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Abstract The volumes and enthalpies of mixing, AV ™M™
and AHM™, of binary solid-solution aluminosilicate
garnets have been studied by computer simulation. The
use of “average atoms’ to simulate solid solution was
found to give results that are considerably different from
those obtained by calculating and averaging over many
configurations of cations at a given composition. Al-
though we expect mineral properties calculated from
model calculations to be correct only on a qualitative
rather than a quantitative scale, fair agreement with
experiment was obtained where carefully tested potential
parameters were used. The results show that mixing
behaviour in these materials is controlled by local strain
and relaxation effects resulting from the atomic size
mismatch of the mixing divalent cations. In particular,
AVM™ and AHM™ are shown to scale quadratically with
the volume difference between the end members, and to
vary essentially symmetrically with composition, with a
moderate dependence on the degree and nature of cation
order. We conclude that computer modelling should be
useful in providing detailed qualitative information
about the mixing properties of solid solutions, which
can help to better constrain and interpret experimental
results.
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Introduction

Where a mineral assemblage preserved in a rock is
recording a state of chemical equilibrium, thermody-
namics can be used to unravel its P, T history. Such
geothermobarometric calculations require an accurate
knowledge of the physicochemical properties of the
constituent minerals, including their pressure, tempera-
ture and compositional dependency. A knowledge of the
variation of the thermodynamic properties with com-
position, i.e. of the thermodynamic mixing properties, is
of particular significance because many pressure and
temperature indicators are based on inter- or intracrys-
talline cation exchange reactions and, hence, involve one
or more solid solution phases.

The determination of the thermodynamic mixing
properties for rock-forming solid solutions is not only a
costly and time-consuming task, but it is also hindered
by various experimental difficulties. The derivation of
mixing properties from phase equilibrium studies is
frequently hampered by slow kinetics of the mineral
reactions. Direct measurements of the enthalpies AH™™
and volumes of mixing AVM*, by calorimetry and pre-
cise diffraction measurements of the lattice constants,
respectively, require high-quality synthetic or natural
samples. These may be difficult to obtain in sufficient
amounts as single-phase material. In addition, minerals
containing transition elements may suffer from non-
stochiometry, or the samples may be chemically inho-
mogeneous. Finally, even for very pure and homogeneous
samples, insufficient grain size may lead to problems in
determining their exact composition by microprobe
analysis. In any case, uncertainties in the chemical
composition propagate into the measured thermophys-
ical properties and thus lead to comparatively large
uncertainties in the mixing properties.

As one of the most important rock-forming solid so-
lutions, the aluminosilicate garnets X3Al1,Si301,, where
X = Mg (pyrope, abbreviated Py), Fe’~ (almandine, Al),
Mn?" (spessartine, Sp), and Ca (grossular, Gr),
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have been the subject of intensive studies of phase
equilibrium, thermodynamic and crystal chemical
properties. References to these works are given in Geiger
(1999), Ganguly et al. (1996) and Mukhopadhyay et al.
(1997). In principle, the combination of phase equilib-
rium studies and direct measurements of AH™™ and
AVM™ ysing either least-squares regression methods (e.g.
Holland and Powell 1985; Powell and Holland 1993) or
mathematical programming (e.g. Berman et al. 1986;
Olbricht et al. 1994) should lead to an internally con-
sistent thermodynamic dataset. However, in spite of the
diversity of available experimental data, their relatively
large uncertainties result in a fair to poor agreement
between different proposed models about the mixing
properties of garnets (Geiger 1999). Hence, a better
theoretical understanding of the thermodynamic mixing
properties is needed to guide the interpolation and ex-
trapolation from scanty experimental data.

The macroscopic thermodynamic properties of a
phase are determined by its chemistry and structure. The
effects of cation substitution on the properties of a solid
solution mineral are a consequence of (1) size differences
between the mixing cations, (2) differences in their
bonding character and (3) different valence states. In
isovalent solid solutions, where equally charged cations
are mixed, as in the case of aluminosilicate garnets, only
the first two factors have to be taken into account. Of
these, the size difference between the cations being mixed
is usually the most important. Already in 1974 Ganguly
and Kennedy used, in addition to experimental data,
cation size considerations to derive approximate mixing
temperatures for three garnet binaries. Davies and
Navrotsky (1983) studied size effects on mixing proper-
ties of various binary solid solutions, including oxide
and alkali halide systems, and observed linear and
quadratic correlations with the volume mismatch of the
end-member phases. More recently, several authors
noted that the deviations from ideal thermodynamic
mixing in different aluminosilicate garnet binaries are
larger for larger differences between the sizes of mixing

cations (Geiger and Rossmann 1994; Ungaretti et al.
1995; Geiger and Feenstra 1997). In the case of the
volumes of mixing, their deviations from ideality appear
to be a function of the volume mismatch of end mem-
bers (Geiger 1999, 2000). However, as illustrated in
Fig. 1, it is uncertain whether AVM™* varies linearly or
quadratically with the volume difference (V' arge = Vsman)
between two end members. There are only six binary
mixtures between the four end members and the beha-
viour with Vparee = Vsman cannot be inferred unambig-
uously from the six experimental points in Fig. 1.

AL N L N R A [ A L B B
S 150 | o3
S - -

= C pv-ar ]
o 1.25 = Al-Gr = .

