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ABSTRACT

The phase transitions in tridymite and the nature of the high-temperature phase are investigated using a
combination of Rigid Unit Mode theory, neutron total scattering measurements analysed using the
Reverse Monte Carlo method, and molecular dynamics simulations. The unusually large number of
phase transitions in tridymite can be explained within the Rigid Unit Mode theory. The Rigid Unit
Mode theory also gives an interpretation of the disordered high-temperature phase as revealed by the
neutron scattering data and the molecular dynamics simulations. There is a close correspondence
between the structure of the disordered high-temperature phase of tridymite and that of b-cristobalite.
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Introduction

ALTHOUGH many silicate and aluminosilicate
crystals undergo displacive phase transitions on
changing temperature, the tridymite polymorph of
silica is notable for the remarkable number of
displacive phase transitions that occur at ambient
pressure (de Dombal and Carpenter, 1993; Cellai
et al., 1994; Pryde and Dove, 1998). The
established equilibrium sequence of phase transi-
tions is illustrated in Fig. 1, and the crystal
structures of some of the equilibrium phases are
shown in Fig. 2, but there are other phase
transitions that can occur in samples of tridymite
due to stacking faults, defects or small grain size.

The large number of displacive phase transi-
tions found in tridymite is seen to be even more
notable by comparison with the cristobalite phase
of silica, which has a similar crystal structure but
only one displacive phase transition at ambient
pressure. The structures of both tridymite and
cristobalite are based on identical layers of

6-membered rings of SiO4 tetrahedra, with
alternative tetrahedra pointing in opposite direc-
tions normal to the layers (Putnis, 1992). The two
structures differ in how these layers are stacked.
In cristobalite, the layers all have the same
orientation, and neighbouring layers are displaced
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FIG. 1. Equilibrium sequence of phase transitions in
tridymite. HP is the ideal high-temperature hexagonal
phase (space group P63mmc); LHP is a lower-tempera-
ture hexagonal phase (space group P6322), which Cellai
et al. (1994) assign to two distinct phases, one with
long-range order (lro) of the apical Si ­ O bonds and one
with short-range order (sro) of these bonds; OC is a C-
centred orthorhombic phase (space group C2221); OS is
a modulated form of the orthorhombic OC phase; OP is
the primitive orthorhom bic phase (space group
P212121), which is a 36161 supercell of the OC
phase; MC is a monoclinic phase (space group Cc), and

MX-1 is a triclinic modulation of the MC structure.



along a direction within the layers relative to each
other in order to provide a linkage between the
tetrahedra. The periodicity involves three layers,
and the � nal structure is face-centred cubic. On
the other hand, alternative layers in tridymite are
rotated by 1808 relative to each other in order to
provide the linkage between the tetrahedra, and
the periodicity involves two layers. This gives a
hexagonal crystal structure. In both cases the
resultant crystal structures can be viewed as being
in� nite frameworks of corner-linked tetrahedra,
with all tetrahedra forming part of the one

framework, and with no non-bridging Si ­ O
bonds.

In this idealized view of the crystal structures
of the two materials, the Si ­ O ­ Si bonds are
straight, whereas it is commonly found in
aluminosilicates that the angle subtended by this
type of bond is nearer 1458. However, in both
cristobalite and tridymite the idealized structures
are found to be good representations of the
average structures of the high-temperature
phases. Thermal displacement parameters
measured by X-ray or neutron diffraction show
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FIG. 2. Crystal structures of tridymite phases; nomenclature is given in the caption to Fig. 1. The projection is down
the common [001 ] direction of the aristotype HP structure.
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large displacements of the O atoms in the plane
normal to the idealized Si ­ O ­ Si bonds (e.g.
Schmahl et al., 1992). This suggests that on an
instantaneous time scale there is considerable
bending of the Si ­ O­ Si bonds but in a way that
gives dynamic structural disorder on a short
length scale. This aspect of the crystal structure
has been studied in some detail in b-cristobalite
from both experimental (Schmahl et al., 1992;
Swainson and Dove, 1993; Dove et al., 1997) and
theoretical (Swainson and Dove, 1995;
Hammonds et al., 1996; Gambhir et al., 1999)
perspectives. It is not likely that this disorder can
persist to low temperatures, and the solution is for
the crystal structure to distort through a displacive
phase transition, giving a lower-symmetry struc-
ture with non-linear Si ­ O ­ Si bonds. In the case
of cristobalite, there is only one phase transition
on cooling, to a tetragonal structure with
Si ­ O ­ Si bond angles nearer the usual value of
1458. In the case of tridymite there is a sequence
of displacive phase transitions on cooling, and
some of the crystal structures of the intermediate
phases still have the idealized average linear
Si ­ O ­ Si bonds.

