CHAPTER 1

CRYSTAL STRUCTURE AND SYMMETRY

1-1 Introduction

Many solids around us are crystalline. Obvious ex-
amples are diamonds and other precious stones which
have an outward crystalline appearance. Many metals
are also crystalline. However, they are usually com-
posed of numerous small crystals fused together so
that their outward appearance is not crystalline. In
this book, we will consider only crystalline solids.

A crystal is a solid in which all the atoms are
arranged in a periodic manner. As a simple exam-
ple, consider the cubic arrangement of atoms shown in
Fig. 1-1. We show only a portion of the crystal. We
imagine that it extends out in all directions to infinity.
Real crystals, of course, have finite dimensions, but,
for now, we consider the crystal to be infinitely large
with no surfaces.

The atoms in the crystal shown in Fig. 1-1 are in
equivalent positions. If we sit on one of the atoms,
we cannot tell where we are by looking at the neighbor-
ing atoms. All atoms have exactly the same surround-
ings. (This, of course, is only strictly true in an infinite
crystal.) If we move the entire crystal in some direc-
tion so that each atom is now at a position where some
other atom used to be, the crystal looks the same as
before. We cannot tell that it has been moved. This is
called translational symmetry. We may now state
the definition of a crystal more precisely. A crystal is
a solid which has translational symmetry.
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Fig. 1-1. Simple cubic arrangement of atoms.

1-2 Lattices

In order to quantitatively describe a crystal, we in-
troduce a group of geometric points called the crystal
lattice which defines the positions of the atoms. As
an example, consider the two-dimensional square lat-
tice shown in Fig. 1-2. This lattice is a set of geometric
points on a plane. If we were to place an atom at each
point, then we would have a two-dimensional crystal.
All lattice points in the figure are equivalent. This
lattice has translational symmetry in two dimensions.
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Fig. 1-2. The two-dimensional square lattice.

1-3 Basis Vectors

A lattice vector is a vector which takes us from one
lattice point to any other lattice point. Obviously, all
lattice vectors R in the two-dimensional square lattice
(Fig. 1-2) have the form

(1-1)

where ny and no are integers (including negative val-
ues and zero), and a is the distance between adjacent
lattice points in the 2 or y directions, as shown in
Fig. 1-2. 1 and j are unit vectors in the z and y di-
rections, respectively. If we define two vectors (see
Fig. 1-3),

R = niai + nqaj,

a; = al
1 A? (1_2)
az = aj,
then we can write R as
R= nia; + noas. (1—3)
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Fig. 1-3. Basis vectors for the square lattice.
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Fig. 1-4. An alternate choice of basis vectors for the
square lattice.

Thus, any lattice vector R can be written as
a linear combination of a; and as (using integers,
ny and ny). Conversely, it is also true that any linear
combination of a; and a, (using integers, n; and ns) is
a lattice vector R. Such vectors, a; and as, are called
basis vectors of the lattice.

The choice of basis vectors, a; and as, is not
unique. We could just as well choose (see Fig. 1-4)

13 ~
a; = al,
b e (1-4)
a, = a1+ aj.

For example, consider the lattice vector R = ai + 2aj.
This can be written as R = a; + 2a3 or as R =
—a) + 2a), as shown in Fig. 1-5. There are an infinite
number of ways to choose basis vectors for a given
lattice. There is, however, usually a conventional
choice of basis vectors. For example, the conventional
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Fig. 1-5. Lattice vector R expressed as a linear com-
bination of the basis vectors, a; and as, and also as a
linear combination of the basis vectors, aj and a),.

basis vectors for the square lattice are those given in
Eq. (1-2). Basis vectors can be found for any lattice
of equivalent points.

1-4 Simple Cubic Lattice

The extension to three dimensions is straightforward.
The lattice which underlies the crystal structure in
Fig. 1-1 has basis vectors given by

a; = al,
as = U/j, (1—5)
az = al::,
and the lattice vector is given by
R = nja; + nsas + nias. (1—6)

This lattice is called simple cubic (sc).
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1-5 Unit Cells

A crystal can always be divided into “building blocks”
called unit cells. Each unit cell has the same shape,
the same volume, and the same contents. For the sc
lattice, we may choose the unit cell to be a cube of
side a (see Fig. 1-6). The choice of position of the lat-
tice point within the unit cell is arbitrary. We may
arrange the cubes so that each cube contains one lat-
tice point at its center (see Fig. 1-7a). Alternately, we
may arrange the cubes so that the lattice points are
at the corners of the cube (see Fig. 1-7b). The second
choice is the conventional unit cell.