> : ,/, :
= j0f -
_ " ; .
_.Cl_{ - Sp-Gr 4 ]
S o7s :
@ = ]
— - ; p -
L os0 | Pyse. .y 3
@ C AlSp E ‘ ]
S 025 F [ -
o A ]
© C E ]
= 0.00 =77 py-al -
: 1 ] 1 I 1 I L l 1 l 1 l 1 I :

0 2 4 6 8 10 12 14

3
VLarge - VSmaII (Cm /mOI)

Fig. 1 Variation of the deviations from ideality for the volumes of
mixing, quantified using the symmetric Margules parameter, ",
plotted against the volume difference between the two corresponding
end members. The sources for the different experimental data are
summarised in Table 1. It is uncertain from these data whether W
varies linearly (dotted curve) or quadratically (dashed curve) with
VLargc - VSmall

Table 1 Experimental mixing

Margules parameter
W (cm® mol™)

Source of experimental data

properties of various garnet Solid VLagge = Vsma

binary solid solutions. Values solution (cm® mol™")

in parentheses represent

uncertainties Py-Al 2.196
Al-Sp 2.626
Py-Sp 4822
Sp-Gr 7.352
Al-Gr 9.978
Py-Gr 12,175
Py-Al 2.196
Al-Gr 9.978
Py-Gr 12.175
Py-Al 2.196
Al-Gr 9.978
Py-Gr 12.175

0.12 (6) Geiger and Feenstra (1997)
0.25 (5) Geiger and Feenstra (1997)
0.37 (11) von Saldern (1994)

0.63 (20) Rodehorst et al. (in prep.)
0.97 (19) Geiger et al. (1987)

1.03 (20) Ganguly et al. (1993),

Bosenick and Geiger (1997)
wH (kImol™")

16.8 (6.1) Geiger et al. (1987)
-1.9 (5.9) Geiger et al. (1987)
37.1 (4.6) Newton et al. (1977)

WL, (kI mol )
0 Boffa Ballaran et al. (1999)
20 Boffa Ballaran et al. (1999)
33 Boffa Ballaran et al. (1999)




The aim of the present study is to use computer simu-
lations to gain as much understanding as possible about
the systematics of the thermodynamic mixing properties
of aluminosilicate garnets. These properties are the excess
volume AVM™ and the excess enthalpy AHM™, which are
defined precisely below. In particular, we want to deter-
mine the exact relationship between the volumes of mixing
and the size difference between the cations being mixed.

Simulations of disordered solid solutions involve
many calculations with randomised atomic arrange-
ments on the cation sites in a supercell, and then aver-
aging the results. It is beyond presently available
computer power to do this with ab initio simulations, in
which the Schrédinger equation is solved for all the
valence electrons (within the pseudopotential approxi-
mation) to obtain chemical bonding and charge densities
acurately (Payne et al. 1992). Instead, the interactions
between atoms are represented by empirical interatomic
potentials fitted to a wider range of data on minerals
(Catlow and Mackrodt 1982a; Cormack 1999). Ac-
knowledging that quantitative reliable data are best
obtained by experimental studies in the laboratory, our
aim is to study the effect of differing cation properties on
the mixing properties of solid solutions rather than
obtaining quantitative data. However, our results are in
fair agreement with experiment, sufficiently good to give
confidence in the microscopic picture they give. The
random nature of the cation distribution in a disordered
solid solution results in local strains and atomic relax-
ations due to differing cation sizes. These play the key
role in determining the thermodynamic mixing proper-
ties. Besides the main issue of how Vi aree — Vsman affects
AVMX (and AHM™), the simulations give information
on the effect of bonding character, on the coupling
of mixing properties to cation order, and on how
symmetrical the mixing behaviour is with respect to
composition. Before showing and discussing these results,
we will first, in the following section, briefly review the
properties of binary solid solutions and define the
terminology used in the present paper. Then we will
describe the simulation methods used. In particular, we
will discuss (1) two phenomenologically different ap-
proaches to simulate solid solution minerals and (2) the
approach of mixing artificial cations, which allows us to
study the effect of varying cation size differences on the
mixing properties independently of any other influences.

Terminology and mixing properties

The thermodynamic formalism used in the Earth Sci-
ences community to describe the mixing properties of
solid solutions has been summarised in various reviews
and textbooks (e.g. Thompson 1969; Ganguly and
Saxena 1987; Chatterjee 1991; Cemic 1988; Navrotsky
1987).

In solid solutions two or more different cations share
a common crystallographic site. Let (A, B)Z be a binary
solid solution in which the two cations A and B mix on
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Fig. 2 General behaviour of the volumes (upper part) and volumes of
mixing (lower part) for a binary solid solution. The straight lines show
the ideal thermodynamic, i.e. linear, mixing behaviour resulting in
zero AVM™ across the binary. The dotted line shows positive
symmetric deviations from ideal mixing and the dashed line shows a
positive asymmetric deviation from ideal mixing. The plotted
deviations are highly overestimated for the sake of clarity: in reality,
deviations from ideality are much smaller as shown by the dash-dotted
line for the system pyrope—grossular

the crystallographic site X. The fraction of cation A on
site X is x and that of cation B is xg = (1 — x,). Let Z
represent the rest of the crystal structure that is not di-
rectly involved in the mixing process, which is therefore
the same for all solid solution compositions and the two
end members AZ and BZ.

According to the thermodynamic definition, the vol-
ume of a solid solution composition is ideal, if it is
identically equal to the volume of a mechanical mixture
of the same composition, i.e. if it is a linear combination
of the stochiometric sum of the volumes of the end-
member components:

VIdeal:xAVA+XBVB:VA +XB(VB_VA) . (1)

The volumes of mixing are given by the difference be-
tween the real, observed volumes of the solid solution
compositions and their values in the case of ideal mixing.
They are also referred to as excess volumes of mixing:

AVMix _ AVEX — VReal . Vldeal ) (2)

Figure 2 shows a sketch of the possible behaviour of the
volumes and the excess volumes of mixing in a binary
solid solution. The compositional dependence of the
mixing properties of solid solutions is approximated by
empirical polynomials. Usually, either of two functions
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can be used; first, symmetric deviations from ideal
mixing can be described by a Margules function with
one fitting parameter, W""

AVM® — (1 — xg)xpW” . (3)

Second, asymmetric deviations from ideal mixing can
be approximated by a Margules polynomial with two
parameters, W)y and Wy, of the form:

AVM% — (1 — xp)’xpWily + (1 — xp)xa W)y . (4)

The enthalpies of mixing behave in a way similar to the
volumes of mixing, so that the above formalism can be
applied accordingly.

