Phys Chem Minerals (2000) 27: 747-756

© Springer-Verlag 2000

ORIGINAL PAPER

R. L. Withers - Y. Tabira - J. A. Valgoma - M. Aroyo
M. T. Dove

The inherent displacive flexibility of the hexacelsian tetrahedral
framework and its relationship to polymorphism in Ba-hexacelsian

Received: 30 December 1999 / Accepted: 16 May 2000

Abstract The results of a rigid unit mode (RUM) anal-
ysis of the inherent displacive structural flexibility of the
tetrahedral framework of the ideal hexacelsian structure
type are presented. One of the three types of RUM
found to exist is characterized by modulation wave
vectors perpendicular to (110) and atomic displacement
patterns involving tetrahedral rotation around the par-
ent ¢ axis while a second type of RUM is found to be
soft at any modulation wave vector and to involve tet-
rahedral rotation about in-plane rotation axes. It is
shown how a combination of these two types of RUM
motion associated with the same q = 1/2(1101)" mod-
ulation wave vector enables the outstanding crystal
chemical problems and apparently mutually contradic-
tory results as regards polymorphism in Ba-hexacelsian
to be resolved.

Key words Hexacelsian - Phase transition - Diffuse
distribution - Dynamical disorder - Correlated
tetrahedral rotation

Introduction

The exact nature of the o« and f phases of Ba-hexacelsian
(BaAl,Si,0Og), as well as the structural origin of the
~310 °C o to f§ phase transition therein, have long been
problematic (Ito 1950; Takéuchi 1958; Oehlschlegel
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et al. 1974, 1976; Pentinghaus 1975; Miiller 1977
Kremenovic et al. 1997, 1999; Tabira et al. 2000). The
underlying P6/mmm (a, ~5.3 A, ¢, ~7.8 A, p for par-
ent) average structure (see Fig. 1) with its characteristic
double tetrahedral layers of corner-connected TO4
(T = Aly5Sip 5) tetrahedra interspersed with layers of Ba
ions was first established by Ito (1950). Problems with
ascribing this simple, highly symmetric “‘average” or
parent structure to the o phase, however, were immedi-
ately apparent. They include the absence of (expected)
Al/Si ordering, unrealistically short T-O bond distances
and Ba-O bond distances that are too long (reflected in
calculated bond valence sums — see Table la), linear
T-O-T bond angles along the ¢, axis and the lack of a
reasonable explanation for the existence of the « to f§
phase transition itself.

Consequently, Takéuchi (1958) reinvestigated, using
the same apparent single crystal as that used earlier by
Ito 1950, and discovered the existence of weak addi-
tional satellite reflections of the type G & 1/2(1101)" (G
refers to the strong Bragg reflections of the underlying
parent structure) in the room temperature o phase which
apparently disappeared at the o to § phase transition.
Despite the absence of any orthorhombic strain distor-
tion of the underlying metric, Takéuchi (1958) correctly
deduced that the observed reciprocal lattice was a triply
twinned composite of individual body centred ortho-
rhombic lattices (I—, a, = ap, by = \/gap, co = 2¢p)
corresponding to a single condensed mode of 1/2(1101)"
type. [This has subsequently been confirmed by means of
both satellite dark field imaging (Miiller 1977) and mi-
crodiffraction (Tabira et al. 2000).] The « to f phase
transition at ~310 °C was thus attributed to an [—
(a0 = ap, bo =3ap, co=2cp) to P6/mmm (ap, cp)
phase transition. Takéuchi (1958) further attempted to
*“..deduce... the atomic positions... in an orthorhombic
individual...” via a difference Fourier analysis of the
average structure. Evidence was thereby found for an
apparent reduction in the symmetry of individual layers
from hexagonal to trigonal via tetrahedral rotation of
individual TOy tetrahedra around ¢, (see, for example,



Fig. 1a—¢ The P6/mmm ideal hexacelsian tetrahedral framework
structure is shown in projection down a (110) direction in a, a
(110) direction in b and the [001] direction in ¢. The large filled circles
are the Ba ions while the smaller filled circles represent the Al, Si ions.
The projected parent unit cell is outlined in a, b and ¢. Note the double
tetrahedral layers of corner-connected (Al, Si)O, tetrahedra inter-
spersed with layers of Ba ions characteristic of the hexacelsian
framework topology

Table 1 a Calculated bond valence sums (AVs) for the ideal
P6/mmm parent structure

Ba T O(1) 0(2)
AV (T = Al 1.233 4.166 2.114 2.278
AV (T = Si) 1.233 3.873 1.965 2.132
Average AV 1.233 4.020 2.040 2.205
Expected AV 2.0 3.5 2.0 2.0

Coordinates from Table 2 of Takéuchi (1958) with the O(2) x co-
ordinate taken as 1/2. Bond valence parameters from Brese and
O’Keeffe 1991

b Calculated bond valence sums (AVs) for the P3 structure of
a-hexacelsiany to

Ba Al Si o)y  0Q)
AV 1,590 3.162 4232 2278 2071
Expected AV 2.0 3.0 4.0 2.0 2.0

Coordinates from Table 2 of Kremenovic et al. 1997

Fig. 2a) and interpreted in terms of a specific sequence
of such trigonal type layers (see Fig. 15 of Takéuchi
1958; Takéuchi and Donnay 1959). The problem with
this latter interpretation, however, is that it can only give
rise to satellite reflections of G+ 1/2[0001]" type and
never of the observed G + 1/2(1101)" type.

