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Collective excitations in the orientationally disordered phase of SF¢ have
been studied by inelastic neutron scattering and molecular dynamics simula-
tion techniques. Experimental measurements to observe acoustic modes were
made along the high symmetry directions at temperatures of 100K and
200 K. The excitations observed showed little evidence of discrete peaks but
were all broad and overdamped. They showed little temperature dependence.
The dynamical structure factors S(Q, @) calculated from the simulation are
in qualitative agreement with the observed spectra but quantitatively show
discrepancies. For smaller wave vectors than those studied experimentally
the calculations show the existence of well-defined, long wavelength acoustic
phonons. The wave vector at which the transition occurs between propagat-
ing and overdamped excitations was found to be temperature dependent. The
results are interpreted in terms of the concept of orientational frustration.
Some difficulties in the application of molecular dynamical simulation to the
calculation of dynamical correlation functions are discussed in an Appendix.

1. INTRODUCTION

The phenomenon of orientational disorder (OD) in crystals has been known
for many years, but it is only during the last decade that the microscopic nature of
this disorder has been understood in any detail. An extensive review of the
properties of OD solids has been given [1]. The advances in understanding have
occurred partially as a result of the application of more powerful experimental
techniques to the problem; for example, neutron scattering methods have proved
particularly appropriate in the analysis of OD solids. But, in addition, experimen-
tal data can now be augmented by increasingly sophisticated computer simulation
techniques, and because of increased computer capacity, molecular dynamics
simulation (MDS) calculations can now provide realistic results for large systems
of molecules with long-range order. However, most of the advances to date have
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been in understanding the ‘static’, time-averaged structure in simple OD solids;
experimental measurements of the dynamical excitations in such crystals are few
and their interpretation poorly understood.

The orientationally disordered phase of sulphur hexafluoride (SFg) exists
from its melting point at 223 K down to 96 K—a very wide temperature range.
The structure of SFg at 100 K was investigated by Dolling er al. [2] using
neutron powder diffraction methods, and they showed that the molecular centres
of mass formed an ordered b.c.c. lattice. The S-F bonds were found to be prefer-
entially aligned along the cubic axes, but the bond orientational distribution
function had significant values as much as 20° away from these axes. The molecu-
lar site symmetry (O,) was found to be the same as the molecular symmetry
(unusual for an OD solid) and so molecular reorientations occur only between
symmetrically equivalent orientations. Later measurements at 200 K showed the
same qualitative features [3] but suggested a greater tendency for ‘free’ molecu-
lar rotation. Significant diffuse scattering was observed at 200 K and particular
structure in this scattering was interpreted as evidence for orientational correla-
tions.

These experimental results have been augmented by MDS calculations using
a simple model for the interaction potentials in SF4 [4, 5]. The calculations
confirmed the nature of the S—F bond distribution function and showed that
there are no orientational sites for the molecules other than those allowed by the
0, molecular symmetry. While the molecules were found to undergo rotational
diffusion there did not appear to be any well-defined collective librational excita-
tions. The molecules were shown to librate principally around the symmetry axes
and to reorient frequently about one of these axes [5]. Calculations were made to
study the correlations between the orientations of next-nearest neighbours in the
lattice. It was demonstrated that the closest S—-F bonds of these two molecules
repel each other, and only rarely will two next-nearest neighbour molecules be
orientationally ordered simultaneously [5]. This behaviour could be understood
from a consideration of the interaction potential, and led to the development of
the ‘orientational frustration’ model which is discussed in §4. It was shown that
this orientational frustration is the origin of the orientational disorder in SFg.

The orientational disorder in SF is different in character from that found in
other examples of OD solids. In many such crystals the molecules lie on sites
which have a higher point group symmetry than the molecular symmetry itself.
The disorder then arises because the molecules can dynamically reorient between
two non-equivalent orientations. Examples of such crystals are the ammonium
halides [6] and adamantane [7]. If the crystal has more than two non-equivalent
orientations then the orientational disorder is more random in character. Exam-
ples are the alkali cyanides [8] and halogen-substituted methanes [2, 9]. If, in
addition, the anisotropic orientational interactions are weak, the disorder closely
approximates free molecular rotation. Examples are H, [10], CD, [11] and §-N,
[121.