Method of simulation

Parameterised model calculations

For the present study, we have undertaken static lattice energy
calculations based on transferable empirical potential models using
the program GULP (Gale 1997). The basic principles of lattice
energy calculations are well documented (e.g. Burnham 1985; Price
et al. 1987; Catlow 1988; Dove 1993). In short, the interactions
between the atoms are described by potential functions, @, which
contain empirical parameters. The sum over all the interatomic
potential functions, ®,_gives the lattice energy of a crystal:

E=> @ . (5)
k

The crystal structure is at equilibrium when the lattice energy is at
a minimum value with respect to all structural parameters {p;}:
OF

—=0 forall /. (6)
opi

Hence, the equilibrium structure can be obtained by adjusting the
lattice parameters and the positions of all atoms until the lattice
energy has reached its minimum. This procedure has neglected
the effects of temperature through the lattice dynamics, but for the
present work this is not a significant point.

For our calculations, we have used a set of potential functions
known as the THB model. This model was initially developed for
quartz (Sanders et al. 1984), but has been found to work well for
silicate minerals in general (e.g. Dove 1989; Winkler et al. 1991;
Patel et al. 1991). In the THB model, pair interactions between two
neighbouring atoms, i and j, are modelled as a sum of long-range
Coulomb interactions, short-range repulsive interactions and dis-
persive interactions for polarisable ions:

, i\ Ay
__+B,~/exp(—p—"> -2 (7

i) =
qol/( A/) ¥ rij
The first term in the pair-potential function is the Coulomb energy:
Q; and Q; are the charges on the ions, & is the permittivity of
free space and r; is the interionic distance. The second term is the
Born—-Mayer repulsive energy potential. The third term in Eq. (7)
describes the dispersive interaction. Together, the last two terms
are generally referred to as the Buckingham pair potential. The
parameters By, p; and A4;; are empirical constants, which depend on
the atom pair. The cations are represented as rigid ions and formal
charges are assumed for their Coulomb interactions. To account
for their polarisability, the oxygen atoms are modelled using a core-
shell model, i.e. a combination of a massless charged shell and a
central core that carries all the ionic mass and the residual ionic
charge. The core and the shell interact by a harmonic interaction
of the form:

1

o(d) = 5K& (®)
where d is the separation between the centres of core and shell and
K is an empirical force constant for the interaction. An important
interaction that is incorporated in the THB model is a bond-
bending potential which accounts for a certain degree of covalent
bonding, in so far as it keeps the bond angles of coordination
polyhedra near some ideal value:

0(0) = 3k(0 — 0)° ©)

where k is an empirical force constant, 0 is the polyhedral angle and
0y is the respective angle of the undistorted polyhedron with values
109.47° for SiO4 tetrahedra and 90° for AlO¢ octahedra. The
complete set of empirical parameters used for the present calcula-
tions is given in Table 2. These potentials have been thoroughly
tested for their ability to model the structural and physical prop-

Table 2 Empirical potential

Buckingham pair potential between cation cores and O shells

parameters - 3

B [eV] o [A] A [eV/Af Reference®
SitT ... O 282 1283.9073 0.3205 10.662 )
APt ... 2548 1460.3 0.2991 )
O 282 ... o e 22 764.0 0.1490 27.880 4
Mgt - O 242 1428.50 0.2945 )
Ca’t ... O 23 2272.70 0.2986 )
FeXt ... 0 2542 694.10 0.3399 ®)
Core-shell interaction between O core and O shell

K[eV A7
Ocore™ ++ Ogpar™ 74.9200 (1)
Bond-bending interactions

k [eV rad™? 0ol°]
0> -Si**-0*" 2.09724 109.47 1)
O A" -0 2.09724 90.0 (N

#(1) Saunders et al. (1984); (2) Catlow et al. (1982), (3) Price et al. (1987); (4) Bush et al. (1994);

(5) Lewis (1984)



erties of both pyrope and grossular garnets (for grossular it was
found necessary to choose a different model for the Ca—O potential
than that used by Winkler et al. 1991). Albeit not perfect, the
model was found to have sufficient predictive power to model
structural details such as the distortion of the SiO4-tetrahedra and
AlOg-octahedra in garnets as well as to predict physical properties
such as the IR frequencies to better than 10%. Details of the tests
of the model for the pyrope-grossular series, and comparisons with
different parameterisations, are given by Bosenick et al. (2000). The
Fe—O potential has not been tested to the same level, and we will
therefore refrain from any attempt to deduce quantitative predic-
tions from simulations undertaken with this potential. We will use
it merely to demonstrate the effect of different bonding characters
on the mixing properties, and to show that these effects are elimi-
nated within any solid-solution series.