Matters were subsequently complicated still further
by the largely TEM study of Miiller (1977), who re-
ported the intimate coexistence of two distinct hexacel-
sian polymorphs at room temperature, a P63/mcm,
a=ap, c=2c, polymorph and an Immm, a, = a,,
b = \/§ap, ¢o = 2¢p, polymorph. The former polymorph
is known to exist for CaAl,Si,Og (Takéuchi and Donnay
1959) and SrAl;Si,Og (Schadt et al. 1976; Toepel-Schadt
et al. 1978) but had not previously been reported for
BaAlLSi;Og. The latter polymorph was presumed to be
the same as that described by Takéuchi (1958). The room
temperature coexistence of the two distinct hexacelsian

Fig. 2 An [001] projection of the P3(a = ap,c = c,), Al/Si ordered
crystal structure of room temperature Ba-hexacelsian recently
reported by Kremenovic et al. (1997). The smaller SiOy4 tetrahedra
are shown in black, the larger AlOy4 tetrahedra in grey and the Ba
atoms are represented by the large grey balls. A single tetrahedral
layer is shown in a and both tetrahedral layers per unit cell in b. The
deviation of the refined crystal structure from the underlying P6 /mmm
parent structure can be described in terms of condensed q = 0 modes
involving (1) Al/Si ordering and correlated expansion/reduction of the
size of the associated TOjy tetrahedra and (2) correlated tetrahedral
rotation of individual Al,Si>Og layers about ¢, leading to a reduction
in the symmetry of individual layers from hexagonal to trigonal and
characteristic di-trigonal cavities (see a)



polymorphs was attributed to differences in local
chemical composition (it is known that it is possible to
prepare off ideal stoichiometry Ba;_,Aly,_».Siy,»,0g
hexacelsians over significant composition ranges, e.g.
0.00 < x < 0.15 (Oechlschlegel et al. 1974, 1976; Kreme-
novic et al. 1997) and brings into doubt the equilibrium
nature of the synthesized specimens studied. In a TEM
heating stage, the P63/mcm polymorph was found to
invert to the Immm polymorph when heated. Miiller
(1977) thus concluded that the P63 /mcm polymorph was
the stable room temperature polymorph for exactly
stoichiometric BaAl,Si,Og and that the ~300 °C « to f8
phase transition therein was due to a P63/mem to Immm
phase transition. The observed existence of twin and
antiphase domains in the Immm polymorph was further
interpreted as a signature of a yet higher temperature
subsolidus phase transition, this time from Immm to
P6/mmm.

More recently still, Kremenovic and colleagues
(Dondur et al. 1995; Dimitrijevic et al. 1997; Kreme-
novic et al. 1997, 1999) have extensively investigated
both stoichiometric and non-stoichiometric Ba-hexacel-
sians synthesized from zeolite precursors. Si MAS
NMR spectra of the stoichiometric material at room
temperature showed, for the first time, an ordered
Si(4Al) tetrahedral environment in the double tetrahe-
dral sheets in agreement with Loewenstein’s rule
(Loewenstein 1954). (Note that such Al/Si ordering can
only be compatible with either a q = 0 or a q = 1/2¢*
compositional modulation wave but not with a
q=1/2[1101]" compositional modulation wave). The
same stoichiometric material was also shown to undergo
the o to f phase transition at ~310 °C whereas the
nonstoichiometric specimen did not. A time-resolved
synchrotron XRPD refinement (Kremenovic et al. 1997)
of both the « and f§ phases of the stoichiometric hexa-
celsian specimen again found evidence for tetrahedral
rotation around ¢, but this time reported P3 (a = aj,
¢ = ¢p) space group symmetry on either side of the phase
transition. Such a unit cell implies that no additional
satellite reflections were detected.

The deviation of the Kremenovic et al. (1997) refined
crystal structures from the underlying P6/mmm parent
structure can be described in terms of condensed q=0
modes involving (1) Al/Si ordering and correlated ex-
pansion/reduction of the size of the associated TOy4 tet-
rahedra and (2) correlated tetrahedral rotation of
individual Al,Si,Og layers about ¢, leading to a reduc-
tion in the symmetry of individual layers from hexagonal
to trigonal (see Fig. 2a). The results of Kremenovic
et al. (1997) are quite compatible with the difference
Fourier analysis of the average structure reported by
Takéuchi (1958) in the sense that trigonal individual
layers are formed (see Fig. 2a). It differs, however, in the
proposed sequence of these trigonal layers (cf. Fig. 2b
with Fig. 15 of Takéuchi 1958). While the Kremenovic
et al. (1997) reported crystal structures for both the «
and f phases significantly improve the local crystal
chemistry with respect to the original P6/mmm model
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(cf. Table 1b with Table la), problems still remain, i.e.
Ba is still significantly underbonded while Al and Si are
still significantly overbonded. In addition, linear T-O-T
bond angles (along the ¢, axis) also still remain. Perhaps
the major problem remaining, however, is that there is
still no indication as to the structural origin of the
G + 1/2(1101)" type satellite reflections first reported as
existing in the o phase by Takéuchi (1958) and recently
reconfirmed (via a temperature-dependent electron dif-
fraction study) as existing in both the o and f§ phases (see
Fig. 3 and Tabira et al. 2000).