The purpose of the present paper is to present
some results from studies of the phase transitions
in tridymite, which shed some light on the origin
of the remarkable sequence of phase transitions,
and on the nature of the high-temperature phases.
This involves three approaches, which are
covered in the following three sections of this
paper, namely a theoretical survey using the Rigid
Unit Mode model, a joint computational and
experimental study using neutron total scattering
measurements and reverse Monte Carlo analysis,
and a computational study using molecular
dynamics simulation.

`Rigid Unit Mode’ analysis

Basics of the `Rigid Unit Mode’model
The ‘Rigid Unit Mode’ model is a simple
approach ­ at least in principle, although the
implementation is not so trivial ­ which can give
insights into many aspects of the stability of
framework structures (Hammonds et al., 1996).
Rigid unit modes (RUMs) are normal modes of
the crystal in which the framework is able to � ex
without the tetrahedra distorting. The joints
between two tetrahedra are reasonably � exible,
requiring little energy to rotate two tetrahedra
about the linkage pivot (Fig. 3). On the other
hand, a reasonably large energy is required to

distort the tetrahedra. This gives rise to a range of
vibrational frequencies. In quartz, the vibrations
that involve stretching of the Si ­ O bonds have
frequencies as high as ~40 THz (Strauch and
Dorner, 1993), whereas the RUMs have frequen-
cies of order of 0 ­ 1 THz (Swainson and Dove,
1993; Dove et al., 1995a).

Because of their low energies, RUMs are
natural candidates for the vibrations that can act
as the soft modes associated with displacive phase
transitions (Giddy et al., 1993; Dove et al., 1995a;
Hammonds et al., 1996; Dove, 1997). This point
has been documented in detail for the phase
transitions in quartz (Vallade et al., 1992),
cristoba lite (Swainson and Dove, 1993;
Hammonds et al., 1996) and other silicates
(Dove et al., 1995a; Hammonds et al., 1996).
What usually happens is that when a RUM
distortion is imposed on a crystal structure,
leading to a lowering of the symmetry, many of
the other RUMs can no longer exist as RUMs, and
instead will obtain a non-zero frequency
(Hammonds et al., 1996). This has been measured
experimentally in the case of quartz (Boysen et
al., 1980; see discussion in Hammonds et al.,
1996). As a result, there is a much smaller number
of possible low-energy deformations in the low-
temperature phases. Moreover, in the distorted
low-temperature phase, there is often a large
reduction in volume and the Si ­ O­ Si bonds
angles are able to have usual values, so there is
also little driving force for further phase
transitions (Dove et al., 1995a).

It is possible to calculate the number of RUMs
for any wave vector in a crystalline material using
an algorithm called the ‘‘split-atom method’’
(Giddy et al., 1993; Hammonds et al., 1994).

FIG. 3. Two tetrahedra joined at corners, showing types
of low-energy motions that do not require distortions of

the tetrahedra.
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This involves representing each oxygen atom
shared between two tetrahedra as a pair of atoms
(the ‘‘split atoms’’) with a spring of zero
equilibrium length holding the pair of split
atoms together. Any distortion of the framework
structure that does not require deformation of the
tetrahedra will correspond to the movements of
the rigid tetrahedra that does not open up the split-
atom springs. Formally the stiffness of a split-
atom spring is representative (at least to � rst
order) of the stiffness of the tetrahedra ­ a large
force exerted when opening up a pair of split
atoms is equivalent to distorting the two
tetrahedra. If the only forces included in a
model of a crystalline silicate are those associated
with the split-atom spring, and all other inter-
tetrahedral interactions are neglected, a RUM
distortion will cost zero energy. This approach has
been implemented within the formalism of
molecular lattice dynamics, in which the indivi-
dual tetrahedra are treated as separate rigid
molecular entities with translational and rotational
degrees of freedom (Giddy et al., 1993;
Hammonds et al., 1994). In this approach the
frequencies of all vibrations are computed for a
given wave vector. If one of the vibrations at this
wave vector is a RUM, it will have zero
frequency. All other vibrations will have values
of frequency (actually the square of the
frequency) that are determined by the extent to
which the vibrational motions open up the split
atoms, i.e. the extent to which the vibrational
motions cause distortions of the tetrahedra. In
practice the calculation is performed for a range
of wave vectors to determine the distribution of
RUMs in reciprocal space (Pryde and Dove, in
prep.; Dove et al., 1999).