Inelastic neutron scattering measurements have been used to study the collec-
tive excitations in several of the crystals discussed above. The general features
observed are that librational modes are overdamped so that there are no well-
defined optic modes. Acoustic modes can usually be resolved for small wave
vectors but also become overdamped away from the Brillouin zone centre. Several
models have been proposed to interpret the collective excitations in OD crystals.
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The most widely used is that of Michel and Naudts [13] who assumed rotational
displacements of diffusive character and included terms in their hamiltonian to
describe translational-rotational coupling. This model was developed to interpret
the experimental temperature dependence of the elastic constants and also the
inelastic neutron scattering data for KCN [13], and has also successfully
explained neutron scattering results for both CBr, [9] and -N, [12]. The model
makes use of a mean-field approximation and so no explicit account is taken of
direct orientational interactions arising from steric hindrance, and the model is
therefore of limited use for SF¢. An alternative model which specifically included
steric effects was developed by Coulon and Descamps [14]. It was used to inter-
pret the diffuse scattering observed in the OD phase of CBr [15] but is a purely
static model. Damien et al. [7] have interpreted the librational modes in adaman-
tane in terms of a model which averaged over the different orientational configu-
rations of a molecule in the cage of its near neighbours. This model thus included
steric effects to some extent. The difficulties encountered in developing analytical
models to describe the structures, phase transitions and collective excitations in
OD crystals has led to the application of molecular dynamics simulations in an
effort to understand these systems, and the MDS technique has been used to
study the OD phases of f-N, [16], CH, [17], CCl,[18] and NaCN [19].

In the present paper we present the results of a study of the collective excita-
tions in the OD phase of SFg. Inelastic neutron scattering measurements of the
excitations propagating along the major symmetry directions are compared
directly with corresponding M DS calculations. As far as we are aware the present
study is the first such detailed comparison of MDS calculations and experiment
in an OD solid. The observed lineshapes are broad and generally featureless and,
qualitatively at least, well described by the calculations. Several technical diffi-
culties in calculating the relevant time correlation functions are discussed in
detail. The study has highlighted several questions concerning the nature of col-
lective excitations in orientationally frustrated OD solids.

2. INELASTIC NEUTRON SCATTERING EXPERIMENTS

The single crystal of SF¢ was grown by condensing the gas into a quartz glass
chamber and slowly cooling the liquid. The majority of measurements were made
with the crystal at 200 K but some data were obtained at 100 K in order to
investigate the temperature dependence of specific modes. The crystal volume
was ~8 cm? and its mosaic spread was x0-8°. The crystal was oriented with
[110] vertical so that the three high symmetry directions were accessible in the
experimental scattering plane.

The inelastic neutron scattering measurements were made on the L.3 and C5
triple-axis spectrometers at the NRU reactor, Chalk River. The majority of mea-
surements were made with Ge (113) and graphite (0002) as the monochromator
and analyser respectively, and collimations before and after the specimen were
0-59° and 0-72° respectively. A fixed analysing frequency of 3-5 THz was used for
most of the measurements, and the spectrometer resolution in this configuration
was 0-21 THz. Several scans were made with higher resolution (0-15'THz) and
although there is some evidence for rather more structure at this resolution, the
essential features of the observed lineshapes are unchanged. Since previous
neutron scattering measurements on OD solids have indicated that collective
librational excitations do not exist, and since the recent MDS calculations on SFg
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Figure 1. Experimental scattered neutron distributions from SF4at 200K. The filled
circles show the raw data and the solid line shows the background from the empty
container. The components of the scattering vector @ shown for each distribution
are in units of 27/a, where a is the lattice parameter.

[4, 5] have indicated this to be also the case here, the present measurements
concentrated on the predominantly translational excitations. Observations were
thus made along all three symmetry directions in both ‘longitudinal’ and
‘transverse’ configurations in zones in which it was expected that translational
phonons would be observed. Some typical scattered neutron distributions at
200 K are shown in figure 1. All four distributions show an intense generally
featureless scattering at low frequencies. There is some evidence of discrete struc-
ture in the distributions, but all are much broader than the experimental
resolution, which is defined by the elastic peak in the background scattering.
There were only minimal changes in the form of the neutron distributions at
different neutron momentum transfers and the data shown in figure 1 are typical
of the complete set of measurements. The measurements at 100 K did not differ
in any essential way from those at 200 K.