The purpose of the current paper is, firstly, to present
the results of a rigid unit mode (RUM) analysis of the
inherent displacive structural flexibility of the tetrahe-
dral framework of the ideal hexacelsian structure type
and, secondly, to show how the existence of two quite
distinct types of RUM (one involving tetrahedral rota-
tion around ¢, and the other tetrahedral rotation about
in-plane rotation axes) might enable the outstanding
crystal chemical problems and apparently mutually
contradictory results as regards polymorphism in Ba-
hexacelsian to be resolved.

RUMs of the ideal hexacelsian structure type

The two-dimensional tetrahedral framework of the ideal
P6/mmm hexacelsian structure type (see Fig. 1) is in-
herently flexible as a result of the existence of low (es-
sentially zero) frequency modes of distortion which do
not distort the constituent TO4 tetrahedra but which
result in changes in their relative orientation. The ener-
gies associated with deformation of these TO, tetrahe-
dral units are typically much larger than the energies
associated with rotation of neighbouring tetrahedral
units about a common vertex atom (Hammonds et al.
1996; Dove et al. 1998; Thompson et al. 1998a, b) or the
energies associated with the bonding interactions be-
tween the oxygens of the tetrahedra and the interstitial
Ba ions. Consequently, only those modes of distortion of
this tetrahedral framework which entail zero or minimal
distortion of these rigid polyhedral units (rigid unit
modes or RUMs) can reasonably be expected to occur in
response to lowering of temperature and hence to be
responsible for low temperature phase transitions and
polymorphism in hexacelsians. The recently developed
lattice dynamics program CRUSH (Hammonds et al.
1994) enables the existence of such zero frequency RUM
modes to be easily detected.

RUMs of Type 1

Direct experimental evidence for the existence of one
such type of RUM, in the form of transverse polarized
diffuse sheets of intensity perpendicular to (110) real
space directions and giving rise to intense diffuse
streaking along (hh0[)* directions of reciprocal space
(see, for example, Fig. 3), has recently been shown to be
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Fig. 3a (114) and b close to [001] zone axis selected area diffraction
patterns (SADPs) of BaAl,Si,Og upon heating above the ~312 °C
phase transition in a TEM heating stage. Note the strong and
characteristic diffuse intensity distribution in the form of transverse
polarized diffuse streaking along all (h40/)* directions of reciprocal
space in both a and b as well as the continued existence of satellite
reflections of the type G 4= 1/2(1101)" (G refers to the strong Bragg
reflections of the underlying parent structure) above the « to § phase
transition (the two satellite reflections to either side of the dark arrow
in b, for example, correspond to two particular such G £ 1/2(1101)"
type satellite reflections). SADPs and zone axis orientations have been
indexed with respect to the underlying P6/mmm hexagonal parent
structure shown in Fig. 1

characteristic of the high-temperature f phase of Ba-
hexacelsian. Indeed, the quite reproducible appearance
and disappearance of this characteristic diffuse intensity
distribution on cycling up and down through the
~310 °C o to f phase transition was found to be the
defining characteristic of the phase transition itself
(Tabira et al. 2000).

The localized nature of the soft modulation wave
vectors involved (perpendicular to (110) real space
directions), in conjunction with the transverse polarized

character of the sheets of diffuse intensity (see Fig. 3),
enabled the associated atomic displacement pattern re-
sponsible to be deduced (Tabira et al. 2000), as shown in
Fig. 4a. RUMs of this type can be attributed to coupled
(along (110)) tetrahedral rotations of (110) columns of
tetrahedra (uncorrelated from column to column as a
result of the rotation axes running through the O(2)
oxygen ions linking neighbouring columns) around the
¢p axis (see Fig. 4a). Note that the resultant pattern of
atomic displacements within any one (110) column can
be decomposed into rotations of the tetrahedra about ¢,
through the centre of the tetrahedra coupled with a rigid
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Fig. 4 a [001] projection of a two tetrahedral layer slab of ideal
hexacelsian showing the correlated tetrahedral rotations (of (110)
columns of tetrahedra) characteristic of the first type of RUM and
responsible for the observed high-temperature diffuse distribution (see
Fig. 3). Three such (110) columns are shown with neighbouring
columns separated by the full lines. Note that the sense of rotation in
going from one column to the next across the full lines is
undetermined, i.e. the tetrahedral rotations are uncorrelated from
column to column as a result of the rotation axes running through the
O(2) oxygen ions linking neighbouring columns. b shows the
particular rotation pattern in one two-layer tetrahedral slab resulting
from a condensed RUM of this type characterized by the modulation
wave vector q = 1/2[1101]". The 1/2¢* component of this modulation
wave vector implies that the sense of the atomic displacements shown
will be reversed in the next two-layer slab



body transverse displacive shift of each tetrahedra along
(110). [A condensed q = 1/2 [0001]* RUM of this type
(see, for example, Fig. 2a and Fig. 6 of Takéuchi and
Donnay 1959) gives rise to the reported Ca- and Sr-
hexacelsian low temperature polymorphs (Takéuchi and
Donnay 1959)]. The resultant displacement pattern as-
sociated with a q = 1/2[1101]" RUM of this type is
shown in Fig. 4b (for one particular double tetrahedral
layer). Analysis of the CRUSH output for the ideal
hexacelsian framework structure has confirmed the ex-
istence of this first type of RUM distortion.