Rigid Unit Modes in tridymite

The RUMs have been deduced for a number of
the phases of tridymite. Results for the high-
symmetry hexagonal phase are given in Table 1
with respect to the RUM wave vectors that lie on
special points, lines or planes in reciprocal space.
Table 1 only gives part of the story, albeit a very
important part with regards to the phase
transitions, and to which we will return shortly.
We have found that in tridymite there are also
RUMs with wave vectors lying on exotic curved
surfaces in reciprocal space (Dove et al., 1995b),
and these curved surfaces for the HP, LHP and
orthorhombic phases are represented in Fig. 4.
The existence of RUM surfaces is not as
uncommon as was once thought, and similar
curved surfaces have been found for a number of
aluminosilicates (Pryde and Dove, in prep.; Dove
et al., 1999; a gallery of RUM surfaces can be
found on the world wide web at http://
www.esc.cam.ac.uk/rums). However, the curved
surfaces of RUMs in the high-temperature phase
of tridymite were the � rst to be discovered,
initially by electron diffraction (Withers et al.,
1994), and subsequently con� rmed by detailed
calculations (Dove et al., 1995b).

One important aspect of the RUM spectra for
tridymite as shown by Fig. 4 is that the number of
RUMs does not signi� cantly decrease on lowering
the symmetry through the phase transitions. This
is unlike the case of cristobalite (Hammonds et
al., 1996), and it ensures that there remains a
signi� cant number of possible low-energy distor-
tions in the lower-symmetry phases. Moreover, it
is found experimentally that the phase transitions
do not involve large changes in volume, as

TABLE 1. Rigid unit modes for different special wave vectors in HP tridymite: A, non-degenerate; E, doubly-
degenerate; T, triply-degenerate; F, quadruply-degenerate (from Hammonds et al., 1996).

Special points Special lines Special planes

g (0,0,0) 2A + 2E S (x,0,0) 3A (x,z,0) A
M (Ã~Ä,0,0) 3A L (x,x,0) A (x,0,z) 2A
K (Ã~Å,Ã~Å,0) A D (0,0,x) 2A + 2E
A (0,0,Ã~Ä) E + F R (x,0,Ã~Ä) E
L (Ã~Ä,0,Ã~Ä) E T (Ã~Ä ­ x,2x,0) A
H (Ã~Å,Ã~Å,Ã~Ä) 2A U (Ã~Ä,0,x) 2A
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highlighted in Fig. 5, and some of the high-
temperature phases retain some linear Si ­ O­ Si
bonds. The � rst point suggests that there are only
small differences in energy between different
phases, and the second point implies that there is
still a large driving force for additional phase
transitions in the phases below the highest-
temperature phase. These results go a long way
to explaining the large number of displacive phase
transitions in tridymite as compared to other
silicates such as cristobalite.

The RUM analysis can be quanti� ed further.
We have correlated the changes in symmetry at
each phase transition with the symmetries of the
RUMs in each of the parent structures, and have
been able to deduce the phase transition
sequences. The results of this analysis are given
in Fig. 6. It can be seen that there are at least three
distinct sequences of displacive phase transitions
starting from the parent high-temperature hexa-
gonal phase (Pryde and Dove, 1998). The
sequence of displacive phase transitions � rst
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FIG. 4. Exotic curved surfaces of wave vectors of RUMs in the reciprocal spaces of the HP, LHP and OC phases of
tridymite. The small inset gives the key to special points in reciprocal space.
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follows one sequence of RUM distortions, and on
further cooling the sequence reverts to one of the
other sequences. The family of RUM sequences
given in Fig. 6 correlates many of the known
phase transitions in tridymite, including some that
appear to depend on sample history.

Neutron total scattering measurements and
Reverse Monte Carlo analysis

Total scattering experiments

Neutron total scattering experiments involve the
measurement of the total diffraction pattern,
including both the Bragg peaks and the diffuse
scattering. The Bragg scattering gives information
about the average positions (or average distribu-
tion of positions) of the atoms in the unit cell. On
the other hand, the total diffraction pattern gives
information about the distribution of the distances
between atoms. In the case of disordered
materials, this difference is signi� cant. The
average structure of the high-temperature phases
of tridymite gives linear Si ­ O­ Si bonds, as
highlighted earlier. However, the distribution of
positions of the oxygen atoms as indicated by
re� nement of the temperature factors involves
considerable motion of each oxygen atom in a
plane normal to the Si ­ Si vector. This is
illustrated in Fig. 7. It can be seen that the
linear bonds will be shorter than the actual
instantaneous bonds, and that in a determination
of the average structure, there will be a large
distribution of positions of the oxygen atom in a
plane normal to the Si ­ Si vector. It needs to be
appreciated that determination of the details of
this point is not trivial. In principle the rough

95 96 97 98 99 100

MX-1

MC

MC

OC

OP

LHP

HP

Volume relative to HP (%)

FIG. 5. Graphical representation of the relative volumes
of the different phase of tridymite, which highlights the
small changes in volume that accompany the different

phase transitions.