Simulation of solid solutions

Mixing potentials

The simulation of a binary solid solution can be done using two
different phenomenological approaches which can be regarded as
two different levels of approximation. Firstly, we can use a mean-
field or virtual crystal model and use an effective average potential
for the X-site to describe an occupancy, xp, of one end-member
cation and (1-xg) of the other end-member cation. This approach
requires the mixing of the pair potentials ps_; and @p_; of the two
cations 4 and B. Winkler et al. (1991) proposed a simple mixing
scheme using the condition that the first and second derivatives of
the effective potential, ¢.q_;, should be equal to the stoichiometric
sum of the derivatives of the potentials of the constituent cations at
the average atomic distance ry:

aq)cff—j Opa_; Opp_;
v = (1 — _"ATT J .
( or >r:r(, ( XB) ( or )r:n. - 8 ( or )r:n. '

62(/) ff—j 62(/)A—‘ a2(/)137'
( 6:2 / =8| 32 ! +(1—xp) 22 J . (10b)
r=ry r=ry r=roy

The values for pes—; and Beg—; are then given by:

(10a)

(1 —XB)PXI,]-BA—_,' exp <— /,;—07) +xBﬂ§1,jBB—_/ CXD<—,];:>

peffij - -2 ro -2 10}
(1 —xp)px? ;Ba-; eXp(-;ﬁ) +xgppZ ;B CXD<—E)
(I1a)
(1 —xp)px! Ba-jexp (— pfj[,) +xppyL By exp (— pfj,)
Begr—j =

ot o0 (~72)
(11b)

The effective charge Q. is simply given by the weighted charge
average of the atoms being mixed:

Ocir = (1 —xB)OA + X808 . (12)

ro was taken as a constant value of 2.35 A i.e. an average of the X—
O bond lengths in the pyrope—grossular solid solution. Varying r
in a range equivalent to the variation in the X-O bond lengths
between pyrope and grossular, i.e. 2.27 to 2.40 A, has very little
influence on the outcome of the simulations (Chall et al. unpubl.
data).

By mixing potentials, one can create an average or virtual ca-
tion with properties such as its atomic size, valence and bonding
character that are a weighted average of the properties of the two
cations being mixed. Using average potentials for simulating a solid
solution means that all X-sites are occupied by the same cation. As
a result, all X-sites have exactly the same environment and no local
relaxations or distortions occur. In other words, a binary (A, B)Z
solid solution with complete cation disorder is approximated as a
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perfect crystal, called a virtual crystal of average atoms. This
approach has been used in a number of studies, mainly to model
complete disordered site occupancy of AI’™ and Si** in alumi-
nosilicates (Winkler et al. 1991; Dove et al. 1993; Dove and Red-
fern 1997; Redfern et al. 1997. It was also used to simulate the
mixing of Ca®>" and Mg®>" in the pyrope-grossular garnet solid
solution by Winkler et al. 1991, but there is an error in part of the
analysis given in that paper. Moreover, these authors used a dif-
ferent Ca—O pair potential to that used in the present study.). We
also tested a site occupancy approach to define the virtual crystal.
For the case of pyrope50grossular50, we placed half an Mg and
half a Ca atom at each X-cation position. This is equivalent to
using a simple average of Mg—O and Ca—O potentials. The results
in this case agreed to 5 significant figures with the mixing formula
(Egs. 10 and 11) for the total volume and enthalpy, which supports
the general robustness of our virtual crystal results.

Mixing cations in a supercell

The second more realistic approach to simulate solid solutions uses
a supercell which is an n X n X n enlarged unit cell containing N
symmetrically equivalent X-sites. To simulate a solid solution with
composition xp, na = (l-xg) X N cations of type A and
ng = xg X N cations of type B are distributed over these X-sites. In
relaxing such an arrangement, we switch off all symmetry con-
straints. Many different arrangements are possible, corresponding
to various degrees and types of local order. When the supercell is
repeated periodically, these arrangements become, in principle,
distinct long-range ordering states of the original crystal. To study
the properties of a random solid solution, one has to build up a
database of many different arrangements of the cations and average
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Fig. 3 Comparison of experimental and simulated volumes of mixing
for the pyrope—grossular garnet binary. The experimental data (open
circles) are taken from the most recent studies by Ganguly et al.
(1993) and Bosenick and Geiger (1997). The short dashed curve shows
an asymmetric fit to the experimental data and the dotted line a
symmetric fit. The simulation using mixed potentials (dashed curve)
give values that are larger by a factor of 2 to 3 than experiment. The
results of simulations done by mixing cations in a supercell are shown
as full squares. The corresponding error bars indicate the maximum
scatter of the results due to different ordering states, i.e. different
cation arrangements in the supercell. The full line through the latter
results highlights their essentially symmetric deviation from ideal
mixing
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over their properties. Contrary to the approach of mixing poten-
tials, each X-site is now occupied either by an A or B cation and
this allows /ocal structural relaxation to occur. The main limitation
of the supercell approach is that it is much more computationally
demanding than the method of averaging potentials.

The simulations of binary aluminosilicate garnets were done in
a 1 x 1 x 1 supercell, which contains 24 X-sites. Simulations were
done for the following compositions: n4 = 0 (1), 1 (1), 2 (7), 3 (29),
4 (20), 6 (50), 12 (60), 18 (50), 20 (20), 21 (25), 22 (7), 23 (1), 24 (1),
where the numbers in brackets indicate the total number of dif-
ferent arrangements calculated. Many more arrangements are
possible for intermediate compositions: in the worst case there are
241/(121)* possible arrangements, although symmetry (including
translational symmetry) will reduce the total number of independent
arrangement. We consider that we are using an acceptable sam-
pling for reliable statistical analysis, given that the standard devi-
ation on a mean value is independent of the sampling fraction. For
every configuration the positions of all “atoms” (core and shell)
and the size of the unit cell were allowed to relax, and there were no
symmetry constraints on the positions of the atoms. However, the
shape of the supercell was constrained to remain cubic, as it would
be on average in a disordered garnet solid solution. It was previ-
ously shown that this constraint has a negligible effect on the results
(Bosenick et al. 2000, and independent tests on other systems).