RUMSs of Type II

In addition, however, it has shown the existence of a
second quite distinct type of RUM which is, rather re-
markably, soft at any particular modulation wave vec-
tor. Unfortunately, this time it is not so easy to interpret
the output of CRUSH in terms of associated displace-
ment eigenvectors. Careful analysis shows that the
atomic displacement pattern associated with this type of
RUM again entails tetrahedral rotation, but this time
about an in-plane rotation axis running through the
basal planes of the tetrahedra themselves (see, for ex-
ample, Fig. 5). The existence of a second type of RUM
of this sort is particularly important in the case of
hexacelsians in that it is only distortions of this type, i.e.
involving basal plane rotation axes, that can give rise to
non-linear T-O-T bond angles along the ¢, axis, which
seems to be an almost inviolable crystal chemical rule for
silicates and alumino-silicates (Gibbs et al. 1981; Liebau
1985).

The in-plane direction of the rotation axis for this
second type of RUM, however, does not always run
along (110) real space directions (as is the case in Fig. 5)
but is sensitively dependent upon the choice made for the
h and k indices of the particular q = [hk/]" (= ha* + kb*+
Ic*) modulation wave vector chosen. It is not difficult to
see from a comparison of Figs. 5, 4a and 1c that a RUM
of the sort shown in Fig. 5, i.e. involving basal plane
rotation about a (110) axis (labelled Ry in what follows,
see Fig. 6), is to be expected for any modulation wave
vector perpendicular to (110), i.e. of (hh01)" type. For a
general modulation wave vector, however, an additional
orthogonal basal plane rotation axis must be considered.
This additional rotation axis runs along the orthogonal
(110) direction (labelled Ry in what follows, see Fig. 6).
Both rotation axes run through the point defined by the
projection of the local T atom onto the relevant tetra-
hedral basal plane (see, for example, the (110) rotation
axis marked by the asterix in Fig. 5). The in-plane di-
rection of the rotation axis for a particular tetrahedron
then depends upon the relative magnitude of Ry exp(ify)
and Ryexp(ify) for that particular tetrahedron [see
Fig. 6 and Eq. (1) below].

Consider, for example, the four independent tetra-
hedra per parent unit cell which we label T; to T4 in
Fig. 6 (tetrahedra T; and T; are understood to be
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Fig. 5 A (110) projection of the correlated tetrahedral rotations

around (110) associated with a q = 1/2[1101]* RUM of type II. The
rotation axes run along the (110) direction through the basal plane of
the tetrahedra (marked with the asterisk on one tetrahedra). To avoid
overcrowding, the atomic shifts of the T atoms along (110) due to the
tetrahedral rotations have not been shown, i.e. only the atomic shifts
of the tetrahedral oxygen atoms have been shown

pointing up in Fig. 6 with the tetrahedra immediately
above them, T, and T4, understood to be pointing
down). Now consider the constraints on the amplitudes
(Rx, Ry) and phases (0x, 0y) of the local rotations im-
posed by the topological connectivity of the ideal
hexacelsian framework structure and the requirement
that oxygens linking neighbouring tetrahedra should not
split. We write the local (anticlockwise) rotations of
tetrahedra T, in unit cell t as:
Ry, (t) = Ry, cos[—27nq - t + Oy

+ Ry, cos[—2nq - t + Oy . (1)

Consider, for example, the apical oxygens linking tet-
rahedra T and T, as well as tetrahedra T; and Ty4. The
constraint that these apical oxygen atoms should not
split is equivalent to the requirement that

R = _RX17 0){2 = 6xl and Ry2 = _RY17 6}’2 = 6}'1
Ry = —Ry3,04 = 0x3 and Rys = —Ry3, 9y4 = 9y3 )
(2)

respectively. Thus the rotations of tetrahedra T, and Ty
are completely determined by the rotations of tetrahedra
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Fig. 6 An [0001] projection of the ideal P6/mumm parent structure
showing the four independent tetrahedra per parent unit cell which are
labelled 77 to T4. Tetrahedras T; and T3 are understood to be
pointing up with the tetrahedra immediately above them, T, and Ty,
understood to be pointing down. The dashed lines show the x and y
rotation axes running through the basal planes of each tetrahedra

T, and T; immediately below them and it is therefore on
the latter that we now concentrate.

Next consider the constraints imposed by the basal
plane oxygens linking tetrahedra T; and T3 (labelled O1,
02 and O3 in Fig. 6). Firstly, consider Ol. The
constraint that this basal plane oxygen atom should not
split requires that

RX3 = _RXI = _RX and 6)(3 - Hx] - 9)( . (3)

There is thus one amplitude and one phase degree of
freedom remaining as far as rotation around x (or (110))
is concerned. Rotation around y (or (110)), however,
does not cause O1 to move and hence does not give rise
to a phase relationship between 0y; and 0y3. Time-
reversal symmetry, however, requires that |Ryi| =
IRy3] = Ry. Thus we have

Rri(t) = Rycos[—2nq - t + 0] + Ry cos[—2nq - t + Oy]
Rr3(t) = —Ry cos[—2nq - t + 0]

+ Ry cos[—2nq - t + O3] . (4)
At this stage there remain five degrees of freedom (Ry,
Ry, 0Ox, Oy and 0y3) and two further oxygen atoms to be
taken into account. (Note that one amplitude and one
phase degree of freedom must remain undetermined
after all constraints have been taken into account for the
corresponding atomic displacement pattern to be a
RUM).

