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Origin of the T1** dependence of the heat capacity of glasses at low temperature
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We address the issue of the experimentally observed deviation of the heat capacity of glasses from linearity
at low temperature3~1 K. The energy spectrum of an anharmonic oscillator in a double-well potential is
calculated, using parameters from recent molecular dynamics simulations of two-level systems in silica glass.
A model that accounts for the contribution of more than two lowest-energy levels of a single anharmonic
oscillator to the heat capacity at~1 K is proposed and is shown to describe the experimentally observed
« T3 behavior of the heat capacity of silica glass.
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All glasses show anomalous behavior of the heat capacitjevels atT~1 K. We start by numerically finding the energy
C at low temperatures-1 K, seen as an additional contribu- spectrum of a single anharmonic oscillator, using the range
tion to the Debye law (Fig. 1). This contribution is ex- of model parameters from our recent MD simulation of
plained in the model of two-level tunneling-stafeathich  DWP’s in silica glass, as well as from experimental d4ta.
assumes that certain objects in the glass move in double-weflhe low-lying part of calculated spectrum of symmetric an-
potentials(DWP’s), giving rise to two-level tunneling states. harmonic oscillators is a set of close pairs of energy levels.
It has been difficult to identify the existence of DWP’s in Using this property of the spectrum, we ana|ytica||y derive
glasses using atomistic simulations, which has contributed tghe expression for the energy and show that our model pre-
the growth of a literature doubting their existence. Recentlydicts the observed T behavior of the heat capacity.
we performed molecular dynamicevD) simulations of We start by noting that the difference between the two
silica glas&® and have found that it can maintain large- jowest-energy levels of the object in a DWP constructed

amplitude reorientations of several tens of connected, SiOfrom the superposition of two harmonic wells is given by
tetrahedra. We suggested that these motions are those giving

rise to the two-level tunneling states of Ref. 3. [ov

In this work we use the insights into the nature of DWP’s AE=2hw P exp(—d\2MV/h), (2
in silica glass gained in Refs. 4 and 5, including the size of mhe
participating objects, barrier height, and hopping frequencyyhereM is the mass of the objeat is the oscillation angu-
to address another issue related to the observed anomaloys frequency for one harmonic wel, is the barrier height,
heat capacity at low temperature. In the model of two-level,nq o is the separation between two minima, such Mat
tunneling stated,the heat capacity for a single tunneling =1Mw2d? (see, for example, Ref)BExpression2) is de-

state,Cy, is calculated assuming that at low temperature th‘?ived in the approximation y2MV/%>1, and henc@E is
dynamics in the two-level systefLS) includes only tran- very sensitive to the object’s madk As mentioned earlier,
sitions between the two lowest-energy levéls and E,.

Since topological disorder in the glass results in the presence
of DWP’s with different parameters, and hence different val-

ues ofEq,E,, the heat capacity is derived by averagig | ﬂ
with the density of two-level states:

10.0 T T T TTTTT] T T T T TTT1

1.0 -
< L
2 2 Amorphous silica, ~T'2
sz CO(AE)n(AE)d(AE)=Ekén(O)T, (1) =1 o1 N
© . ]
()
ey I~ -
where AE=E,—E;, andn(0) is the density of states at .:5: L _
AE~1 K, which is assumed to be approximately constant in ¢ 001 -
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the range ofAE.3 According to Eq.(1), the contribution to o .
the heat capacity due to two-level tunneling states is linear L Quartz, ~T®
with temperature. However, experimentally the dependence 0001
of ConT at low temperature shows a deviation from linear- -
ity aso«T1* ¢ where for silica glassy=0.3 (see Fig. 1L No L1l L
generally accepted explanation exists so far for this 0.01 0.1 1.0
deviation?