FIG. 6. Phase transition sequences in tridymite, represented by the symmetries of the RUMs that correspond to the
distortions though each phase transition. The phases within each sequence have a distinct group-subgroup symmetry

representation that is characterized by the symmetry of the RUM distortion.
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picture emerges naturally from the analysis of the
data from Bragg diffraction. However, the
resolution in real space is given by 2p/Qmax,
where Qmax is the magnitude of the upper limit of
the scattering vector Q in the experiment. For
analysis of data from Cu-Ka X-radiation, the
upper limit on Q gives an intrinsic resolution of
only 0.75 AÊ , which is too poor to enable different
models of the disorder to be distinguished. Thus
to get a good picture of the nature of the structural
disorder it is necessary to obtain diffraction data
to much larger values of Q. This is most easily
accomplished using time-of-� ight neutron diffrac-
tion data from a spallation source.

The quantity that is sought in the experiments is
the scattering function S(Q). This involves both
elastic and inelastic scattering, and is related to
the instantaneous relative positions of the atoms.
For a given scattering vector Q, S(Q) is related to
the atomic positions through

S(Q) ˆ
X

j;k

bjbkhexp…iQ …r j ­ r k††i

where rj and rk are the instantaneous positions of
atoms j and k respectively, and the average is over
all possible atomic con� gurations as sampled in
an experiment. bj and bk are the neutron scattering
lengths (the neutron equivalent of the X-ray

atomic scattering factors) of atoms j and k
respectively. In a powder diffraction experiment,
this expression needs to be averaged over all
orientations of Q. This leads to the well-known
Debye formula

S…Q† ˆ
X

jk

bjbk sin…Qrjk†/Qrjk

ˆ
X

j

b2
j ‡

X

j 6ˆk

bjbk sin…Qrjk†/Qrjk

where rjk = |rj ­ rk|. Here we have separated the
terms involving the same atom twice (the so-
called ‘self terms’) and the terms involving two
different atoms. The latter sum implies knowledge
of the separations of all the atoms, but instead we
are interested only the distribution of these atomic
separations. Hence we write the equation for S(Q)
in terms of the appropriate distribution function,
and now assume normalization with respect to the
number of formula units:

S…Q† ˆ
X

m

cmb2
m‡

X

mn

cmcnbmbn

Z 1

0
4pr2gmn…r†

sin…Qr†
Qr

dr

m and n now refer to distinct atom types, each of
concentration cm and cn respectively. The distribu-
tion function gmn(r) is de� ned such that
4pr2gmn(r)dr gives the average number of atoms
of type m lying within a shell of thickness dr and
radius r from any atom n. It is common to represent
the Fourier transform of S(Q) in terms of

T…r† ˆ 4pr
X

mn

bmbngmn…r†

since this is clearly the function within the
transform integral and can therefore be said to
be the best representation of the direct transforma-
tion of experimental data for S(Q).

The neutron scattering data were collected on
the LAD diffractometer (now decommissioned;
Howells and Hannon, 1999) at the ISIS spallation
neutron source, using a polycrystalline sample of
tridymite contained within a cylindrical vanadium
can. Data were collected up to large values of Q,
although for values of Q greater than 50 AÊ ­ 1

there is little signi� cant structure in the data. Data
were collected at several temperatures, but here
we concentrate on the data from one temperature
in the stability � eld of the high-temperature phase
of tridymite.

Actual bond
length Apparent

bond length

Average
position

Distribution
of positions

FIG. 7. Illustration of the difference between actual
instantaneous interatomic separations and the separa-

tions between average positions.

PHASE TRANSITIONS IN TRIDYMITE

273



The raw data were corrected for intrinsic
background by subtracting measurements of the
background signal and making corrections for the
attenuation of the neutron beam by the sample,
vanadium can and furnace. A standard silicon
sample was used to calibrate the values of lsiny
for each detector, where l is the total neutron
� ight path and y is half the scattering angle. A
standard vanadium sample was used to calibrate
detector ef� ciencies and to normalize the data
onto an absolute scale. The � nal result for S(Q) is
shown in Fig. 8.