Now consider oxygen atom O2 (see Fig. 6). O2 be-
longs simultaneously to tetrahedra Ty in unit cell (t) as
well as to tetrahedra Tj in unit cell (t —b). Rotation
around x and y both cause O2 to displace along ¢. The
magnitude and sense of this shift along ¢ must then be the
same if it is calculated using tetrahedra T in unit cell (t)
or tetrahedra Ts in unit cell (t — b). Hence the constraint
that O2 should not split is equivalent to the equality

— Ry cos[—2nq - t + 0x] + V3R, cos[—2nq - t + Oy1]
= —Rycos[-2nq - (t —b) + 04]
— V3R, cos[—2nq - (t — b) + 03] ,

where q = ha* + kb* + Ic*. Now for the displacement
pattern to be a RUM, this constraint must be true for all
t. Expanding both sides of the above equation in
cos[—2nq - t] and sin[—2nq - t] terms and equating each
separately gives rise to the two following (unit cell in-
dependent) constraints:

— Ry cos Oy + V3R, cos Oy

= —Ry cos[0 + 2mk] — V3R, cos[0y; + 27k] . (5)
— Ry sin Oy + \/§Ry sin Oy
= —Rysin[0y + 27k] — V3R, sin[0y3 + 27k] . (6)

Finally, consider oxygen atom O3. This oxygen belongs
simultaneously to tetrahedra Ty in unit cell (t) as well as
to tetrahedra T3 in unit cell (t + a) (see Fig. 6). The
constraint that O3 should not split is therefore equiva-
lent to the equality

— Rycos[—2nq - t + 05] — V3R, cos[—2nq - t + Oy]
= —Rycos[—2nq - (t+ a) + 0]
+ V3Ry cos[—27q - (t +a) + O3] .

Again, for the displacement pattern to be a RUM, this
constraint must be true for all t, thus giving rise to the
two final additional constraints:

— R, cos by — \/§Ry cos Oy

= —R, cos[0 — 2mh] + V3R, cos[0y; — 27h] . (7)
— RysinOx — 3Ry sin Oy
= —Rysin[y — 27h] + V3R, sin[0y3 — 27h] . (8)

Careful reduction of Egs. (5) to (8) shows that one of the
above four constraints is redundant, leaving three in-
dependent constraints and two free variables. The gen-
eral analytical solution to Egs. (5) to (8) is

Oy1 = Ox +90° + tan™'[1/2(cot wh — cot nk)]
0y3 = Ox +90° — tan™'[1/2(cot h — cot nk)]
Ry/Ry =V/3 x 1/2(cot nh + cot k)

x cos(tan"'[1/2(cot mh — cot mk)]) .

©)

Substitution of Eq. (9) into Eq. (4) then gives an ana-
lytical expression (for any general modulation wave



vector) of the local rotation of tetrahedras T; and T3 in
any unit cell (t) in terms of Ry and 0, the two necessarily
remaining free variables. The use of Eq. (2) gives the
corresponding expressions for tetrahedra T, and Tjy.
Careful consideration of the CRUSH output confirms
the validity of the above analytical expressions. In the
case of a q = 1/2[1101]" RUM of this type, note that
Eq. (9) predicts Ry /Ry = 0 and an in-plane direction of
the rotation axis along the [110] direction. The corre-
sponding particularly simple resultant pattern of atomic
shifts is shown in Fig. 5.

RUMs of Type 111

The q = 0 mode of the type proposed by Kremenovic
et al. (1997) (see Fig. 2b) is, in fact, an example of a
third type of RUM which is this time localized to
modulation wave vectors along the ¢* directions of re-
ciprocal space. This type of RUM is (as for RUMs of
type I) again characterized by rotations of the tetrahedra
about ¢, through the centre of the tetrahedra as shown
in Fig. 2a. The sense of rotation from one tetrahedral
layer to the next within the same double tetrahedral
layer, however, is now constrained to be of opposite
sign, as shown in Fig. 2b.

Application to Ba-hexacelsian

The existence of a second quite distinct type of RUM
which is soft at any particular modulation wave vector
provides a crucial extra degree of freedom when at-
tempting to explain the experimentally observed be-
haviour of hexacelsians in general, and Ba-hexacelsian in
particular. Specifically, it allows for the possibility of
more than one tetrahedral rotation pattern being asso-
ciated with any modulation wave vector perpendicular
to (110). -

The non-disappearance of the G + 1/2(1101)" type
satellite reflections on heating up through the o to f
phase transition (see Fig. 3), coupled with the sudden
appearance of the characteristic diffuse distribution as-
sociated with the first type of RUM, implies that the
atomic shifts associated with q = 1/2[1101]" above the
phase transition are not due to a type I RUM but can
only be due to a condensed RUM of type II, as shown in
Fig. 5. The associated atomic shifts for this RUM are all
perpendicular to the (110) rotation axis and involve
basal plane motion along (110) as well as ¢ axis shifts.
Given a P6/mmm parent structure, a condensed phonon
mode of wave vector q=1/2[1101]" and with the
symmetry of the type I RUM (an Ry irreducible
representation; see Table 2) would lead to a resultant
orthorhombic structure of space group Ibmm (a, =
a+b,b, =—a+b,c, = 2c). [Given a P6/mmm parent
structure, the little cogroup, G, for q = 1/2[1101]" is
given by G* = {E, C,,C};,Ch;, i,my,iC5,,iC,} in the
notation of Bradley and Cracknell (1972). The eight
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Table 2 Irreducible representations associated with the little
cogroup of the modulation wave vector q = 1/2[1101]"