The present data on SF¢ are in contrast to similar measurements on other OD
solids. The acoustic modes in CD, [11] are generally well-defined, while in
adamantane only the librational modes showed significant broadening [7]. In
CBr, [9] the acoustic modes were also well-defined, although their intensity
decreased rapidly with increasing wave vector. For p-N, [12] the translational
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phonons are well defined at small wave vector, although they were observed on a
large background which was interpreted as an overdamped librational mode. At
larger wave vectors these translational phonons broaden and weaken. The mea-
surements suggest a significant temperature dependence in the intensity from the
overdamped librational mode, in contrast to the present data for SFy.

3. MOLECULAR DYNAMICS SIMULATION

3.1. “Experimental’ details

The technique of molecular dynamics simulation is well suited to the study of
the dynamical properties of condensed matter, and its application to a wide range
of studies of simple molecular crystals has recently been reviewed [20]. In the
present application of MDS to SF¢ the crystal is represented by the model devel-
oped in previous calculations [4, 5, 21], with the intermolecular potential between
two SF4 molecules represented by a pair-wise Lennard-Jones interaction acting
between the fluorine atoms. Only interactions between nearest and next-nearest
neighbour molecules in the b.c.c. lattice were explicitly included, so the model is
as simple as possible, while retaining enough essential features for the overall
behaviour of the model to resemble closely that of the real SFy crystal. The
calculations were performed on the ICL Distributed Array Processor (DAP) at
the University of Edinburgh. The DAP is a parallel processor which has a
64 x 64 two-dimensional array of connected processing elements with hard-wired
periodic boundary facilities. In order to exploit this feature it is necessary to map
the real 3-D lattice onto the 2-D hardware grid of the DAP and this necessitates
the use of a parallelopiped shape for the MDS sample [22]. The finite sample size
means that it is not possible to make calculations at arbitrarily selected wave
vectors, while the sample shape does not allow the calculations to be made along
symmetry directions. However, since the simulation sample contains 4096 mol-
ecules, the density of accessible points in wave vector space is so large that it is
always possible to find an accessible wave vector close to any specified wave
vector. The sample axes used in the present simulation and the 64 wave vectors at
which calculations were made are given in Appendix A. The simulations model-
led ensembles with constant energy and volume. The equations of motion were
solved by the Beeman [23] algorithm using discrete time steps of 0-005ps, and
the simulation calculations were carried out for 16000 time steps. This large
number was chosen by consideration of the accuracy of the calculated scattering
function. The components of the density operator b(Q, t) (see below) were calcu-
lated and stored every ten time steps; these calculations were carried out during
the running of the simulation rather than using the procedure of storing configu-
rations and performing the calculations as a later, second operation [4]. Simula-
tions were made at temperatures of 115K and 200K and at densities
corresponding to zero pressure. The calculated lattice parameters were 5-7604 A
and 5-8589 A respectively. The corresponding experimental values are 5-78
4+ 0-01 A [2] and 5-913 £+ 0-001 A [3]). The small differences between the
observed and calculated lattice parameters suggest that the model potential is
slightly softer than the true potential in SFg [4], but it has been shown that,
nevertheless, the model is a good representation of real SFg.



870 M. T. Dove et al.

3.2. Calculation of correlation functions

The theoretical formalism appropriate to neutron scattering experiments has
been given by Dolling et al. [2] and the essential expressions are summarized here
for convenience. The time dependent density operator &(Q, t) is the Fourier
transform of the instantaneous scattering length density of the crystal

bQ, ) =Y, by, exp [IQ . 1, (0], (1)
ju

where #Q is the neutron momentum transfer for scattering vector Q, b;, the
coherent neutron scattering length of atom g in molecule 7, and r;,(¢) the instanta-
neous position vector of atom ju defined as

(1) = R+ uye) + x;,(1)

where R; is the time averaged position vector of the centre of mass of molecule j,
u,(2) the instantaneous displacement of the centre of mass of molecule 7, and x;,(t)
the instantaneous position vector of atom g relative to the centre of mass of
molecule j. The intermediate scattering function F(Q, ¢) is the time autocorrela-
tion function of the density operator

F(Q, 1) = <b(Q, 0)67(Q, 1)) (2)

where { ) represent a thermodynamic average. In an MDS calculation the ther-
modynamic average is replaced by a time average over the sample configurations:

1 [T

FQ, 1) = hmt?J‘ HQ, 067 (Q, t + 1)dr. (3)
t~> 0 0

The dynamical structure factor, S(Q, ®), which is the quantity measured in a

neutron scattering experiment, is the time Fourier transform of the intermediate

scattering function

S(Q, w) = —21; jF(Q, t) exp (—iwt) dt, 4)

where Ao is the neutron energy transfer. The structure of the SFg molecule is
such that if the neutron scattering length of the fluorine atoms is set to zero so
that only scattering from the sulphur atom is included, then the motion of the
molecular centre of mass alone is probed. Consequently we can define a centre of
mass density operator b,,(Q, ?) by

bem(Q, 8) = ). by exp [iQ . (R; + u(1))] (3

and corresponding centre of mass functions F,(Q, #) and S_.(Q, w) can be cal-
culated. In this way the centre of mass motions can be separated from the libra-
tional motions in MDS calculations.
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3.3. Intermediate scattering function

The intermediate scattering function F(Q, t) was evaluated from the simula-
tion calculations using equation (3), although it would have been significantly
faster to have calculated F(Q, 1) by a Fourier transform method

B(Q, w) = Jb(Q, t) exp (fwt) dt, (6)

FQ, 1) = JIB(Q, @) |* exp (i) do. )

However, we found that F(Q, t) was excessively ‘noisy’ when calculated by the
latter method, even when the transforms were performed using smoothing filters.
Since the source of the ‘noise’ could not be identified when using equations (6)
and (7), the ‘time-averaging’ method of equation (3) was preferred. Equation (3)
is strictly true only in the limit T— o0, but in general practice T is chosen to be
just long enough to give adequate averaging over the time steps. This will corre-
spond to several periods of oscillation of F(Q, t), and this non-ideal time averag-
ing will itself lead to statistical noise in the calculated correlation function.

The MDS calculation is purely classical and hence F(Q, t) has time reversal
symmetry and, ideally, is real. Since the density operator is itself complex, in
practice the intermediate scattering function has a small imaginary component,
whose magnitude may be used as a measure of the statistical noise in F(Q, t). The
amplitude of the imaginary component increases gradually from a value of zero at
t = 0; since the calculated F(Q, t) usually decays rapidly with time, its imaginary
part finally becomes similar in magnitude to the amplitude of the long-time tail of
the real part of F(Q, ). A more general discussion of the accuracy of the calcu-
lations is given in Appendix B. In the present calculation F(Q, t) was evaluated
for t = 0— 5ps and the averaging time T was taken to be 75 ps. In the few cases
where F(Q, t) did not decay until times longer than 5ps it was evaluated for
t = 0— 20ps and T was taken as 60 ps.

The intermediate scattering function was calculated for 64 scattering vectors
along the symmetry directions investigated in the neutron scattering measure-
ments, and these are given in Appendix A. The total function F(Q, t) and the
centre of mass function F, (Q, t) were calculated at both temperatures. Some
typical results are shown in figure 2. It can be seen that a common feature of the
functions shown is that F(Q, #) decays rapidly to the noise level before the first
node in the oscillation of the function. This feature was found for all the sym-
metry directions and was independent of whether the mode was of longitudinal or
transverse character provided the reduced wave vector was not too small (see
below). The lifetime of F(Q, t) is too short for well-defined excitations to be
established and, qualitatively, this explains why the experimental neutron groups
shown in figure 1 are so featureless. Three of the centre of mass functions also
rapidly decay so that even the expected translational acoustic modes are over-
damped. The similarity to the behaviour of the total function suggests strong
translational-orientational coupling. Only for the calculation at Q = (0-232, 0-018,
0-226) does F_ (Q, t) not decay before the first node. This value of Q is the
smallest of the reduced wave vectors shown in figure 2.

In figure 3 the function F, (Q, #) is shown for the smallest computationally
accessible reduced wave vectors {(= q/Q,,,.) at both temperatures. In contrast to
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Figure 2. Intermediate scattering function, F(Q, t), calculated as a function of time by

MDS at temperatures of 200 K and 115 K. The components of the scattering vector,
Q, are in units of 2n/a. The symbol = shows the scattering vector for which the
simulation was actually made while the symbol ~ shows the nearest momentum
transfer that lies on one of the symmetry directions. The solid line shows the total
F(Q, t) while the dashed line shows its centre of mass component F__(Q, ?).