In this paper we show that deviation from linearity may
be explained if the dynamics of the object in DWP’s in glass  FIG. 1. Specific heat of silica glass and quartz as a function of
involves transitions between more than two lowest-energyemperaturdéfrom Ref. 2.
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we have seen that the object moving in DWP’s in silica glass
consists of several tens of connected Si€trahedrd;” giv-
ing a mass that is larger by an order of magnitude than is k
usually assumed. Larger values M lead to a substantial
decrease ofAE, and the energy levels that are next to the
first pair are expected to lower, so that they start getting
excited at~1 K and hence contribute to the heat capacity. To k=2
demonstrate this, we need to derive the energy spectrum of
anharmonic oscillators explicitly.
An alternative Hamiltonian that describes an object mov-

ing in a DWP is k=1 le
h? d?
H=—-— —+Mo?q’>+Aexp — yq?), ) A
2M dq2
k=0

whereq is the coordinateM is the object's massy is the
angular frequency of oscillation in the harmonic well when  FIG. 2. Schematic representation of the low-lying part of the
A=0, andA andy are parameters that determine the form ofenergy spectrunjE,} of symmetric anharmonic oscillators.

the DWP. The matrix elements of Hamiltonié8) using har- . . _
monic oscillator basis functions are For each set of M,V,»), we numerically diagonalize

Hmn. We find that in the range of model parameters consid-

ered, the values of the lowest-energy levels converge well
+AVnn, with increasing size oH,,,. We are interested in whether
the range of parameter®(V,v) requires that more than the
two lowest-energy levels give a contribution to the heat ca-
pacity at~1 K. This would be true if

1
n+ =

Hmn= dmnft @ 2

—(1+ ﬁy/Mw)Xan(X)Hm(X)dX,

1
Vinn= V2" Mnim! f €

whereH ,(x) are Hermite polynomial§The integral ofV/,,, where E, and E; are first and third energy levels, arfg

exists in analytical form as a function c_i,T:_ 1+Ay/Mo. ~1 K. By varying the values ofl, V) at a given value of
Note that the reason for choosing the DWP in the form of EQyye haye found that the conditicid) can be satisfied within

(3) is that it is essentially harmonic at higher values of en-y,q range of parameters described above, with the value of
ergy. Using harmonic oscillator basis functions, the anhar—up to ~0.1 THz. The latter value of is consistent with the

monicity in Eq. (3) becomes a vanishing perturbation at one \ve derive from constructing the profile of the potential
higher energy values, which results in good convergency o nergy over the jump event.
energy values as the size of the Hamiltonian matrix in-\ye find that within the considered range of model param-

creases. g he barrier heiaht and . hat Clers: the structure of the low-lying part of the energy spec-
We introduce the barrier height and a requirement that ., can be well approximated as a set of close pairs of

the energy minima of DWP's be separated by a certain dISFevels, with the energy difference within a paisignificantly
tanced, thus reducing the model parametersMoV and»,  gmajier than the distance between different prire<\ (see
wherev=w/2m. The range of these parameters can be chose,gig_ 2). Such a structure of the energy spectrum of symmetric
using our recent MD simulations of silica gldssin which 2 namonic oscillators was noted in Ref. 7. It is also consis-
the motions in DWP’s involve several tens of connectedign yith the structure of the spectrum derived using the po-
Si0, tetrahedra, with typical values of atomic jumps from yoniia) of two superimposed harmonic wells, if the object's

one minimum to another of about 1 A, giving us the range of . e

e mass is largé. The latter condition is given ad\Mw/7
vaIue_sM and_d. We chqose.the upperwlglt of at 0'05.8\./’ =4 (Ref. 6 and is well satisfied for values ®fl,V,v in the
consistent with our estimations from .The upper limit considered range.

of v may be estlmat_ed by noting 'ghat the motion in DWPS' We now derive the energy of the glass arising from the
bglng a soit potential, does not involve any dIS'FOftIOﬂS .Ofspectrum of energy levels shown schematically in Fig. 2,
SiO, tetrahedra. The mode that can propagate withouy, S'Oassuming thak~1 K:

units having to distort is called a rigid unit moleUM), and '

we have previously found that the structure of silica glass is

essentially RUM floppy:® From a comparison of calculated E=f Eo({EHN(EDAE; - - -dEy, (5)

and experimental dynamic structure factors in silica glass,

we have found that the frequencies of the RUM'’s spreadvhereE, is the energy of a single anharmonic oscillator, and
from zero up to the boson peakafl THz? Values ofvare  n({E,}) is the density of states of the configuration
determined by the superposition of RUM’s with different fre- {E,, ... Ey}.