Constrained Reverse Monte Carlo methods

The data were analysed using the constrained
Reverse Monte Carlo re� nement method (Keen,
1997, 1998). This is a computer simulation
method, in which an initial con� guration of
atoms of the same density as the real sample is
contained within a periodic cell. The positions of
the atoms within this con� guration are allowed to
relax using a Monte Carlo method to move the
atoms. Any move that improves the agreement
between the calculated and experimental S(Q) is
accepted, whereas any move that worsens the
agreement is accepted or rejected depending on
the outcome of a probability test. The procedure is
continued for many steps until the calculated S(Q)
only changes within the assumed limits of
accuracy. Soft constraints were imposed to
ensure that the Si ­ O tetrahedra were not
allowed to break up during the relaxation
procedure. At the point at which the calculated
S(Q) is in agreement with the experimental data, it
is assumed that the con� guration is a reasonable
representation of the atoms in the real material.
This con� guration can be analysed to give
information on the structure over short length
scales.

The T(r) function and the individual g(r)
functions obtained from analysis of the RMC
con� gurations are shown in Fig. 9. These
functions are remarkably similar to those obtained
from b-cristobalite (Dove et al., 1997; Keen and
Dove, 1999), which are also shown for compar-
ison. In particular, the Si ­ O and O ­ O g(r)
functions are consistent with the existence of
regular SiO4 tetrahedra with mean Si ­ O distance
of 1.67 AÊ and mean O ­ O distance of 2.6 AÊ . As in
the case of b-cristobalite, the Si ­ O and O ­ O
distances are greater than the distances from the
average structure, suggesting that the Si ­ O bonds
are actually tilted away from their average

orientations to give bent Si ­ O ­ Si angles. In
fact, from the triangle made from the Si ­ Si
vector (mean distance 3.13 AÊ ) and two Si ­ O
vectors (see Fig. 7) we can surmise an average
Si ­ O­ Si angle of 1418. This is highlighted in
calculations of the two bond orientational
distribution functions shown in Fig. 10, where
they are also compared with the corresponding
distribution functions obtained for b-cristobalite.
The orientational distribution function f(y) for the
Si ­ O­ Si angles give a mean value of the angle
of ~140 ­ 1508, with a wide and asymmetric
distribution of angles. The distribution is very
similar to that of b-cristobalite.

The distortions of the structure as seen through
the Si ­ O ­ Si bond distribution function f(y),
taken with the fact that the g(r) functions indicate
regular SiO4 tetrahedra, suggests that tetrahedra
are able to rotate without signi� cant distortions in
order to avoid the formation of linear Si ­ O ­ Si
bonds. This poses the question of how such
distortions can arise. In the case of b-cristobalite,
several scenarios have been proposed, which are
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FIG. 8. Neutron scattering S(Q) data for the HP phase of
tridymite, drawn over two distinct ranges of Q to
highlight the existence of sharp distinct Bragg peaks at
lower values of Q and oscillations at larger values of Q.
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discussed in detail by Dove et al. (1997). Some of
these are based on the instantaneous formation of
small domains of lower-symmetry structures. An
insight into this issue can be obtained by
inspection of an instantaneous con� guration of
tetrahedra, a layer of which is shown in Fig. 11. It
is apparent from this � gure that the rotations of
the tetrahedra do not involve formation of
domains. The distortions of the hexagonal rings

are large, but there is no apparent correlation
between the distortions of neighbouring rings. A
similar picture has been obtained from RMC
con� gurations of b-cristobalite (Keen, 1998;
Dove et al., 1998; Keen and Dove, 1999). The
distribution of orientations is highlighted in the
orientational distribution function g(f) shown in
Fig. 10, which gives the distribution of relative
torsional orientations of neighbouring tetrahedra.
The tridymite structure has pairs of neighbouring
SiO4 tetrahedra in two relative orientations, 1/4 of
the pairs having an angle 08 and 3/4 of the pairs
having an angle 608 (unlike b-cristobalite, which
has only relative orientations of 608). The disorder
is seen as a wide distribution of these angles.

In the case of b-cristobalite we proposed that
the disorder arises from the instantaneous super-
position of many RUMs, leading to a dynamically
disordered state (Swainson and Dove, 1993,
1995). This is possible because there is a large
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number of these modes. In fact, we do not need to
take into account only the RUMs at the precise
wave vectors, but the modes on the same
vibrational dispersion surface in the vicinity of
the RUM wave vectors will have very low
frequencies and can contribute to the formation
of the dynamic disorder. The RUM interpretation
of the dynamic disorder in b-cristobalite has been
developed in some detail through a series of
experimental (Swainson and Dove, 1993; Dove et
al., 1997) and theoretical studies (Swainson and
Dove, 1995; Hammonds et al., 1996), and the
results can be applied directly to the case of
tridymite.