the functions shown in figure 2, these have a well-defined oscillation with a long
lifetime. The same characteristic is seen in F(Q, t), but F.(Q, t) is shown for
clarity since this excludes the librational component. The long lived oscillation
suggests that close to the zone centre the acoustic modes are well-defined and this
effect was found for all symmetry directions. The calculated form of F(Q, t) is
thus strongly wave vector dependent. For small {, as { increases, the lifetime of
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Figure 3. The centre of mass intermediate scattering function, F,(Q, ), calculated for

three small reduced wave vectors, {, along [100] near the reciprocal lattice point
(022) at 200K and 115 K.
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F(Q, t) decreases markedly, but for { > 0-25 the lifetime is approximately inde-
pendent of {. The principal effect of temperature is shown in figure 3. In this
regime of small {, F(Q, #) is strongly temperature dependent with the damping
increasing with temperature. For wave vectors far from the centre of the Brillouin
zone (i.e. large {) temperature appears to have little effect.

3.4. Dynamical structure factor

The dynamical structure factor S(Q, ) is the Fourier transform of the inter-
mediate scattering function (see equation (4)). It was found that the Fourier
transform operation converted oscillatory noise in the long-time tail of F(Q, )
into peaks in S(Q, ) which are probably spurious. To avoid this uncertainty we
truncated F(Q, #) at the time ¢, at which the function has decayed to the level of
the statistical noise, as discussed above. From figure 2 it is clear that ¢, 1s rather
small for most Q values (as low as 0-75 ps in some cases) and this leads to a poorly
defined scattering function, since the Fourier transform operation produces
points in the frequency domain with spacing Aw = 27/t,. This difficulty is over-
come by setting F(Q, t) = 0 for ¢ > ¢, up to a time corresponding to the required
frequency interval in S(Q, w). It should be noted that this procedure is purely
interpolative and does not affect the inherent resolution of the Fourier transform.
However, in the present case filling F(Q, ¢} with zeros in the range 1, <t <
2n/Aw is not simply a computational convenience but is a good approximation to
the real situation since F(Q, t) appears really to be zero in that range. The time
reversal symmetry of F(Q, t) is exploited by setting F(Q, —t) = F(Q, t) and the
complete intermediate scattering function extending from —27/Aw <t < 271/Aw
is then transformed to produce S(Q, ®). Despite this elaborate treatment of the
Fourier transform operation we cannot entirely eliminate the possibility that some
of the structure in the calculated S(Q, w) may be spurious. Since the MDS
calculation is classical, the calculated scattering is symmetrical in frequency, i.e.
S(Q, w) = S(Q, —w). The true quantum mechanical function does not possess
this symmetry property, and in order to give the quantum mechanical character-
istics to the MDS function we use the Schofield [24] approximation and, follow-
ing Klein et al. [16], multiply the latter function by exp (hw/2ky T). The
dynamical structure factors calculated from the F(Q, ¢) of figure 2 are shown in
figure 4, together with the corresponding S,,,(Q, w). For three Q values both
S(Q, w) and S,,(Q, w) are very similar in form, the major difference being the
higher frequency tail in the former function. This similarly again suggests that
the centre of mass motion is strongly coupled to the orientational disorder. These
three calculated S(Q, @) show a broad, generally featureless peak centred at
w = 0, in qualitative agreement with experiment (see §4). The calculation for the
smallest reduced wave vector shows a significant difference between S(Q, @) and
S.m(Q, ). The former function shows the broad, featureless peak centered at
@ = 0, but the latter function shows a broad peak at a non-zero value of . This
results from the ‘ oscillation’ in the corresponding F,,(Q, ¢) shown in figure 2.

3.5. Comparison with experiment

The most detailed neutron scattering measurements were made at 200 K with
Q = 27/a (003)— 2r/a (004) and Q = 2n/a (004)— 2r/a (—0'5, —0-5, 4). Calcu-

lations of the observed lineshapes were made for scattering vectors as close to
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Figure 4. The dynamical structure factor, S(Q, v) (2nv = w) calculated from the inter-
mediate scattering functions shown in figure 2.

these as the MDS sample shape allowed (Appendix A). The experimental neutron
cross section is given in [2] as

Lok

dQ de " kg

S(Q, w), (8)

where k,(K) are the incident (scattered) neutron wave vectors. The experimental
measurements were made with fixed & and with a monitor which corrected for the
factor 1/ky . The observed intensity is thus directly proportional to S(Q, w). The
calculated S(Q, w) is convoluted with the experimental resolution function deter-
mined from the width of the vanadium elastic incoherent scattering. The
‘experimental’ dynamical structure factor is then directly comparable with the
corresponding calculated function. The two distributions are normalized by
making the maxima in the observed and calculated functions equal. The observed
and calculated S(Q, w) are then compared in figure 5 for eight scattering vectors
along the [001] and [110] directions.

