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The need for a formal definition of a reorientation event in molecular
dynamics simulations is recognised, and this is furnished through the quat-
ernion formalism. Any rotation can be represented by a unit four-
dimensional vector, and the general vector representing a molecule’s
orientation must be compared with those which represent symmetry oper-
ations. The vector dot-product is used to decide whether a given orientation
is closer to the undisplaced or to the symmetry rotated orientation. When the
latter occurs a reorientation event is recorded and the inverse symmetry
operation is invoked.

Random reorientation rates are measured by a random walk procedure,
and give a basis for an objective analysis of simulation results. The reorien-
tation conditions are then extended by the introduction of adjustable par-
ameters in order to change the random probabilities, resulting (for instance)
in the ability to identify 2-fold tetrahedral events whereas the procedure first
outlined cannot recognise these events.

All the relevant crystallographic rotation groups are considered, octa-
hedral, tetrahedral, hexagonal, trigonal, tetragonal. For each of these the
modified conditions are investigated.

1. INTRODUCTION

In the condensed state of molecular matter the thermal motion is mainly in
the form of small displacements and rotations from mean positions. However,
occasionally reorientational motion takes place and rotational diffusion is said to
occur. This phenomenon can occur in a solid with no stacking defects which
would otherwise facilitate translational diffusion. Usually reorientations are iso-
lated events, but in some materials they can become very frequent especially
above a transition temperature, whereupon the material is said to be in the plastic
crystalline phase. Gaining an understanding of the reorientational characteristics
of the molecules in this phase is an important aim of molecular dynamics simula-
tions of these systems. The reorientational motion is not usually simply about one
axis of the molecule, and it becomes important to be able to distinguish between
reorientations about different axes. The quaternion formulation for molecular
orientation is now generally accepted for molecular dynamics simulations [1] as it
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does not have the pathological behaviour of the Euler angle formulation, and so
quaternions are used throughout this paper.

A molecular may reorient between (a) molecular symmetry related positions,
(b) positions related by crystal symmetry but not molecular symmetry or (c)
positions bearing no relationship with one another. For case (a2) the molecular
symmetry is often the crystal site symmetry, but is not always so; the site sym-
metry is either the same as that of the molecule or is a subgroup. For case (b) the
symmetry of the molecule may contain a subgroup of the site symmetry, but this
can only come about by the generation of crystal symmetry by existence of orien-
tational disorder. In what follows we treat only the molecular symmetry reorien-
tations, as this treatment contains all that is necessary for (). No general analysis
can be given for (¢) as these cases require tests determined by the crystal structure
of the particular system concerned.

The particular example which prompts this work is the body-centred cubic
SF system comprising octahedral molecules. Early work on this system [2] used
a simple test for reorientation about the {100) axes only. In this paper we use the
crystallographic notation for { > brackets, so that (100> means ‘all rotations
related to (100) by symmetry’. Subsequent work [3] suggested that {111) rota-
tions are of some importance, and this raises two questions:

(i) What is the definition of a reorientation ?
(ii)) What is the probability of each possible reorientation if the rotational
diffusion is entirely random?

In what follows we suggest an answer to (i) based on the quaternion formulation
[1, 4] and a method for determining (ii), and give a number of results for various
relevant symmetry groups.

To highlight the importance of the answers to (ii) the reader is challenged to
make a judgement if presented with the following data. In a plastic crystalline
system of octahedral SF¢ molecules 75 per cent of recorded reorientations were
n/2 about {100) whereas 25 per cent were 27/3 about (111). Is this random
behaviour, or is one of the reorientation processes dominant ?

2. REORIENTATIONS USING QUATERNIONS

The general displacement of a molecule is, by Chasle’s theorem, a translation
of the centre of gravity of that molecule plus a rotation about an axis through an
angle. The quaternion formulation contains the information about both the axis
of rotation and the angle of rotation, thus allowing a molecule expressed in any
coordinate system to be oriented in a molecular dynamics sample. In what follows
it is assumed that all molecules are represented through a mean quaternion, and
that we are dealing with relative reorientations away from this mean. Thus at
some stage we need the unit quaternion, 1, representing no reorientation away
from the mean.