Molecular dynamics simulations

Model rigid-ion interatomic potentials

The � nal approach in our study of tridymite is to
use molecular dynamics simulations to consider
in more detail the nature of the high-temperature
phase, following a similar application in the study
of b-cristobalite (Swainson and Dove, 1995). The
development of these calculations in this study of
tridymite proved particularly illuminating. We
investigated a number of model ‘rigid ion’
interatomic potentials, which are listed and
labelled in Table 2. Some of these models were
derived empirically, some from quantum

FIG. 11. Instantaneous snapshot of the SiO4 tetrahedra in a single (001) layer of HP-tridymite obtained from the RMC
simulations. The important point to note is that there is considerable orientational disorder of the tetrahedra without

the formation of small ordered patches.

TABLE 2. Source of the model interatomic potentials, which are de� ned with reference to their source.

Model Source Notes

DK84 Dempsey and Kawamura (1984) Empirical model
KFBS91a Kramer et al. (1991) Fitted to quantum mechanical energies + empirical adjustment
KFBS91b Kramer et al. (1991) Fitted to quantum mechanical energies
LG87a Lasaga and Gibbs (1987) Fitted to quantum mechanical energies
LG87b Lasaga and Gibbs (1987) Fitted to quantum mechanical energies + empirical adjustment
SA91 Scamehorn and Angell (1991) Empirical model
TTAM88 Tsuneyuki et al. (1988) Fitted to quantum mechanical energies
TTAM89 Tsuneyuki et al. (1989) Fitted to quantum mechanical energies

Shell Sanders et al. (1984) Empirical model
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mechanics calculations, and some from quantum
mechanics calculations with empirical correc-
tions. Our � rst tests were based on static lattice
energy and lattice dynamics calculations, using
the program GULP (Gale, 1997). We took the
view that a good model for tridymite should be
able to reproduce at least some aspects of the
higher-temperature phase transitions. The � rst test
is that the static lattice energy computed for the
OC phase should be lower than for the LHP
phase, which in turn should be lower than that

computed for the HP phase. Together with this we
addressed the issue of whether the models gave
appropriate behaviour in harmonic lattice
dynamics calculations on the HP and LHP
phases. Speci� cally, a good model should
predict the correct soft modes for the displacive
phase transitions, which in a harmonic lattice
dynamics calculation will give rise to modes of
negative squared frequency (i.e. imaginary
frequency) at the appropriate phonon wave
vectors. For the phase transitions from both the

TABLE 3. The results of static lattice simulations of HP tridymite using eight different rigid ion potential
models and the shell model potential. The lattice energy, cell volume and a and c lattice parameters are
given in each case. Some of the simulated structures had optic phonon modes with imaginary frequencies at
the G-point. For those structures which did not, the frequencies of the lowest optic phonon modes are given
in italics instead. The phonon calculations were performed at a wave vector slightly away from k = 0 in
order to ensure the correct TO/LO splitting of the optic phonon branches.

Model E (eV) V (AÊ ­ 3) a (AÊ ) c (AÊ ) oG (THz)

DK84 ­ 565.93 190.335 5.124 8.370 2.62, 2.62
KFBS91a ­ 232.55 202.931 5.236 8.546 1.20i, 1.20i,

0.72i, 0.46i
KFBS91b ­ 162.58 217.392 5.358 8.744 0.01i, 0.01i
LG87a ­ 514.24 206.115 5.262 8.596 2.48, 2.48
LG87b ­ 31.91 202.384 5.231 8.542 0.58, 0.58
SA91 ­ 513.55 222.555 5.399 8.816 2.18, 2.18
TTAM88 ­ 214.16 216.880 5.354 8.736 0.98i, 0.98i
TTAM89 ­ 216.70 208.642 5.285 8.625 0.99i, 0.99i

Shell ­ 514.52 195.285 5.169 8.439 3.46i, 3.41i,
3.18i, 3.18i,
1.68i, 1.68i

TABLE 4. The results of static lattice simulations of LHP tridymite using the four rigid-ion potential models
which showed zone centre soft mode instabilities in the HP phase, and the shell model potential. The lattice
energy, cell volume and a and c lattice parameters are given in each case along with the x coordinate of one
of the two symmetrically independent oxygen atoms. This coordinate is constrained to be 0.5 in the HP
phase by symmetry, but is free to vary in the LHP phase. The phonon frequencies of zone centre soft optic
modes are given with the exception of the KFBS91b model which had none and so the frequencies of the
lowest optic phonon modes are given in italics instead.