The main purpose of the present work is to study the effect of
ionic size on the thermodynamic properties of the solid solutions.
Clearly, the method of average atoms already models some prop-
erties, such as giving an excess volume across the solid solution as
sketched in Fig. 3, but by comparing results from the two methods
we can determine the influence of the local strains around various
local ionic configurations in a disordered solid solution.

Extending the periodic table

In studying the role of ionic size, we are hampered by the paucity of
data. In our solid solution garnets, we have only four divalent
cations (Mg?™, Fe’™, Mn?* and Ca®™"), of which two are transi-
tion elements that may introduce a significant degree of d-bonding.
Clearly, systematic experimental studies could only be possible if
the periodic table contained thousands of elements! One could then
select a range of elements differing only in ionic radius but other-
wise the same, and observe the trends. One of the advantages of
computer simulation is that one can indeed create such a situation,
by inventing new sets of interatomic potentials (Egs. 7 to 9) to
represent new cations. In our case, these cations will always have an
ionic charge of + 2 and will interact only with neighbouring oxygen
atoms.

Unfortunately, this is not as straightforward as one might
think. One tends to think about the ionic size as a constant value
depending only on the coordination of the ion. However, ionic size
is not a defined quantity: it is a simplified picture of ions neglecting
their characteristic bonding behaviour in a distinct environment
and the corresponding charge density distribution. In our param-
eterised model calculations, the cations are also not simply defined
in terms of their size and charge: they are defined in terms of their
interaction with neighbouring oxygen anions. In principle, the
empirical parameter p; in the Buckingham potential (Eq. 7) defines
the relative sizes of the atoms i and j because it is related to the
equilibrium distance between them. The parameter Bj; is a measure
of the hardness of the interaction (Dove 1993) and is related to the
bonding character of the cation. However, B; and p; are highly
correlated and should therefore not be varied separately. To obtain
a sensible potential, we select two “‘real”” elements A, B, and use the

Table 3 Definition of Eka-
cations and lattice constants
of corresponding Eka-end-

Label for Eka-cation

Fraction of potentials
being mixed

Lattice constant
of Eka-garnet

Potential parameter between
cation core—oxygen shell

member garnet N A
Xsmall-0 XLarge 0 B (eV) p (A)
Mg 1.0 0.0 1428.50 0.2945 11.3225
Eka(75Mg/25Ca) 0.75 0.25 1637.79 0.2960 11.4440
Eka(50Mg/50Ca) 0.5 0.5 1848.60 0.2971 11.5498
Eka(25Mg/75Ca) 0.25 0.75 2060.36 0.2979 11.6429
Ca 0.0 1.0 2272.74 0.2986 11.7289
Eka(-25Mg/125Ca) -0.25 1.25 2485.56 0.2991 11.8038
Eka(-100Mg/200Ca) -1.0 2.0 3125.64 0.3003 12.0005
Fe 1.0 0.0 694.10 0.3399 11.4730
Eka(—100Mg/200F¢) -1.0 2.0 439.08 0.3805 11.6319
Eka(—100Fe/200Ca) -1.0 2.0 4638.79 0.2803 11.9020
Table 4 Definition and mixing
properties of simulated solid Small end-member Large end-member AVA33 WV2 wH
solutions cation cation (cm® mol™) (cm? mol™) (kJ mol™")
Eka(Mg/Ca) solid solutions
Mg Eka(75Mg/25Ca) 3.553 0.083 (1) 6.0 (1)
Eka(50Mg/50Ca) Ca 5.446 0.147 (2) 13.3 (1)
Mg Eka(50Mg/50Ca) 6.711 0.279 (3) 21.0 3)
Mg Eka(25Mg/75Ca) 9.538 0.537 (7) 41.8 (6)
Eka(75Mg/25Ca) Eka(-25Mg/125Ca) 10.979 0.612 (8) 53.7.(8)
Mg Ca 12.192 0.811 (11) 59.9 (21)
Mg Eka(-100Mg/200Ca) 20.828 2.168 (28) 185.2 (44)
Eka(Mg/Fe) solid solutions
Mg Fe 4.379 —-0.088 (2)
Mg Eka(-100Mg/200Fe¢) 9.207 —-0.235 (5)
Eka(Fe/Ca) solid solutions
Fe Ca 7.777 0.589 (7)
Fe Eka(—100Fe/200Ca) 13.238 1.509 (11)




same mixing formulae (Eqgs. 10 and 11) with a chosen xp to define
an element of intermediate character. We can also choose values of
xp less than zero or greater than unity in order to extrapolate, i.e.
to give a cation more extreme than A or B. We call these artifical
elements Eka-cations, designated Eka(na.A/ - ng-B) with
n; =100 - x; (from the prefix eka denoting in the same series, as
used by Mendeleyev for predicting elements, such as eka-silicon,
which is now germanium). By generating a sequence of Eka-cations
based on the same two real elements, we create a series of different-
sized cations, albeit with a minimal change in their bonding char-
acter.