It is clear the agreement betwéen the observed and calculated lineshapes is
qualitatively good, but there are discrepancies in both peak intensities and fre-
quencies in a detailed quantitative comparison. In general the calculation shows
more structure than is observed. This may be due to the use of an oversimplified
experimental resolution function for the convolution procedure, but, as discussed
previously (see §3.4, also Appendix B), the transformation to obtain S(Q, w) may
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Q.. is the experimental momentum transfer while Q. is that for which the calcu-
lation is made.

cale

itself artificially produce structure in the function. For momentum transfers at
which the calculation shows two broad, but partially separated peaks only a single
very broad peak is usually observed, while for momentum transfers at which the
calculation shows a single strong peak this is usually not at the observed fre-
quency. The latter momentum transfers are for small wave vectors and the dis-
crepancies between the observed and calculated frequencies may reflect the fact
that the model potential is rather softer than the true potential. It may also be
partly due to the calculation being made for wave vectors not identical to the
experimental ones. Despite these discrepancies, the overall agreement between
observed and calculated S(Q, ) in such an extensive and detailed comparison
shows that MDS is a powerful method for understanding collective excitations in
OD phases.
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4. DiscussioN

The present inelastic scattering measurements have shown that well-defined
collective excitations do not exist in SF¢, and even the translational acoustic
modes are overdamped at the wave vectors investigated. This is true for all three
high symmetry directions. Furthermore, this characteristic is temperature inde-
pendent; the data at 100 K are remarkably similar to those at 200 K. Attempts
were made to fit the lineshapes at 200 K with the Michel-Naudts theory [13] and
with a damped harmonic oscillator model. However, although either of these
models can be fitted reasonably well to the lineshapes at specific wave vectors, the
fitted parameters for a sequence of wave vectors did not vary in a consistent
manner. This behaviour contrasts with the successful interpretation of data for
B-N, in terms of the Michel-Naudts theory [12]. The lineshapes derived from
the present MDS calculations for SF¢ are in qualitative agreement with those
observed for all 64 experimental wave vectors. This suggests that the interpreta-
tion of the orientational disorder in terms of orientational frustration [5] is a valid
description.

The concept of frustration, while common in solid state and statistical physics
has not previously been introduced in molecular physics. Calculations of the
interactions between two SFg molecules as functions of separation for different
relative orientations have shown that when the molecules are aligned along the
crystal axes the forces between nearest neighbour molecules are strongly attractive
whereas those between next-nearest neighbours are repulsive. Thus there is a
competition between these interactions: nearest neighbour interactions favour
orientational ordering while next-nearest neighbour interactions oppose this ord-
ering. At high temperatures this frustration is resolved dynamically so that the
lattice remains of high symmetry and the molecules are dynamically disordered.
But at low temperatures, when the molecules no longer have enough kinetic
energy to relieve the frustration dynamically, the crystal undergoes a phase tran-
sition in which the unit cell distorts in order to accommodate the increase in
orientational order. It is thus the orientational frustration that is the direct cause
of the orientational disorder. The distinction between ‘typical’ OD crystals and
orientationally frustrated ones is that in the former every molecule resides in one
of a finite number of symmetry related orientations or is randomly oriented,
whereas in the latter the competition between the intermolecular interactions
prevents neighbouring molecules from simultaneously being ordered.

Dove and Pawley [5] show that this effect is distinct from the disorder caused
by thermal motions and fluctuations. These authors have also explained that there
is little temperature dependence to be associated with the orientational frustra-
tion, unlike the case of thermal motion. The lack of significant temperature
dependence in SF is thus in agreement with an ‘orientational frustration’ inter-
pretation. The only effect of temperature in the simulation is to reduce the wave
vector decay constant, which is consistent with the greater rotational freedom of
the molecules at higher temperatures. It should be noted that in this model there
is no need to ascribe any of the behaviour to the direct effects of anharmonicity.
The orientational frustration will give rise to the same effect if the intermolecular
interactions are harmonic, because different molecules will experience different
(harmonic) forces due to the disorder. This is in contrast to the common concept
of an OD crystal as a ‘highly anharmonic’ solid.

