
the collective relaxational mode associated with the ordering orientation becomes very 
long-lived in the vicinity of the wave-vector at which the phase transition instability 
exists. The large slowly decaying fluctuations in these variables are precursors of the 
ordered phase. 

That the OD is more complicated than the simple spin model is probably related to 
two features observed in this study. Firstly, the apparent instability at the zone boundary 
in the 001 direction indicates that there are a number of competing ordering processes, 
with the observed low-temperature ordered phase having a slightly lower free-energy 
minimum than other possible phases. This is not at all improbable. Secondly, the acoustic 
mode that couples to the ordering orientational variable also couples to another variable. 
Hence one expects the existence of other types of orientations in the OD phase. Alter- 
natively one can consider certain complicating features of the disordering process that 
would modify the spin model. Firstly the very large mean squared displacement will 
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mean that the translational motions will contribute to the disorder, for example by 
allowing two molecules to move close to each other and altering their orientations in 
response, or allowing certain relative orientations to move two molecules further apart. 
Secondly, the importance of steric hindrance effects that arise from certain relative 
orientations has been pointed out (Coulon and Descamps 1980). The ordering of the 
low-temperature phase, or symmetrically related ordering, appears to give the only 
possible types of environments that an ordered molecule can reside in without the 
problems associated with steric hindrance. When a molecule rotates, it will always lead 
to steric hindrance interactions which within the sample can only be overcome by 
molecules adopting other types of orientations. Thus the ideal spin model cannot exist, 
and must be modified by the existence of other orientations. One can imagine such 
disordering occurring in the low-temperature phase just below the transition tem- 
perature in the vicinity of a molecule that has been given enough kinetic energy to allow 
it to rotate out of its potential well. 

To summarise, the simulations have shown that real-space precursor ordering of the 
molecular orientations is not as straightforward as assumed in the discrete spin model, but 
precursor ordering of collective orientational variables in reciprocal space is dramatic. 
Expressed another way, although the system displays some incipient real-space ordering, 
the ordering processes are more clearly seen in reciprocal space through the large static 
couplings to the acoustic phonons and through the long-lived collective fluctuations at 
the appropriate points in the Brillouin zone. 

6.3. Collective dynamics 

This study has presented an analysis of the effects of the disorder and the rotation- 
translation coupling on the collective dynamics. Unfortunately it is not straightforward 
to correlate the results with experimental data (More and Fouret 1980, More eta1 1984) 
as the available experimental data are primarily concerned with understanding the 
behaviour of fluctuations in one region of reciprocal space, or else are focused on the 
acoustic modes using constant-energy measurements. The only relevant data concern 
the linewidths of quasi-elastic scattering from unspecified modes with wave-vectors 
along (1, 1, 1) around one region of wave-vector transfer Q .  These data showed little 
wave-vector dependence of the linewidths, in contrast to many of the results presented 
here, which may suggest that the scattering was primarily associated with those orien- 
tational variables that are not coupled to acoustic phonons. It is not within the scope of 
this paper to calculate the expected neutron scattering cross sections for different 
collective modes, but by using the analysis given in the Appendix this would not be 
difficult to do. In fact, extensive calculations of predicted cross sections are essential 
preliminaries to any systematic neutron scattering experiment (Pawley 1972). It is hoped 
that the behaviour found in these simulations will be studied experimentally. Such 
studies may be able to examine the extent of the rotation-translation coupling for 
different modes along different symmetry directions. 

6.4. Theoretical analysis 

We summarise here both what we understand about the OD in CBr4 and what needs 
a firmer theoretical foundation. Symmetry arguments have shown which modes are 
coupled. The model developed in the preceding section used various parameters that 
were obtained from the simulation (frequencies and coupling parameters) or  from fitting 
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(the relaxation parameters), and was a51e to explain the nature of the dynamics of the 
collective variables. Thus we understand theoretically how the coupling affects the 
dynamic properties. 

What remains is to be able to calculate the coupling parameters ab initio, starting 
from the model potential. This could be achieved by building upon the work of Michel 
and Naudts (1977,1978), and we believe that similar work for CBr, is in progress (Fouret 
1985). It is improbable, however, that the relaxation coefficients could be calculated, as 
these represent approximate anharmonic effects. This theoretical work should be able 
to identify the microscopic interactions that favour the coupling of the acoustic modes 
to the TZU orientational variables over the TI, variables and hence show why the observed 
low-temperature structure is the favoured one. 