We created three different series of Eka-cations: (1)
Eka(nyvgMg/nc,Ca)-cations, that are a mixture of different
amounts of the Mg-O and Ca-O potentials, (2) Eka(nv Mg/
ng.Fe)-cations, that are mixtures of Mg-O and Fe-O and (3)
Eka(ng.Fe/nc,Ca)-cations, that are mixtures of Fe-O with the
Ca—O potential (Table 3). These Eka-cations are then used as new
elements in the supercell method to model different solid solutions.
However, we modelled only solid solutions between Eka-cations of
the same series. Accordingly, we have three different sets of solid
solutions: Eka(Ca/Mg)-solid solutions, Eka(Mg/Fe)-solid solutions
and Eka(Fe/Ca)-solid solutions. All solid solutions that are a
mixture of two Eka(naA/ngB)-cations are referred to as Eka(A/B)-
solid solution series. The different Eka-cations and the mixtures
calculated with them are given in Tables 3 and 4. By modelling
solid solutions between Eka-cations of the same series, differences
in bonding character between the mixing cations are minimised.
Correspondingly, changes in the mixing properties within a series
of solid solutions are directly related to the size difference of the
cations being mixed. However, differences in bonding character are
considerable between the three solid solutions series. We used the
same sampling procedures for the same range of compositions as
for our simulations of the pyrope—grossular series discussed earlier.

Results

Comparison of simulation methods
for the pyrope—grossular solid solution

To compare the two different levels of approximating
solid solutions, we modelled pyrope—grossular garnets
using both the approach of mixing potentials and that of
mixing the cations Ca’* and Mg?" in a supercell. The
results for the volumes of mixing are shown in Fig. 3,
together with the most recent experimental data from
Ganguly et al. (1993) and Bosenick and Geiger (1997). A
similar comparison between experimental and simulated
data was made for the enthalpies of mixing (Fig. 4).
Although it should be kept in mind that parameterised
model calculations are not likely to get the energies right
on a quantitative scale (e.g. Dove et al. 2000), enthalpies
of mixing are related to energy differences, which are
more likely to be correct. The experimental data plotted
in Fig. 4 are enthalpies of mixing obtained by solution
calorimetric measurements, as quoted by Newton et al.
(1977).

Simulations with mixed potentials result in volumes
and enthalpies of mixing that are by several factors
larger than those obtained with the supercell approach.
A similar qualitative effect on AVM* was previously
noted by Chall et al. (unpubl. data), who used a different
Ca—O potential to simulate pyrope—grossular garnets
using both simulation methods, and also by Purton et al.
(1998) in work on binary oxides. Our simulations with
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Fig. 4 Comparison of experimental and simulated enthalpies of
mixing for the pyrope-grossular garnet binary. The experimental
data (open circles) are taken from Newton et al. (1977). The short
dashed curve shows an asymmetric fit to the experimental data and the
dotted line a symmetric fit. The simulation using mixed potentials
(dashed curve) give values that are larger by a factor of more than 5
than the experimental data. The results of simulations done by mixing
cations in a supercell are shown as full squares. The corresponding
error bars indicate the maximum scatter of the results due to different
ordering states. The full line through the latter data highlights their
essentially symmetric deviation from ideal mixing

the supercell method are in good enough quantitative
agreement with the experimental data to give us confi-
dence in the microscopic picture they give. Clearly, the
better approach to model garnet solid solutions is that of
mixing cations in a supercell. From a structural point
of view, the main difference between the two different
methods of approximation is that in the virtual crystal,
all X-sites, and hence their environments, are exactly
equivalent, while in the supercell approach each X-site is
occupied by either of two cations, and local relaxations
are allowed to occur. The large discrepancy in AYMx
and AHM™ obtained with the two different simulation
methods shows the significant influence that local
structural relaxations have on the macroscopic thermo-
dynamic properties of garnet solid solutions. Because of
the absence of rigid unit modes in the garnet structure
(Hammonds et al. 1998), which would have allowed the
SiOy4-tetrahedra and AlOg-octahedra that form the cor-
ner-sharing three-dimensional garnet framework to ro-
tate without being distorted, these local distortions will
involve a combination of local rotation of the frame-
work polyhedra and a distortion from their average
shape (Bosenick et al. 2000). Simulating solid solutions
by mixing potentials does not allow for local relaxations.
To simulate such structural mechanism the supercell
method has to be applied.

There has been some discussion in the literature
concerning the asymmetry in the mixing properties of
pyrope—grossular garnet solid solutions (e.g. Geiger
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1998). Older measurements of the volumes of mixing of
pyrope—grossular garnets show such a large scatter that
one has to assume symmetric mixing (Berman 1980).
However, more recent measurements by Ganguly et al.
(1993) and Bosenick and Geiger (1997) suggest an
asymmetric behaviour in AVM™. In the case of the
enthalpies of mixing the form of the asymmetry is
questionable. The calorimetric measurements show
asymmetric behaviour with the largest deviations in
pyrope-rich garnets (Newton et al. 1977), although the
errors that propagate through the analysis give some
uncertainty on this result. Calculations based on an
elastic model suggest an opposed asymmetry (Ganguly
et al. 1993). The simulations with both methods pre-
sented here give mixing volumes and enthalpies of
mixing that are essentially symmetric with composition
and therefore do not further constrain the asymmetry of
mixing properties. However, since our model properly
incorporates strain effects, the experimentally observed
asymmetry must be related to sources other than simply
strain. Differences in bonding character, as proposed by
Ungaretti et al. (1995) and Quartieri et al. (1995), are
the only likely source.