The procedure to be adopted can be described as follows. At any one moment
a molecule may be rotated away from the mean orientation through an angle a;
about some axis. However, because of symmetry the molecule could equally well
be described as rotated about a different axis through a;, and there will be a value
of o for each possible molecular symmetry operation. In the course of a molecular
dynamics calculation all the values of a will change smoothly so that, although we
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choose to describe the molecular orientation through the smallest angle, «;, in a
reorientation event one of the values of «; becomes the smallest. This then defines
the event, and the present paper is concerned with determining the relative values
of o which can be done most conveniently through the quaternion dot product.

The quaternion equations from Du Val [4] which are pertinent to this work
are given in [2], where it is shown that if the orientational displacement of the
molecule is represented by the quaternion

q4=1{(q0; 91> 92 93) (1)

and that this rotation approaches a molecular symmetry operatioh S, then q can
be replaced by a new quaternion

q=qxS7!, (2)

and a reorientational event recorded. The asterisk here denotes quaternion
multiplication—it is not a standard symbol but does add clarity in this paper.
Postmultiplication by the inverse is required as the quaternion is used to get the
molecule into the displaced orientation by acting on an undisplaced (mean) mole-
cule, and any molecular symmetry operation on the undisplaced molecule will not
alter the disposition of the final molecule.

In [2] it is shown that a quaternion approaching a positive 7/2 reorientation
about (001) can be replaced by

1 1

For clarity the coefficient for the real axis is separated from the three coefficients
for the ‘imaginary prime’ [4] by a semi-colon, though it should be remembered
that the four coefficients all behave alike in that they form a unit vector in a
four-dimensional Euclidean space. In this representation the unit quaternion

1=(1:;0,0,0) (4)

corresponds to the undisplaced mean molecule, and we now ask whether q or q' of
equation (3) is closer to 1, and then if q' is the closer it is taken as the new
quaternion and a reorientation is recorded. Performing the quaternion multiplica-
tion we get

p <93+90'Q1—‘12 g2+ qy 43“‘10> (5)

V2 2 2 2
The test that can be applied is the comparison of the (four-dimensional) dot-
product of q and the unit quaternion 1 with a dot-product of @’ also with the unit

quaternion 1. These are respectively ¢, and {(g; +q0)/\/2. Reorientation is
recorded if

g3 + 4o
72
As there are six possible four-fold reorientations which we will denote as m/2
{100), the condition (6) is generalised with g5 replaced by the largest magnitude
of g1, q; or g3 32y |qmasl >

>qo (i.e. g3 > 0-414q,). (6)

I qmax[ > 0414q0 . (7)
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In condition (7) and the other conditions later it is assumed that g, is always
positive. This choice can always be made; the quaternion representation of orien-
tations is double valued in such a way that q and —q = (—¢qo; —¢1, —¢2, —¢3)
give the same orientation.

There are two other classes of symmetry operation that must be considered for
an octahedral molecule, the 2n/3 (111> and the m {110). If the quaternion
approaches 27/3 (111), then

, 1 1 11
—quxl2 -2 _2 _1%
q q 2, 2’ 2, 2
=(‘I1+QZ+Q3+QO,Q1—‘22"“13—‘10
2 ’ 2 ’

(8)

9+ 49 —g3—qo —q1+qz+q3—qo>
2 ’ 2

giving reorientation if

a + g+ g5+
1 qZZQS q0>q0‘ (9)

It is possible for such a condition to be reached before (7) and therefore for
such a reorientation to be recorded. This can be seen by taking the most favour-
able set of quaternion coefficients q; = g, = g3 which makes the condition

3¢5 +
d3 90>

> qo (i.e. g3 > 0-333¢qy), (10)

which is then compared with (7).
Generalisation of (9) to include all the eight possible 27/3 {111 reorientations
is easily found to be

| + + +
| g, |(12|2 lq;| ‘10>q0 (11)

Consider now the search for a reorientation about the diad axis of the octahedron
along (110). This symmetry operation is

1 1
Sd=<0;ﬁ’ﬁ’0> (12)

for which the new quaternion value q’ is

_ + —qy —q3— —
q,:q*sd1:<ql 92 93—9 —0=9 % q1>. (13)

NV NN N

The reorientation condition is now

41 + 42
—_— > .
\/2 9o

It can now be shown that such a reorientation of the octahedron will never be
counted because a m/2 {100} reorientation will be recorded before (14) can
happen. The most favourable coefficients for the diad operation on q have

(14)

g1 = ¢q, giving ¢q; > 0:707¢,. (15)
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Clearly condition (7) must occur before (15) is reached and thus there is no
possible classification for a m {110) reorientation. This result is confirmed by the
results of the next section.