E C € Gy i m, iC5, iC); Space No.

group

E Gy Gy Cy i m, my my
R, 1 1 1 1 1 1 1 Immm 71
R, 1 -1 I -1 I -1 1 -1 Imam 74
R; 1 1 -1 -1 1 1 -1 -1 TIbam 72
R, 1 -1 -1 1 I -1 -1 1 Ibmm 74
Rs 1 1 1 1 -1 -1 -1 =1 TIbham 72
R 1 -1 1 -1 -1 1 -1 1 Ibmm 74
R; 1 1 -1 -1 -1 - 1 1 Immm 71
Ry I -1 -1 I -1 1 1 -1 Imam 74

The symmetry elements of the little group with respect to the parent
P6/mmm hexagonal unit cell are given in the first row. The
equivalent symmetry operations with respect to the a, = a + b,
b, = —a + b, ¢, = 2cresultant cell are given in the second row (cf.
Fig. 6). The space group symmetry resulting from condensed
modes transforming according to each irreducible representation
are given in column 10

corresponding irreducible representations, together with
the resultant space group symmetry given a condensed
phonon mode of that symmetry, are listed in Table 2].

Unfortunately, the layered nature of hexacelsians (the
normal to the plates is always parallel to ¢) in conjunc-
tion with the limited tilt facilities of TEM hot stages
rules out the possibility of confirming the presence or
otherwise of the predicted b glide perpendicular to a,.
Nonetheless, the fact that the G 4 1/2(1101)" type sat-
ellite reflections in the first-order Laue zone (FOLZ) ring
of the close to [0001] zone axis EDP of Fig. 3b are
transverse polarized, i.e. most intense along the (110)
direction (orthogonal to the modulation wave vector
1/2(1101)") is entirely compatible with the predicted
atomic displacement pattern shown in Fig. 5. By con-
trast, this experimental observation is incompatible
with the Immm space group symmetry for the f§ phase
suggested by Miiller (1977). (A character of +1 under
my, for example, as required by a resultant space group
symmetry of Immm — see Table 2 — constrains all metal
atoms to move perpendicular, rather than parallel, to
(110)).

The sudden disappearance of the characteristic dif-
fuse distribution associated with the first type of RUM
on cooling through the f to o phase transition of stoi-
chiometric Ba-hexacelsian implies the freezing-in of an
additional soft phonon mode characterized by a modu-
lation wave vector perpendicular to (110) and with a
displacement eigenvector of the type shown in Fig. 4a.
Given that the only satellite reflections observed in both
the o and f phases, in addition to the strong Bragg re-
flections, G, characteristic of the underlying parent
structure (Tabira et al. 2000), are of G =+ 1/2(1101)"
type, there are only two possible choices for the modu-
lation wave vector of a frozen in RUM mode of this
type, i.e. ¢ =1/2[1101]" or q = 0.

The atomic displacement pattern associated with a
type I, q =1/2[1101]" RUM is shown in Fig. 4b for a
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particular double tetrahedral layer. It corresponds to an
R; irreducible representation (see Table 2) and, on its
own, would lead to a resultant orthorhombic structure
of space group Ibam (a,,b,,c,). (Note that the 1/2¢*
component of this modulation wave vector requires that
the displacements shown in Fig. 4b reverse from one
double tetrahedral layer to the next along the ¢ direc-
tion). Given that a type II, q =1/2[1101]" RUM mode
has already condensed out in the high-temperature f8
polymorph, the space group symmetry for the low-
temperature o polymorph would be determined by the
combination of the two (type I and II) RUM modes.
Simultaneously condensed type I and II, q =1/2[1101]"
RUM modes lead to a resultant orthorhombic structure
of space group symmetry /b2m (a,,b,,¢,). The corre-
sponding fractional co-ordinates are listed in Table 3.
(For examples of how to derive resultant fractional co-
ordinates from condensed RUMs see, for example,
Withers et al. 1997; Thompson et al. 1998a, b).

The atomic displacement pattern for a type I RUM
associated with the alternate modulation wave vector
possibility, i.e. ¢ =0, is in essence the same as that
shown in Fig. 2a where the two tetrahedral layers of
each double tetrahedral layer are understood to rotate in
the same sense (as opposed to the type III, ¢ = 0, RUM
mode where they are understood to rotate in the oppo-
site sense; see Fig. 2b). On its own, a ¢ = 0 RUM mode
of type I would lead to a resultant space group symmetry
of P62m (a, b, ¢) (ignoring for the moment Al/Si or-
dering and concentrating purely on the tetrahedral ro-
tation component of Fig. 2a). Note that ditrigonal
cavities are formed in the case of such q = 0 modes
whereas elliptical-shaped cavities are formed in the case
of the q =1/2[1101]" mode (cf. Fig. 4b with Fig. 2a.
Simultaneously condensed q = 0, type I (see Fig. 2a)
and q =1/2[1101]", type II RUM modes lead to a re-
sultant orthorhombic structure of space group symmetry
2mm (ao,bo,c,) (ignoring again Al/Si ordering and
concentrating purely on the tetrahedral rotation modes).