That pyrope—grossular solid solutions have a certain
degree of short-range order, but no long-range order has
been shown by ??Si MAS NMR spectroscopy (Bosenick
et al. 1995, 1999) and Monte Carlo simulations (Bosenick
et al. 2000). It is of great interest whether different degrees
of order have a measurable influence on the enthalpies and
volumes of garnet solid solutions. If they do, the great
scatter in the different datasets for the volumes of mixing
could be related to different ordering states. Simulations
by mixing cations in a supercell have been done on many
differently ordered arrangements of Ca and Mg on the
X-sites and the volumes and enthalpies of mixing were
found to be slightly dependent on the ordering state.
Because the supercell simulations and experiments are in
fair quantitative agreement, the coupling of the volumes
or AVM* with the ordering state deduced from the simu-
lations is likely to be of the right order of magnitude. The
absolute observed scatter in the lattice constants is about
0.002 A, which corresponds to a scatter in the garnet
molar volumes of 0.05 cm?®/mol™"!. Precise X-ray diffrac-
tion measurements allow the determination of lattice
constants with uncertainties below 0.001 A. In principle,
variations in the volumes related to different ordering
states should therefore be measurable. However, to
observe this experimentally would require a series of dif-
ferently ordered samples that have exactly the same
composition, because any uncertainty in the composition
would propagate into the volume uncertainty and swamp
possible ordering contributions. In spite of very small
uncertainties in the composition of their synthetic
pyrope—grossular garnets, Bosenick et al. (1999) observed
a slight dependence of the lattice constants on the garnet
syntheses temperatures. Considering the present simula-
tions, these may well be related to differences in the
ordering state. The observed variation of the mixing
properties with the ordering state is shown in Figs. 3 and 4

in the form of error bars, which give the absolute observed
scatter, i.e. the minimum and maximum observed values.
The largest variations with the ordering state in A M and
AHM™ are observed for the intermediate composition
Xca = 0.5. In the case of the volumes of mixing, these
variations are of the same order of magnitude as the
experimental uncertainties of the volumes of mixing, if the
errors in composition are taken into account. However,
because the dependency of the lattice constants, and hence
of AVM™_ on the ordering state is relatively small, most of
the scatter between different experimental datasets is
likely to result from uncertainties in the garnet composi-
tions rather than differing ordering states.

Quadratic scaling of mixing properties

The effect of ionic size on the thermodynamic mixing
properties of binary garnets was studied with three
different series of solid solutions: FEka(Ca/Mg)-,
Eka(Mg, Fe)- and Eka(Fe, Ca)-solid solutions (Table 4).
As discussed above, within each of the solid solution
series it is only the size of the cations that is changing,
while differing bonding characters have practically been
eliminated. However, differences in the bonding char-
acter exist between the different solid solution series.

The influence of the size difference of the mixing ca-
tions can be parameterised in different ways (Davies and
Navrotsky 1983). As the assignment of cation radii is
always somewhat arbitrary, we decided to analyse the
magnitude of AVM™ and AH™M™ in terms of the volume
mismatch between the two end members of the solid
solutions, i.e. |Va—Vg| = AV, l.e. the difference
between the volume of the larger and the smaller
end-member (VLaree= Vsmar)-

As a measure for the magnitude of the deviation from
ideal mixing, we chose the symmetric Margules param-
eters W' and W* (Eq. 3). These parameters are sum-
marised in Table 4 for the different solid solutions that
were simulated by mixing different Eka-cations. Sym-
metric Margules parameter were also fitted to the ex-
perimental data available and the results are summarised
in Table 1. Some of the experimental data sets show
some degree of asymmetry with respect to composition.
However, the largest asymmetry is present along the
pyrope—grossular binary. Although in this case a two-
parameter Margules fit describes the experimentally
observed behaviour across the binary better than a one-
parameter symmetric fit, the latter gives us an averaged
value of the absolute magnitude of the deviation from
ideal mixing. Indeed, a symmetric fit is a special case of
the asymmetric fit with Wy, = Wap = Wpa. Hence,
using a symmetric fit to describe the average deviations
from ideal mixing is equivalent to averaging the Mar-
gules parameters, Wap and Wga of an asymmetric fit to
the data.

The dependence of the magnitude of the volumes of
mixing on AV ap, i.e. the variation of w" with the vol-
ume mismatch, is shown in Fig. 5 for the three different



series of solid solution. The most expanded solid solu-
tion series studied is that of Eka(Ca/Mg)-solid solutions.
These include solid solutions between a ‘“‘real parent
element” Mg or Ca and an Eka(nyMg/nc,Ca)-cation,
as well as solid solutions between two different
Eka(ny Mg/nc,Ca)-cations. The symmetric Margules
parameters of this series of Eka(Ca/Mg)-solid solutions
shows unambiguously a quadratic correlation with the
volume mismatch between the end members:

W AV . (13)

For the two other series, we modelled in each case only
two different solid solutions, because it became imme-
diately clear that for both series W' also scales quad-
ratically with the volume mismatch, albeit with different
coefficients. The solid solution series created from
Eka(ny Mg/nc,Ca)-cations shows a positive scaling of
W with AVﬁgCa, the series created from Eka(ng.Fe/
nc,Ca)-cations has a stronger positive dependence, and
those created from Eka(ng.Fe/nc,Ca)-cations show a
slightly negative correlation of W with AV]\%gFe. It
should be noted here that strict compliance with Ve-
gard’s rule, i.e. a linear change in the lattice constants
with composition, would, in fact, give a slightly negative
volume of mixing and hence a decrease of W" with AV,&B,
because volume is the cube of the lattice constant.
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Fig. S Simulated deviations from ideality for the volumes of mixing,
quantified as W, for three different series of solid solutions. Within
every series, differences in mixing properties between different solid
solution are only due to differing cation size differences, while between
the series changes in bonding characteristics also occur. For every
individual series a quadratic scaling of W" with the volume mismatch
between the end members, V1 aree — Vsman, 1S observed, while no clear
correlation exists between the different solid-solution series. Hence,
differences in cation size of the mixing cations result in non-idealities
in the volumes of mixing that increase quadratically with the volume
difference between the end members, ie. W oc AV,
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However, a linear mixing of lattice constants would give
a more negative value of W”/AVZ, than that observed
for the Eka(Mg/Fe)-solid solutions, indicating that this
series, like the other two solid-solution series, possesses a
positive deviation from Vegard’s law, albeit a very small
one. There exists no overt correlation between the dif-
ferent solid solution series.