3. RANDOM REORIENTATION PROBABILITIES

Consider an octahedral molecule starting in an undisplaced orientation under-
going a succession of small random orientational changes such that when condi-
tions (7) or (11) are met the appropriate quaternion change is applied and a
reorientation is counted. For true random motion there will be a fixed ratio
between the frequencies of the two possible reorientation classes. This ratio must
be known before the systematics of the motion in any system can be properly
analysed.

A quaternion is represented by a point on the unit four-dimensional hyper-
sphere. A certain volume on the hypersphere corresponds to reorientations closest
to the unit quaternion (no reorientation), and there are surfaces separating this
volume and those volumes associated with reorientations which are closest to the
various point-group symmetry operations. A small reorientation change is rep-
resented by an arc of proportional length on the hypersphere, and this proportion
1s constant over the whole hypersphere. Therefore the reorientational frequencies
we need are proportional to the surface areas on the hypersphere which separate
the volumes just mentioned. The hypersphere divisions are shown schematically
in figure 1. The problem must have an analytic solution through the use of
four-dimensional spherical trigonometry but we use a simpler method here.

Instead of developing the analytic result it is sufficient for our purposes to
solve the problem by a random walk procedure. Such a possibility is evident from
the paragraph above. Starting at an undisplaced orientation, small orientation
changes are made at random using a pseudo-random number generator to choose
the step, and the frequency of reorientations is found by running the calculation
for a sufficient time and performing the reorientation checks outlined in the
previous section. As the quaternion checks required for the random walk are
exactly as needed in the MD work on a simulated system the random walk
method is the natural way of determining the random rate frequencies and gives
rise to tested computer software for the MD work. Tests of the software include

[ ]
2{100)

21011

Figure 1. Schematic representation of the 3-d ‘surface’ of the 4-d unit hypersphere
divided by octahedral symmetry. The point 1 corresponds to no rotation, and the
three other points depicted represent four-fold rotations about (100) and (010) and a
three-fold rotation about (111). The lines depict areas separating the volumes of the
hypersphere surface which are nearest to the rotation points according to the dot-
product rule.
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the requirement that the reorientation rate frequency about each of the eight
{111 axes should be the same, likewise for the six {100} reorientations. The
variations between the separate estimates of each rate can then be used to give
estimates of the accuracy of the MC determination of the rate frequencies. These
are the errors quoted with the results below, and serve to indicate the number of
independent events used in the calculation.

The calculations were all implemented on the ICL Distributed Array Pro-
cessor (DAP) in Edinburgh [5]. Each of the 4096 processing elements performs a
separate random walk calculation, and the computer runs at its maximum 25
Mflops capacity throughout. Accuracy of about 1 per cent is generally achieved in
about 20 s of running time.

In the analysis of the motion of octahedral molecules, condition (15) was
included and no such event was recorded. This was used as another software
consistency check. The resulting rates for 7/2 {100> and 27/3 {111} were found
to be 89:2 and 10-8 per cent (£0-1), and therefore the answer to the question
posed in the introduction is that the 25 per cent {111) reorientation is far more
frequent than expected for random motion—such a conclusion may not have been
anticipated!

4. OTHER SYMMETRIES

The symmetry groups of interest are the proper rotation point groups which
could include the icosahedral group, but this is left for the ambitious reader. Only
the crystallographic groups involving more than one class of symmetry operation
besides the identity are considered here.

(i) Octahedral group (e.g. SFg)

(i, a) condition (7)

(i, b) condition (11)

(i, ¢) condition (14) generalized.

Random rates (i, a) 89-2 per cent, (i, b) 10-8 per cent, (i, ¢) 0 per cent.
The rate for (i, @) is appropriate for the motion of a tetrahedral molecule between
two sites which, on average, are related by the crystal site symmetry. Rates (i, )
and (i, ¢) apply for the tetrahedral molecule as the symmetry operations are in the
tetrahedral subgroup.