7. Conclusions 

A computer simulation model of the OD phase of CBr, which was developed in 1 for 
the study of single-molecule real-space properties has been used to study collective 
properties. The form of the coupling between orientational variables and TA phonons 
has been calculated, and the collective dynamics have been studied. The effect of the 
coupling on the dynamics has been understood by using a model based on Mori theory, 
which has reproduced the most important feature that at large couplings the acoustic 
modes become relaxational with narrow frequency widths. The phase transition to the 
ordered phase has been discussed in light of the results obtained. 

We have pointed out that more theoretical work is needed in order to explain the 
observed coupling in terms of the microscopic inter-molecular interactions in the crystal. 
However, it may be of greater importance to verify experimentally that the features of 
the collective modes observed in the simulations are also present in the real OD phase of 
CBr,. The technique of coherent inelastic neutron scattering would be ideal for this, as 
has already been demonstrated (More and Fouret 1980), and to assist we have indicated 
the way in which the different correlation functions studied may contribute to any 
scattering cross section. 
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Appendix 

We derive a form for the inelastic neutron scattering factor for OD crystals following the 
approach of Michel and Naudts (1978), adapted for neutral tetrahedral molecules. We 
consider here the intermediate scattering factor 

G(Q,  t )  = I S(Q7 a) e-'W'dr = MQ, t ) d - Q ,  0)). 

where the density operator p ( Q ,  r )  has been defined in 0 5 as 

P ( Q ,  t )  = C bi e x p ( i ~  * r i( t>) 
I 
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and ti is the position vector of the ith atom, and bi the corresponding scattering length rj 
is expanded as 

t j(f)  = Ri + uj(t) + dj(t)  

where Ri is the equilibrium position of the molecular centre, uj( t )  is the instantaneous 
displacement of the centre and d,(t) the instantaneous position of the atom with respect 
to the molecular position. We use the familiar spherical harmonic expansion for the 
bromine atoms: 

and retain only the terms for 1 = 0. 3. The 1 = 3 summation can be transformed to the 
orientational variables 

7 

j r = 1  m = - 3  N = l  

where Y,(Q) has a similar definition for a unit vector along Q as for Y,. Values of the 
coefficients co ,  (Y = 1-7, are 

c 1  = c2  = c5 = 140/9n c3 = c4 = c6 = c7 = 35/18n. 

Thus the density operator can be re-expressed: 
4 

p(Q3 f )  = 2 exp(iQ - R , )  exp(iQ u , ( t ) )  ( b ~  + b~ 2 exP(iQ * d l v ( t ) ) )  
p = l  

= PO(Q, f )  + p3(Q, t )  

where 

PO(Q* t )  = (bc + 4 b j o ( Q 4 )  2 e x ~ ( i Q  . R I )  exp(Q ul ( t>)  

7 

P ~ ( Q ,  t )  = 4 ~ r b ~ j 3 ( Q 4  C exp(iQ * R I )  e x ~ ( i Q  * u , ( t ) )  2 c,Y,(Q)Y, 
N =  1 

and b, and bB are the scattering lengths for the carbon and bromine atoms respectively. 
The intermediate scattering factor can therefore be expanded: 

G(Q, t )  = (PO(Q, t>po(-Q, 0)) + ( P ~ ( Q ,  ~)Po(-Q,  0)) + (PO(Q, t )~3 ( -Q ,  0)) 

+ (p3(Q7 r )~3(-Q,  0)) 

= Gm(Q, f >  + G ~ o ( Q ,  t )  + G03(Q, t> + G33(Q, t>* 

The acoustic mode component, Gm(Q, t ) ,  can be treated in the usual manner. Noting 
that the Debye-Waller factor W(Q) is given as 

WQ) = ((Q u(0>l2)/2 

and by transforming to collective coordinates, we obtain 

Goo(Q, t )  = (bc  + 4b~jo(Qd))' e-2W(Q)QBQ,(ug(k, t )  u y ( - k ,  0)) 

where the summation over the Cartesian indices p, y = 1,2,3 is implied and it is assumed 
that Q = k + Bragg vector. 
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7 

Note added in proof. The vanishing of the rotation-translation coupling parameters at k = 0 as observed in 
the present study (P 3), with maxima at the zone boundaries, is consistent with the recent predictions of 
Michel and Rowe (1985) for non-centrosymmetric molecules. 
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