guenciesy;, leading to the appearance of modes with fre- As was noted above, within the range of considered
quencies that start from njin—y|. model parameters, the low-lying part of the energy spectrum

A=E3—E;~kgTo, 4
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can be represented in terms@o&nd\ (see Fig. 2 ThusE, 1 . N
becomes a function of and\ only, and the energy can be 11
written as
&

E=j Eo(e,\,N)n(e,\)ded\, (6) =1
wheren(e,\) is the density of states that yields the energy /' RN
spectrum with the structure shown in Fig. 2 and parameters w : ‘
and \. For N pairs of energy levels in the spectrum, the 1 20 1 2
partition function is A (K)

N-1 FIG. 3. Left shows an()\) (dashed ling and Egy(\,8,N=x)

7= 2 exp(— BKN)[1+exp(— Be)] (solid line) for low temperaturéhigh 8). The product is vanishingly
k=0 small, leading to a negligible contribution to the energy, Bd).

The right side shows the sam®(\) (dashed ling but with
1-exp—NB\) (77 Eod\,B,N==) at a temperature of around 0.5(Kolid line). The
1—exp(—pB\) '’ product of the two is very similar t&y,(\,3,N=2) at the same

L t turéchai .
whereB=1/kgT. Formally the summation in E¢7) should emperaturdchain curve
be extended to infinity, but in what follows we preseNeas

=[1+exp(—Be)]

a parameter for reasons that become apparent Bieis As kgT becomes comparable witk, the contribution
given as from the second term in Eq11) becomes significant. To
evaluate the integral ovey, we note that, similar t&q,, Eq,
Eo=Eoi(€e,8) + EgaN,B,N), 8  has a well-defined maximum for finiteN. Indeed,
where Eox(N,8,N=2)=E(\,B), and the peak position decreases

slowly with N, remaining around ~kgT for severalN. Thus
for finite N the integration ovek in Eq. (11) can be carried
out in the same manner as owenbove. FoN=x, Ey, has
its maximum value of 1 ak=0. On the other hand, we find
and from the calculated energy spectra of E8). that all sets of
N physical model parameters giméx) — 0 for A<A~1 K and
_ . (10 give n(A) constant forx>\. Qualitatively this may be un-
exp(BN)—1  exp(NBN)—1 derstood by noting that the value of? in Eq. (3) has a
natural lower limit. This imposes the limit on the separation
between different energy pairs and hencéin the case of
harmonic oscillators, the corresponding level separation is
simply proportional tow), thus suppressing_the states with
small values of\. That n(A\)—0 when A<\ means that
Ezf EOl(e,,B)n(e)de-Ff Eo2(N,8,N)n(M)dN. (11)  the productEgy(\,8,N==)n(\) in Eqg. (11) is centered
around\. Therefore folN= o the integration ovek can also
At low temperature,kBT—ve—’ 0n|y the first term in Eq. be carried out in the same way as oveilNote thath~1 K
(1) is significant, since<\ (note that this condition has not corresponds to the system with effective two energy pairs
been used until nowand, as will be shown later, the inte- contributing at 1 K. Thus we can writeEgy(\,3,N
grand in the second term in E(L) is significant only when =o)n(\)=Eg(\,3,N=2)n(\). From calculations we find
kgT~N\. The integration ovek can be done by extending n(X)~n(e), and the energy @sT~\ is then given as
the range ofe from zero to infinity, since the dependence of
Egs 0n € in EqQ. (9) is well centered around~1.3gT. For
this reason the behavior of €) is not important in the range o 5 -2
beyonde. As the line of argument in Ref. 3, we assume that E= EE+J Ega(N,B,2)n(N)dA= Fn(O)kgTz. (13
n(e) is approximately constant for the contributing states. 0
Becaus&<AE~1 K, we can seh(é)~n(0), wheren(0)
is the density of states introduced in Ed). The energy at
kBT"’E iS