(11) Tetrahedral group (e.g. CBr,)
(ii, a) 2#/3 {111 as for (i, b)
(1, ) 001> S ! =(0; 0,0, —1), (particular example)
q=q*8"=(g3; —92, ¢, —90)
Reorient if g3 > g, (g5 positive)
Again we find that for the most favourable q (i.e. ¢; = ¢, = 0) the reorientation
condition for (ii, a) becomes

lg3] + qo

2 >qo (e. g3l > q¢)

Thus (i1, @) will occur before (ii, b).
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(ii1) Hexagonal, 62 (e.g. benzene)

2 3 1
(iii, a) ?”(oo +1) st =<‘/7; 0,0, —)

2
lg3] + /340
2

Reorient if >q (e |g3] > Q2 —/3)q0)

2 2 1 3
(iii, b) *f(il 00 [&Tn (ii il/z— 0)] S™'=(0; ¥1,0,0)

Reorient if |g,| > ¢, [& similar conditions]
No conflict between (iii, a) and (iii, b).
Random rates (iii, a) 765 per cent, (iii, b) 23-5 per cent.

(iv) Trigonal, 32 (e.g. s-triazine)
(iv, a) 77[(0 0 +1) s7! =<—; 0, 0, i%)

2
3
l/—|(1—32I—Ji°‘>qo (i.e. 3lasl > q0)

Reorient if
(iv, b) Diads similar to example in (i1, 5).

No conflict between (iv, a) and (iv, b).

Random rates (iv, @) 51-2 per cent, (iv, b) 48-8 per cent

(v) Tetragonal, 42 (e.g. octasulphur)

2n .
(v, a) T(O 0 +1) As(i,a)

(v, b) Diads similar to example in (iii, b).
No conflict between (v, @) and (v, b).
Random rates (v, @) 65-2 per cent, (v, b) 34-8 per cent.

5. MORE GENERAL CONDITION

(1) Octahedral

The conditions for claiming a reorientation as presented so far appear to be
too strict in a number of cases. Take for instance the case where an octahedral
molecule 1s rotating steadily about (110). In the formulation above no (110)
reorientation can be recorded, but after a partial reorientation condition (7) will
be met in some form. The molecule is then deemed to have reoriented about (say)
(100), but the new quaternions immediately satisfy a (Tll) reorientation. After a
further rotation about this second axis the condition for a (111) rotation is met.
This succession of three rapid reorientations is equivalent to a single (110) reori-
entation, and it is therefore possible in principle to identify all possible (110>
reorientations from such event sequences. Such a procedure is very inconvenient,
and raises the very sort of question we are trying to avoid with the quaternion test
procedure, namely: when does one accept such a triple sequence of (100> and
{111) events as a single (110> event? A procedure must be sought which allows
{110) events (and events (ii, b)) to be identified in their own right, and although
such a procedure may require arbitrary parameters the important result to know
is what the random rate would be for the chosen parameter values.
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Figure 2. Variation of angle required for recording a (n/2) {(100) reorientation, o, as a
function of y. When y =1 the reorientation is recorded for a = 45°, this being
half-way to the 7/2 orientation.

Condition (7) is a comparison of q . 1 and q' . 1, requiring ' . 1 to be the
larger before implementing reorientation. We now suggest that

q.1>7q.1, (16)

where y (> 1). For the 7/2 {100) reorientation of the octahedron we get

a1 +q
172—°>qu

and for the ideal case (¢, = g3 = 0) we find that reorientation is accepted when the
rotation has reached the angle a as shown in figure 2. Thus we see that for y = \/ 2
the rotation must be the complete n/2 before acceptance, and so such a value of y
is probably rather too large for practical use. For any value below y = \/ 2 the 7/2
{100) reorientation is always recorded in preference to the = {110), and so there
1s no way in which the introduction of a single parameter y allows these latter
reorientations to be recorded and this simple expedient fails.

One advantage of using y for the octahedral case is that the rate ratios change
as shown in figure 3. In the example of the question posed to the reader the (27/3)

[o) -
% -

60
40

20
3-fold

O T 12 13 ¥
Figure 3. Variation of the rate ratio for four-fold and three-fold reorientations as a func-
tion of y, (y, =93 =7y4). Here we observe that the three-fold reorientation rate
increases from 10-8 per cent at y = 1, reaching 40 per cent at y ~ 1-32. The dashed
curve 1s for y, = y; = 1, 7, = 7, labelled in parentheses, showing a much more rapid
three-fold rate increase as a function of y, .
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3-fold

Figure 4. Schematic representation of the new hypersphere divisions (see figure 1) for
octahedral symmetry with y ~ 1-2. The random walk path shown is such that a (7/2)
(100) reorientation would be recorded if y = 1.