The third, and final, possibility for the tetrahedral
rotation around the ¢ component of the overall distor-
tion is a q = 0, type IIT RUM mode of the type pro-
posed by Kremenovic et al. (1997) (see Fig. 2b). On its
own, a ¢ = 0 RUM mode of this sort gives rise to a
resultant space group symmetry of P31m (a, b, ¢) (again
ignoring Al/Si ordering and concentrating purely on the

tetrahedral rotation component of Fig. 2b). A simulta-
neously condensed q = 0 mode of this type in con-
junction with a q = 1/2[1101]", type II RUM mode
would this time lead to a resultant monoclinic structure
of space group symmetry 712/ml (ao, by, ¢,).

Crystal chemical considerations

At this stage, there exist three potential candidates for
the condensed RUM involving tetrahedral rotation
around ¢ but a single unique candidate for the type II
RUM involving tetrahedral rotation around [110]. The
question is which of the three potential candidates for
the condensed RUM involving tetrahedral rotation
around c is correct and what are the magnitudes of the
corresponding tetrahedral rotation angles.

The magnitude of the tetrahedral rotation around ¢
mode might reasonably be expected to be ~10° given the
rather similar “average structure’ refinement results of
Takéuchi (1958) and Kremenovic et al. (1997). Takéuchi
(1958), for example, gives the (disordered) O(2) basal
plane oxygen position as (1/2 + 0.05, 0, 0.209). The
deviation of 0.05a from the ideal P6/mmm position
corresponds to a tetrahedral rotation around ¢ ~ 9.8°.
Kremenovic et al. (1997), on the other hand, give the
O(2) position as (0 — 0.0252,1/2 — 0.0655,0.21) in space
group P3. This fractional coordinate can be rewritten as
(0,1/2,0.21) 4+ (0,—0.0529,0) + (—0.0252,—0.0126,0)
with the second term giving the purely rotational RUM
contribution and the latter the expansion/contraction
contribution due to Al/Si ordering. A shift of 0.0529b
from the ideal P6/mmm position corresponds to a tet-
rahedral rotation around ¢~ 10.4° in reasonably good
agreement with Takéuchi (1958), despite the different
space group symmetries employed to describe the tet-
rahedral rotation.

Tetrahedral rotation around ¢ of magnitude ~10°
will obviously expand the size of the TO4 tetrahedra and
hence reduce the overbonding of the T atoms (cf.
Table 1b with Table 1a). In addition, it leads to a change
in the coordination environment of the Ba ions between
the double tetrahedral layers and a general improvement
in the underbonding of the Ba ions. Nonetheless, the T
ions still remain overbonded (by ~0.2 valence units) and
the Ba ions significantly underbonded (by ~0.4 valence

Table 3 Proposed fractional

coordinates in space group Xo Yo Z,

I2m (a, = a + b,

b, = (—a +be, = 2¢)asa Ba 0.0 0.0 0.0

function of otation angle D113 R, 02887 R, 06666 01453

around [110], R, (see Fig. 6) : y oY z : :

and rotation angygle around ¢, 0O1 0.4197 R, + 0.2887 R, 0.3333 0.2500

R, (see Fig. 4b) 02 0.4197 Ry, — 0.2887 R, 0.6666 0.2500
03 0.0 0.5 0.1075
04 0.25 + 0.4330 R, 0.25 + 0.1443 R, 0.1075 — 0.0849 R,
05 0.75 + 0.4330 R, 0.25 - 0.1443 R, 0.1075 + 0.0849 R,

The coefficients of the various terms simply reflect the relative distance from the rotation axis to the

relevant atom



units — see Table 1b). It is clear that the tetrahedral ro-
tation around [110] mode is also needed in order to
satisfy local crystal chemistry.

It turns out that it is possible to obtain correctly sized
TOy4 tetrahedra via an appropriate combination of any
one of the rotation around ¢ modes with the
q = 1/2[1101]", type I RUM mode. It is not, however,
possible to simultaneously improve the underbonding of
all Ba ions via a combination of either of the q = 0
rotation around ¢ modes with the q = 1/2[1101]", type II
RUM mode. In both cases, whatever the sense or
magnitude of the rotations, there are always two crys-
tallographically distinct Ba ions formed. The calculated
valences (AVs) for these Ba ions are found to always
move in opposite directions with respect to an (already
initially under-bonded) average value ~1.6 if either of
the ¢ = 0 rotation around ¢ modes are used.

If, on the other hand, the q = 1/2[1101]", type I
RUM mode is used for the tetrahedral rotation around ¢
component of the overall distortion, only one crystall-
ographically distinct Ba ion is formed whose valence can
be adjusted to a crystal chemically very reasonable value
via a combination of a 15.76° rotation around ¢ com-
bined with a 7.88° rotation around [110] (see the frac-
tional coordinates listed in Table 3 and the apparent
valences of Table 4a). The average metal ion to oxygen
distance within each tetrahedra is then 1.69 A (exactly
midway between the 1.624 A expected for an Si-O dis-
tance and the 1.757 A expected for an Al-O distance)

Table 4 a Calculated bond valence sums (AVs) for the proposed
1h2m (a, = a + b, b, = —a + b, ¢, = 2¢) structure

Ba T(1) T(@2) O() O2) O@3) O4) O(5)