Hence, in our simulations differences in bonding
character between the mixing cations have profound ef-
fects on the mixing properties of garnet solid solutions
which show no correlation with AVxg. From the obser-
vation that the Margules parameter of all three solid-
solution series correlates in the same manner with AV it
can be concluded that differences in cation size of
the mixing cations result in quadratic dependence of W
on the volume mismatch between the end members. As a
result, the experimentally determined Margules param-
eter in Fig. 1 should be approximated with a quadratic
rather than a linear function of AV,p if the changes were
solely due to varying cation size differences. That the
experimentally observed relationship between W' and
AVag is indeed well modelled by a quadratic function,
suggests, in turn, that for garnet solid solutions the vol-
umes of mixing are mainly controlled by the size differ-
ences of the X-site cations and that other effects, such as
bonding character, are only of secondary importance.
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Fig. 6 Deviations from ideality for the enthalpies of mixing,
quantified as W', as a function of the volume mismatch between
end members. The simulated data from mixtures of Eka(ny Mg/
nc,Ca)-cations are shown as full squares and are fitted by a quadratic
polynomial shown as a full line. Experimental data from calorimetry
are shown as open circles and the dotted curve represents the best
quadratic fit through the three data points, although there no obvious
correlation with Vparge — Vman. Experimental data from spectro-
scopic measurements (see explanation in text) on the same three
garnet binaries are shown as diamonds, and the best fit through these
data is shown as a dashed line. The sources of experimental data used
are summarised in Table 1
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Although the main purpose of the present study was
to determine the role of ionic size on the magnitude of
AVME we were curious to see whether a similar rela-
tionship also holds for AHMX, The enthalpies of mixing
are thought to have two components: (1) a strain-energy
term arising from the mismatch in size when one atom
substitutes for the other and (2) a chemical energy term
arising from the interactions of the atoms with their
surroundings in the crystal lattice (e.g. Ganguly and
Saxena 1987). Figure 6 shows the variation of W
determined by simulating different Eka(Ca/Mg) solid
solutions. As in the case of the volumes of mixing, W~
varies quadratically with AVxp. Again, this dependency
is entirely due to the size difference between the mixing
cations. Hence, our simulations predict a quadratic
scaling for the strain energy part of the enthalpies of
mixing. Figure 6 also shows experimentally determined
data for the symmetric Margules parameters of the en-
thalpies of mixing, W*, as a function of Viaree™Vsmall-
Experimental data on enthalpies of mixing exist only for
three of the six possible binary solid solutions, Py—Al,
Al-Gr and Py-Gr. The symmetric Margules parameters,
W resulting from solution calorimetric measurements
show no clear correlation with the volume mismatch
between the end members (Fig. 6). Moreover, of the
same three garnet binaries, Boffa Ballaran et al. (1999)
studied the line-broadening of the IR active absorption
bands as a function of garnet composition. Line-
broadening is associated with local structural heteroge-
neities, which contribute to the excess elastic energy of a
crystal. For Py—Gr and Al-Gr binaries, the effective line
widths (A.orr) Were found to vary in a non-linear way
with composition, in a manner similar to the enthalpies
of mixing. By empirically calibrating the observed
broadening of the effective line widths with the enthal-
pies of solution of the Py-Gr binary, Boffa Ballaran
et al. (1999) performed an analysis that allows a com-
parison of Ao,y and AH™™ on a quantitative scale. The
calibrated data are suggested to give a direct measure of
the strain-energy contribution to the enthalpies of mix-
ing, AHM™s" The corresponding W™ have been
included in Fig. 6 and they scale quadratically with the
volume mismatch, i.e. WHstain oc AY2. That this qua-
dratic dependence is indeed predicted from our simula-
tions for AHM™S"™IM supports the assumption of Boffa
Ballaran et al. (1999) that the strain heterogeneity doc-
umented in their A, 1s @ quantitative measure of elastic
energy contributions to the enthalpies of mixing.

Conclusions

The simulations of the pyrope—grossular solid solutions
using the supercell method are in sufficiently good
agreement with experimental data that we can be con-
fident that our model covers the main microscopic
effects. By comparing simulations of pyrope—grossular
solid solutions undertaken with two different levels
of approximating solid solution, i.e. mixing potentials

versus mixing cations in a supercell, it became apparent
how significantly the macroscopic thermodynamic
properties of garnet solid solutions are affected by local
structural relaxations. In particular, allowing for local
relaxations results in a decrease in the magnitude of the
excess mixing properties, AVM™ and AHM™, in com-
parison with the virtual crystal. Moreover, the variation
of lattice constants, molar volumes and AVM* due to
differences in ordering state could be deduced from
simulations of pyrope—grossular solid solutions with the
supercell method. From these, different X-site cation
short-range ordering states are expected to result in
variations in the lattice constants in the order of
0.002 A.

Within any series of Eka(A/B)-solid solutions the
mixing properties scale quadratically with the volume
mismatch between the end members (Eq. 13). However,
other changes in the magnitude of the mixing properties
occur, which are due to other effects such as differences
in the bonding character of the cations. Within a series
of Eka(A/B)-solid solutions only the size difference be-
tween the mixing cations varies. Therefore, a quadratic
dependency of the magnitude of the mixing properties
on the volume mismatch is a result of local lattice strain
due to the size mismatch between the cations being
mixed. In fact, experimental data of AVM™ and IR-
spectroscopic data related to AHM™SUM both show a
scaling with AVZ,, indicating that these properties
are governed by lattice strain due to the cation size
mismatch, and that other properties of the cations have
only secondary influences.
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