9

~

€
Eoi(e,B)= exd B+ 1

EoaN,B,N)=

SinceEy can be written as a sum of two terms, each of
them separately dependent emnd\, the integration(6) is
easily performed as it splits into two separate terms:

The main point is illustrated in Fig. 3. At low temperature,
the product ofEgy(\,B,N==) andn(\) is small for all\,
% w? "y so that the contribution to the energy, Ejl), is negligible.
Ee:f Eoi(e.B)n(e)de=75n(0)kgT™. (12)  In this limit, the TLS modéel is a good approximation. At
0 higher temperatures, the product B&f(\,B3,N=«) and
The resultant heat capacity is identical to Ef). and corre- n(\) is peaked at a nonzero valueofand could be said to
sponds to the case when only the lowest-energy pair is acesemble the form oEgy,(\,3,N=2) at the same tempera-
cessible to the system. ture (or indeed, if appropriate, the same function for slightly
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3

supported by numerical calculations using a formnéi)
that givesn(\)Egy(N\,B,N=x)~En(\,B,N=2) at 0.5 K,
resulting in a crossover fronExT? to ExT?3 at T
~0.1 K.

Before concluding, we discuss what effect the asymmetry
of DWP’s may have on our model. Generally, the asymmetry
changes the structure of energy levels, Fig. 2, with the sepa-
4 ration between two lowest-energy pairs equal to

AE= JET AL (14

e . ) whereAj is the potential asymmetry, ardis the tunneling
0.03 0.1 0.3 contribution. Due to isotropic atomic arrangements in glass,
T(K) the density of states(A,) with asymmetry between, and

FIG. 4. Energy as a function of temperatyselid line) varying A_°+dA0 IS eqqal for positive and negativa. Togethgr
asT23 shown as a crossover between two parabglEsand 2, T2 Wlt_h the condition thqtn(Ao) be a mono_tor_101_,|s func_t|on
(dashed linesin the rangeT,=0.03 K andT,=0.3 K. which decreases a4 | increases, sinde\o| is limited by its

maximum value in glass, this means that there is a nonzero
higher values oN). Thus the energy function crosses overumber of states with,~0. Sincee<1 K, the typical val-
from the TLS function to something resembling the state4®S ofe are below 0.1 K, and the values of asymmetry up to
with N pairs of energy levels. 0.1 K would not have a significant effect on the value of

Based on Eqg12) and(13), the observed deviation of the Separation between two lowest-energy levél), as well as
heat capacity from linearity can be described as follows. AN the overall structure of energy spectrum in Fig. 2 and,

the temperature increases framo \, the energy deviates Nence, on our model. _ _
from the parabola E=XT2 to E=2XT2 where y In summary, we have addressed the issue of the nonlin-

= (m?/12)n(0)k3 . This is shown schematically in Fig. 4. In earity of the heat capacity.of. glasses at low temperatife
the crossover regime betwedh~e and T~ we might K. We have shown that within the range of parameters that
expect to find the energyT2*e. We hazve TL/T)2e describe the DWP’s in silica glass, more than two lowest-
=2(T,/T,)? or a=log 2/log(T /T.) From Fig 21 .}. T energy levels need to be taken into account when calculating
~10 2ané we obtainr=0 3(seé F%g 3 The res'ulténtzforlm the heat capacity at 1 K. We have proposed a model that
EoT23 |eads to the heat. capacity \./a.rying ag'3 This is accounts for the contribution of higher-energy levels and de-
exactly as is seen in Fig. 1, and thus we concllude that th cribes the experimentally observed'™* behavior of the

proposed model correctly describes the experimentally ob-eat capacity.
served behavior of heat capacity. This argument has been We are grateful to the EPSRC for support.
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