Al) 1.986 3.635 3.638 2.014 2.014 1.990 2.249 2.013
Si) 1.986 3.379 3.382 1.872 1.872 1.864 2.127 1.890
Average AV 1.986 3.507 3.510 1.943 1.943 1.927 2.188 1.952
Expected AV 20 35 35 20 20 20 20 20

>

<

-
Il

Coordinates from Table 3 with Ry, = 0.1375 radians and R, =
0.275 radians

b Calculated bond valence sums (AVs) for the final proposed 7h11
(a, =a+ b,b, = —a + b, ¢, = 2¢) Al/Si ordered structure

AV Expected AV
Ba 1.940 2.0
Al(1) 3.089 3.0
Si(1) 3.968 4.0
Si(2) 4.026 4.0
Al(2) 3.065 3.0
O(1) 1.964 2.0
0(2) 1.964 2.0
0(3) 1.939 2.0
o3y 1.910 2.0
04) 2.154 2.0
o4y 2.201 2.0
O(5) 2.001 2.0
o5y 1.957 2.0

Coordinates from Table 4 with Ry, = 0.1375 radians, R, = 0.275
radians, ey = 0.045 and ¢, = 0.01
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with a spread of only ~0.02 A. (Note that the various
possible sign combinations of the rotations do not gen-
erate distinct structures but are simple twins of the
original structure). We therefore believe, on general
crystal chemical grounds, that the tetrahedral rotation
around ¢ mode must be associated with the
q = 1/2[1101]", type I RUM mode. Certainly the frac-
tional coordinates generated from Table 3 using
Ry =0.1375 radians (7.88°) and R, =0.275 radians
(15.76°) represent a crystal chemically plausible struc-
ture, both in terms of apparent valences (see Table 4a) as
well as in having non-linear T-O-T bond angles along
the ¢, axis.

Al/Si ordering and associated structural relaxation

The Al/Si ordering found recently to exist in the o phase
(of Ba-hexacelsian synthesized from zeolite precursors:
Dondur et al. 1995) can be taken into account by an
additional P3ml, q = 0 Al/Si ordering mode superim-
posed on top of the /b2m fractional coordinates of Table
3. The addition of such a mode, however, automatically
reduces the resultant space group symmetry from /b2m
to Ib11. The associated expansion/contraction of the
AlO4 and SiO4 tetrahedra gives rise to the fractional
coordinate changes shown in Table 5. Choosing the
additional fractional coordinate parameters et = 0.045
and ¢, = 0.010 gives rise to an extremely plausible re-
sultant Al/Si ordered structure (see the AVs of Table 4b)
with average Al-O and Si-O bond lengths very close to
the ideal 1.757 and 1.624 A and with a small spread
(~0.02-0.03 A).

Conclusions

The picture of Ba-hexacelsian that has thus finally
emerged is of an ideal P6/mmm (a, b, ¢) parent structure
(P3m1 if Al/Si ordering and associated expansion/con-
traction of tetrahedra is taken into account) character-
ized by dynamically excited RUM modes at high
temperature which first of all transforms (at some un-
known temperature above the ~310 °C o to f phase
transition) via the condensation of a q = 1/2[1101]",
type I RUM mode to an Ilbmm (a, =a+b,b, =
—a+b,c, =2¢) f phase characterized by dynamically
excited type I RUM modes followed by a subsequent f8
to o phase transition at which a q = 1/2[1101]", type 1
RUM mode also condenses out, leading to a resultant o
phase orthorhombic structure of space group symmetry
1b2m (a,, by, ¢o; Space group symmetry /b11 if Al/Si or-
dering is taken into account). The dynamically excited
RUM modes at high temperature, like the related silica
polymorphs, could be expected to add together in such a
way that T-O-T bond angles are always non-linear at
any instant of time while appearing linear on average
(see, for example, Hammonds et al. 1996).
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Table 5 Final proposed Al/Si

ordered fractional coordinates Xo Y, Z,

in space group /h11

(a, =a + b, b, = -a + b, Ba 0.0 0.0 0.0

¢, = 2¢) as a function of rota- Al(1) 0.1115 R, + 0.2887 R, 0.3333 0.1453 — et

tion angle around [110], R,, Si(1) 0.1115 R, + 0.28387 R, 0.3333 0.3547 — et

rotation angle around c, RZy and Si(2) 0.1115 Ry — 0.2887 R, 0.6666 0.1453 + et

the two relaxation parameters, Al(2) 0.1115 Ry — 0.2887 R, 0.6666 0.3547 + et

e and &, describing the expan- 1 0.4197 Ry + 0.2887 R, 0.3333 0.2500

sion/contraction of the AlOy4 02 0.4197 Ry - 0.2887 R, 0.6666 0.2500

and SiOy, tetrahedra 03, 0.0 0.5 + & 0.1075
03 0.0 0.5 - & 0.3925
04 0.25 + 0.4330 R, + 3/2¢, 0.25 + 0.1443 R, — 1/2¢, 0.1075 — 0.0849 R,
o4 0.25 + 0.4330 R, — 3/2¢, 0.25 + 0.1443 R, + 1/2g, 0.3925 + 0.0849 R,
05 0.75 + 0.4330 R, — 3/2¢, 0.25 - 0.1443 R, — 1/2¢, 0.1075 + 0.0849 R,
05 0.75 + 0.4330 R, + 3/2¢, 0.25 — 0.1443 R, + 1/2¢, 0.3925 - 0.0849 R,
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