We have discussed the present experimental results in terms of the concept of
orientational frustration. A possible alternative interpretation might be that the
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crystal consists of long-lived low-symmetry clusters of ordered molecules. Within
each cluster the intermediate scattering function might then be long-lived. But
because the clusters have different orientations relative to the crystal axes and also
may have different sizes, a specified momentum transfer Q for the crystal will
apparently be a different Q-value for each cluster. Consequently, for a specified
Q-value of the crystal the net F(Q, #) will be a superposition of the functions
from individual clusters at the same time but different @ values. This average
might then appear as a rapidly decaying function even though each contribution
is itself long-lived. However, graphics displays of the time-dependent molecular
trajectories calculated by MDS have recently shown that long-lived, low-
symmetry clusters do not exist [25]. The disorder in SFy is found to be com-
pletely dynamic and fully consistent with our interpretation in terms of
orientational frustration.

The present study shows that further work is necessary to obtain a more
quantitative understanding of the effects of orientational frustration on the lattice
dynamics. In particular, measurements of the excitation spectrum at smaller wave
vectors than those studied in the present experiment are necessary to observe the
existence of well-defined acoustic modes, to measure the wave vector decay con-
stant and to measure the elastic constants for comparison with existing calcu-
lations [26]. The detailed distribution of the diffuse scattering in a single crystal
of SF¢ should also be measured. Powder diffraction measurements at 200 K [3]
have shown that diffuse scattering is intense at this temperature, and a prelimi-
nary MDS calculation which separated the scattering into different components
has already been made [5]. Since the concept of orientational frustration may
apply to many OD crystals, the development of a better theoretical model, that
transcends the limitations of those discussed in this paper, would be highly desir-
able.

Two authors (M. T. Dove and G. S. Pawley) thank SERC (U.K.) for finan-
cial support and one author (B. M. Powell) thanks The Royal Society of London
for supporting a stay in Edinburgh during which the calculations were made.

APPENDIX A

The method of mapping a three dimensional periodically repeating lattice onto
a two-dimensional square grid with cyclic boundary conditions has been
described in detail by Pawley and Thomas [22]. For a b.c.c. lattice, a roughly
cubic sample can be set up defined by the following lattice vectors:

X = (13, —1, O)a,
Y = (—05, 12:5, —0-5)a,
Z =05, 35, 12:5)a,

where a is the length of the b.c.c. unit cell edge. We transform this cell to one that
corresponds to a string of 4096 molecules so that

X = (4096, 0, 0)a,
Y = (13, —1, O)a,
Z = (1685, —0-5, —0-5)a.
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The corresponding reciprocal lattice is then defined by the three vectors
X* = (1, 13, 324)/40964,
Y*=(0, —1, 1)/a,
Z* = (0,0, —2)/a.

The density operator b(Q, ) has been evaluated for the following four sets of
scattering vectors:

(1) Q ~ 002— 004 =jX* —Z* ;=0 — 25
=002 + j(1, 13, 324)/4096,

(2) Q =~ 041> 141 = j(317X* + Y* + 13Z%) + 4Y* + 2Z* j =0 — 12
= 040 + j(317, 25, 308)/4096,

(3) Q =~ 101—202 =j(317X* + Y* 4+ 13Z*%),j =13 — 24
= 7(317, 25, 308)/4096,

(4) Q ~ 022122 =j(316X* + Y* + 13Z%) — 2Y* — 3Z* ;=0 — 12
=022 +j(316, 12, —16)/4096.

The maximum deviations from the four specified symmetry directions are then 4,
8, 8 and 5 per cent respectively.

APPENDIX B

As described in § 3.3, although F(Q, ?) calculated by MDS is, in principle real,
in practice an imaginary component exists because of the imperfect averaging
defined in equation (3). We define F(Q, t) and F"(Q, 1) to be the real and ima-
ginary components of F(Q, t). As described in the text, for SF¢ at wave vectors
that are not close to the Brillouin zone centre, F'(Q, t) decays very rapidly to zero.
Thus the only significant part of the function is in the region ¢t ~ 0.