{111) reorientations were significantly greater than by chance, and the choice of y
(say y = 1-2) makes the recording of the genuine events more reliable, reducing
the number of artificial (n/2) {001) events. Figure 4 shows schematically the
effect of introducing 7 into the condition for octahedral reorientations. The
boundaries of figure 1 have been shifted away from the 1 position, thus changing
their relative volumes. A possible actual path on the hypersphere for a (27/3)
(111) reorientation is shown by the arrowed line. With the strict y = 1 condition a
(n/2) (100) reorientation would be first recorded, whereas with y increased the
excursion towards (7/2) (100) has no effect and only the (27/3) (111) is recorded.

It turns out to be possible to modify the condition (16) further and achieve a
situation where 7 {(110) events are recorded. For this the condition

qg.1>yq.1 (17)

where different values of y are introduced for the different symmetry operations.
The result shown in figure 3 has been obtained by increasing y,, y; and y, (the
two-fold, three-fold and four-fold symmetry parameters) equally. The dashed
curve on this figure shows the result where y, = y; =1 and only y, is varied.
Figure 5 shows the result for y, =1 and with y; = y, increasing, where 2-fold
reorientations eventually become detectable. From the reorientation conditions it
can be shown that no {110} event can occur until both y; and y, exceed (1 + \/2)/
2. Figure 2 shows that for y, this special value requires 70° rotation about the
four-fold axis before reorientation is accepted. Such large values of y; and y,
could be used in those cases where (110} reorientation is expected to be impor-

O/o h

60 4

40

20 3 2
IO 1 12 %38

Figure 5. Rate ratios for octahedral symmetry as a function of y3 =1v,, with y, = 1.
two-fold reorientations (denoted 2) begin to be possible when y; and y, exceed (1 + \/2)/2.
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O/O

60 3
40
20

o 112 ¥3

Figure 6. Rate ratios for tetrahedral symmetry as a function of y;, with y, = 1. two-fold
and three-fold reorientations (denoted 2 and 3) become nearly equally probable at y; = 1-2.

tant, whereas if it is only the {111} reorientations which need to be emphasized
then we could keep 7, = 7; = 1 and choose a value for y, from figure 3 (broken
line).

The use of y values greater than unity has one clear advantage. If a molecule
spends a period of time half-way between two symmetry sites it could cross the
y = 1 border many times without undergoing large displacements, and each cross-

O/o
60 6
(a) 40
20 2
O 102 104 %
O/O
. 60 3
® 4 O\
20 2
IO 02 104 %3
O/O
o 6° 4
40
20 2
0 102 104 %

Figure 7. Rate ratios for (a) hexagonal, (b) trigonal and (c¢) tetragonal symmetries as
functions of y¢, 73 and y, respectively, with y, = 1.
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ing should not be regarded as a reorientation. For this reason the current values
being used for the analysis of SF results is line (b) of the table which follows

Random rates for motion in an octahedral site for y, = 1.

Random rates (per cent)

Y3 Ya Three-fold Four-fold
(@ 102 106 435 565
®) 1-03 1-09 52:1 47-9
(c) 1-04 112 59-5 40-5

(ii) Tetragonal

The condition (ii, ) becomes immediately possible if (ii, a) is modified by any
v3 > 1. The rate probabilities are shown in figure 6 as a function of y;, with equal
probabilities occurring at y; = 1-195(5).

(1i—v) Uniaxial groups
Although there is no proper reorientation event which could not be recorded
with the conditions for the uniaxial #-fold groups, we present for completeness in
figure 7 the change in rate ratios as a function of y,. This choice accentuates the
recording of two-fold events, as these are the least likely events in actual systems
of molecules of these symmetries.

6. CONCLUSIONS

A formal method has been presented for analysing molecular dynamics calcu-
lations for molecular reorientations. Without a formal procedure conclusions con-
cerning the most probable reorientation are subjective and could lead to a wrong
interpretation of computer simulations. The need for this formalism arose from
the analysis of the plastic hase simulation of SFy, where many cases were
observed in which multiple reorientation events seemed to occur with an
unphysical rapidity. Much of this work, which follows on from that of Dove and
Pawley [3], is being repeated using the conditions outlined herein.
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