Model E (eV) V (AÊ ­ 3) a (AÊ ) c (AÊ ) x(O) og (THz)

KFBS91a ­ 232.55 200.426 5.202 8.553 0.468 1.19i, 1.19i
KFBS91b ­ 162.58 217.400 5.358 8.744 0.500 0.11, 0.11
TTAM88 ­ 214.16 216.883 5.354 8.736 0.500 0.98i, 0.98i
TTAM89 ­ 216.70 208.644 5.285 8.625 0.500 0.99i, 0.99i

Shell ­ 514.76 182.316 4.982 8.483 0.409 0.62i, 0.62i
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HP and LHP phases, the soft modes should occur
at zero wave vector (k = 0), and ideally would
correspond to those predicted by the RUM model
(two single soft modes, and two sets of double-
degenerate soft modes). By analogy with
harmonic lattice dynamics calculations for b-
cristobalite (Dove et al., 1993), we might expect
the harmonic lattice dynamics calculations to give
negative squared frequencies for all or many of
the RUM wave vectors in addition to the wave
vector speci� cally associated with the observed
phase transition. The results for these tests are
given in Tables 3 ­ 5.

It can be seen from the results that these simple
lattice energy and harmonic lattice dynamics
calculations tests left us with only three models
that gave the possib i l it ies fo r k = 0
HP?LHP?OC displacive phase transitions,
namely one of the models of Kramer et al.
(1991) and the two models of Tsuneyuki et al.
(1988, 1989). Although the tests have indicated
that the experimental sequence of displacive
phase transitions is possible with each of these
remaining models, the harmonic lattice dynamics
calculations also gave potential soft modes at
additional wave vectors, in line with the
comments given earlier. Because of this, the
simple tests cannot predict whether the experi-
mental sequence of displacive phase transitions
will be preferred over alternative sequences of
phase transitions in any model. Thus we used
molecular dynamics simulation methods to
determine the most favourable sequence of
phase transitions on cooling from the HP phase
in each of the remaining models.

The molecular dynamics simulation calcula-
tions were performed using the parallel code

DLPOLY (Smith and Forester, 1996). In all cases
our simulation samples contained 2592 ions with
periodic boundary conditions. The simulations
were performed with the NPT ensemble to allow
for relaxation of strain at each temperature.
Simulations were performed by either cooling
from the HP phase, or heating from an initial OC
structure.

The molecular dynamics simulations on the
three remaining models showed that they all
predicted phase transition sequences different
from the experimental HP?LHP?OC sequence,
and the new phases were those associated with
soft modes with non-zero wave vectors. For
example, the TAM88 model gave rise to a

TABLE 5. The results of static lattice simulations of OC tridymite using the four rigid ion potential models
which showed zone centre soft mode instabilities in the HP phase, and the shell model potential. The lattice
energy, primitive cell volume and a, b and c lattice parameters are given in each case. Also included for
each model is the ratio of the primitive cell volumes of the OC and HP phases as a percentage.

Model E (eV) V (AÊ ­ 3) a (AÊ ) b (AÊ ) c (AÊ ) VOC/VHP (%)

KFBS91a ­ 232.77 175.376 8.972 4.897 7.983 86.4
KFBS91b ­ 162.58 217.043 9.283 5.353 8.735 99.8
TTAM88 ­ 214.33 189.555 9.261 5.034 8.132 87.4
TTAM89 ­ 216.84 185.424 9.153 5.008 8.090 88.9

Shell ­ 514.68 181.629 8.964 4.974 8.148 93.0

FIG. 12. Instantaneous layer of SiO4 tetrahedra taken
from the structure obtained by molecular dynamics
simulation using the TAS88 model at low temperatures.
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sheared structure on cooling from the HP phase,
as shown in Fig. 12.