By definition, in the limit t— 0, F(Q, t)— 1 and the noise in F(Q, ?), i.e.
F'(Q, t)— 0. In general it was observed that the amplitude of F'(Q, ) rises
gradually from zero as ¢ increases until it becomes equal to the long-time tail of
the over-damped form of F(Q, #). This time varied according to the value of Q,
but in general was of the order of 1 ps or less. There appears to be a significant
structure in the form of F’(Q, t), corresponding to strong oscillations in the
frequency range 0-5-1THz. This is particularly evident in the calculation of
F(Q, t) for the smallest allowed wave vectors. Figure 6 shows the two com-
ponents of F(Q, t) for the centre of mass motion corresponding to a longitudinal
acoustic vibration. At this wave vector it is clear that F(Q, t) exhibits a well
defined oscillation corresponding to a slightly damped harmonic acoustic phonon,
and this is accompanied by a corresponding oscillation of F”(Q, t) out of phase by
7/2. This behaviour indicates problems concerning thermal averaging and ergo-
dicity that are inherent in the standard MDS method. It is generally assumed that
the MDS sample is a true microcanonical ensemble and thus truly ergodic, with
effective random, but correctly weighted, sampling of configurational phase
space. Thus greater accuracy can be obtained in the calculation simply by allow-
ing the simulation to proceed for a longer time, with the noise being purely
statistical and arising from the coarse averaging of the whole of phase space.
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Figure 6. Time dependence of the real ( ) and imaginary (———-—— ) components of
the centre of mass intermediate scattering function calculated for a small reduced

wave vector ({ = 0-08) along [001].

While this may be approximately correct for many calculations, the behaviour of
the noise in F(Q, ) shown in figure 6 suggests that in certain cases it is incorrect,
since I(Q, t) follows a pure sinusoidal variation that is clearly not at all random.
The amplitude of F’(Q, t) did not vary with the number of time steps used in the
averaging procedure (equation 3) in a simple way. Calculations made with averag-
ing times of 30, 45 and 60ps did not reveal any systematic behaviour of the
amplitude with the number of time steps; and at larger times the amplitude of
F'(Q, t) always remained just less than that of F'(Q, t). It appears that the ampli-
tude of F'(Q, t) will not be reduced to a negligible value by averaging over any
simulation time lengths that are practical from a computational viewpoint, and in
fact it is not clear that it will reduce to zero at all. Thus true ergodicity and hence
also true thermodynamic ensemble averaging may not be attainable in this case.
This behaviour is not simply due to equilibrium problems: the configurations
used as starting points in the correlation function calculations correspond to
36 000 and 60 000 time steps for the two runs at 115 and 200 K respectively.

The non-ergodicity is probably due to the effects of using small finite-sized
samples with periodic boundary conditions. It is clear that there exists a critical
time for the MDS sample, £, given by t, = L/v, where L is a linear dimension of
the MDS sample and v, is the sound velocity. This critical time is that taken for
any ‘ disturbance’ to propagate around the sample through the periodic boundary
conditions and interact with itself. Thus any time correlation function represent-
ing non-localized motions will be perturbed by this self-interaction over times of
the order of t,. For a longitudinal acoustic mode with ¢ = 1/L and with linear
dispersion, the critical time ¢, = 1/v, where v is the frequency of that mode. For
the smallest allowed wave vector this critical time corresponds to just one period
of oscillation.

It appears from figure 6 that a possible effect of the existence of ¢, is that in
the case of the lowest order vibrational mode the self-interactions act as a feed-
back mechanism that enhances the correlation function F(Q, ¢) at large times,
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such that the system is effectively ‘ringing’ with a well-defined frequency. In
view of the lack of understanding of the effects of this artificial ‘self-interaction’
we believe that the detailed form of F(Q, t) is probably not reliable for ¢ > ¢, at
these wavevectors. Thus the form of the resultant S(Q, ®) should also be treated
with caution. The resonant frequencies will probably be correct but the line
widths will be unreliable. These observations are of general application and are
particularly relevant for the smaller sample sizes (e.g. 100 to 200 particles) typi-
cally employed in MDS. In these cases the smallest allowed wave vector would be
a large fraction of the dimension of the Brillouin zone and the ‘ringing’ effect
discussed above may yield significant artefacts in the calculated forms of S(Q, w)
for these wave vectors. Fortunately in the present study at wave vectors far from
the Brillouin zone centre F(Q, t) decays in a time less than t,, so that the feed-
back is not so significant and the self-interaction affects only the noise in F(Q, 1),

ie. F'(Q, 1)
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