We were forced to conclude that none of the
rigid-ion models we tested were able to reproduce
the sequence of phase transitions on cooling from
the HP phase. Now we know that in all empirical
(and indeed quantum mechanical) models the
forces between atoms are inadequate in speci� c
respects, and that to simulate displacive phase
transitions is a particularly challenging require-

ment of any model, but we also know from
general experience of model interatomic forces
that we could have expected more success with at
least one of the models. For this reason, we
believe that the failure of all rigid ion models to
reproduce the sequence of displacive phase
transitions in tridymite has its own message
about tridymite over and above the trivial
message that it is hard to simulate displacive
phase transitions. For example, the model of

FIG. 13. Instantaneous layers of SiO4 tetrahedra taken from the structures obtained by molecular dynamics simulation
using the shell model potentials at various temperatures in both heating and cooling runs.
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Tsuneyuki et al. (1988) has been successfully
used to simulate the displacive phase transitions
in both quartz (Tsuneyuki et al., 1990) and
cristobalite (Swainson and Dove, 1995). We
believe that the dif� culties in simulating the
sequence of phase transitions in tridymite are
consistent with the conclusions drawn earlier in
this paper, namely that there are many possible
phase transition sequences allowed by the wide
range of RUMs to act as potential soft modes, and
that the small changes in volume through any of
the phase transitions implies that the differences
in energy between different phases are small.

Molecular dynamics simulations with shell-model
potentials

Although none of the rigid-ion models were
suf� ciently accurate to use in the molecular
dynamics simulations, we did achieve more
success with the shell model of Sanders et al.
(1984). This gave satisfactory results in the static
lattice energy and harmonic lattice dynamics
calculations (giving two single soft modes and
two sets of double-degenerate soft modes), and
the molecular dynamics simulations gave a k = 0
displacive phase transition on cooling from the
HP phase. The sequence of phase transitions in
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FIG. 14. Si ­ O ­ Si bond orientational distribution function f(y) for HP-tridymite obtained from the molecular
dynamics simulations using the shell model potential, to be compared with the experimental function given in

Fig. 10.

M.T DOVE ETAL.

280



the molecular dynamics simulations did not match
the experimental sequence beyond this point, but
at least the model appears to capture some aspects
of the real behaviour. Because of this we felt that
the model would be appropriate for the investiga-
tion of the properties of the high-temperature
phase, which could give information that comple-
ments the RMC analysis.

Figure 13 shows some con� gurations of the
molecular dynamics simulations at a few
temperatures. The high-temperature con� gura-
tions bear a strong resemblance to those generated
by the RMC method (Fig. 11). We include also
the low-temperature structures to show how the
system orders, and note that the structure obtained
on cooling is not the same as the starting structure
in the heating runs. The distributions of the angles
of the Si ­ O ­ Si bonds from these con� gurations
are shown in Fig. 14. Here we have separated the
bonds lying close to the [001] axis (apical) from
those lying in the 6-membered rings in the a ­ b
plane (planar). The distribution of bond angles is
similar to that found in the RMC analysis and
given in Fig. 10 (although the latter have been
averaged over both types of bond angles).

The molecular dynamics simulations are able to
provide direct information about the dynamic
behaviour of the atoms. In Fig. 15 we show the
time-dependence of the apical Si ­ O ­ Si angles
for a single bond lying along [001], together with
the corresponding torsional angle as de� ned in
Fig. 10, The results show that at high tempera-
tures there are large tetrahedral reorientations
over time scales of <1 ps. This highlights the fact
that the structural disorder associated with
attempts to distort the Si ­ O ­ Si bonds is
dynamic rather than static. This result is very
similar to that found in the simulation study of b-
cristobalite (Swainson and Dove, 1995), and
further illustrates the similarities of the structural
disorder in the high-temperature phases of these
two polymorphs of silica.

Discussion

The main thrust of this work has been twofold:
� rst, to facilitate an understanding of the
sequences of displacive phase transitions in
tridymite, and second to give an understanding
of the nature of the high-temperature phase. The

FIG. 15. Time-dependence of the apical bond orientational angles y and f as de� ned in Fig. 10 for pairs of SiO4

tetrahedra.
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results of the RUM model clearly show that the
complex sequences of phase transitions can be
fully accounted for by the existence of RUMs, and
the facts that the individual phase transitions do
not remove too many RUMs nor give a drastic
change to the volume, allow several successive
phase transitions to occur. This contrasts with the
case in many other framework silicates, where
phase transitions involve large changes in volume
and big reductions in the number of RUMs, and
correspondingly have fewer phase transitions on
further cooling.

The experimental diffraction data analysed by
the constrained RMC re� nement method and the
MDS results paint a picture of a truly disordered
high-temperature phase. There is a wide distribu-
tion of orientations of the SiO4 tetrahedra,
allowing the bending of the Si ­ O ­ Si bonds
which appear to be linear in the idealized average
structure. This distribution of orientations is
facilitated by the large number of RUMs, which
can combine dynamically across all RUM wave
vectors to create considerable disorder on a short
length scale. This is very similar to the situation in
b-cristobalite, as shown by the same combination
of experimental and computational methods.
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