Each of these unit cells contains one lattice point.
This is obviously true for the unit cell in Fig. 1-7a
which contains one lattice point in the center. But the
conventional unit cell in Fig. 1-7b appears to contain
eight lattice points, one at each corner. Actually, each
of those lattice points is shared by eight neighboring
unit cells that adjoin at the corner so that each unit
cell contains “% lattice point” at the corner. Eight
such lattice points give us a total of one lattice point
in the unit cell.

Just as the choice of basis vectors for a lattice is
not unique, the choice of unit cells is also not unique.
For example, we could just as well choose the unit cell
shown in Fig. 1-8. We only require that the unit cells
be identical to each other and fill all space. There
are an infinite number of ways to choose the unit cell.
However, the conventional unit cell for the sc lattice is
the cube shown in Fig. 1-7b. The distance a between
adjacent lattice points in the z, y, or z direction is
called the lattice parameter.
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Fig. 1-6. Unit cells of the sc lattice
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Fig. 1-7. The unit cell for the sc lattice (a) with a
lattice point at the center and (b) with a lattice point
at each corner (conventional unit cell).

Fig. 1-8. An alternate choice of unit cell for the sc
lattice.
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1-6 Crystal Directions and Planes

Directions in crystals are usually represented in short-
hand by three integers inside a set of square brackets.
The direction R = njai+ n2aj +ngak in a cubic crys-
tal, for example, is written as [n1,m2,n3]. The integers
are usually chosen to be as small as possible. Three
common directions in cubic crystals with which we will
deal are (see Fig. 1-9)

R=ai or [100],

[110],
R=ai+aj+ak or [111].

R=ai+qaj or (1-7)

Consider a hypothetical crystal which has one
atom at each lattice point of an sc lattice with a =
5.00 A. (No naturally occurring element forms an sc
lattice.) Starting from an atom at the origin, we see
that along the [100] direction, there are atoms at ai,
2ai, 3ai, etc. The distance between adjacent atoms
along the [100] direction is @ = 5.00 A, which is the
length of the vector a; = ai.

, <

Fig. 1-9. Three common directions in cubic crystals.

If we go along the [110] direction from the atom at
the origin, we find atoms at ai+aj, 2a1+ 2aj, 3ai+ 3aj,
etc., and the distance between adjacent atoms is the
length of the vector ai + aj, which is v2a = 7.07 A.
Similarly, along the [111] direction, atoms are at ai +
aj + ak, 2ai+ 2aj + 2ak, 3ai+ 3aj + 3ak, etc., and the
distance between adjacent atoms is the length of the
vector al + aj + al::, which is v/3a = 8.66 A.

We would find, in general, that along any given
direction in a crystal, atoms are evenly spaced. The
distance between adjacent atoms is smallest along the
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[100] direction. These atoms are nearest neighbors
to each other. If we imagine the atoms to be “hard”
spheres such as those shown in Fig. 1-1, then we see
that the nearest neighbors “touch” each other, and
the distance between the centers of nearest-neighbor
atoms is the diameter of the atoms. Thus, in this hy-
pothetical crystal, the diameter of the atoms is 5.00 A.

Planes of atoms in a crystal are usually rep-
resented in shorthand by three integers inside a
set of parentheses. In cubic crystals, a plane de-
noted by (n1,n2,n3) is perpendicular to the direction
[n1,m2,n3]. These three integers nq,n2,ns, when re-
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Fig 1-10. Some typical planes of atoms in a cubic
crystal. The atoms forming the planes are shaded.
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ferring to crystal planes, are called Miller indices.
(In non-cubic crystals, the meaning of Miller indices is
more complicated.) In Fig. 1-10 are shown some typ-
ical planes in a cubic crystal. Distances between ad-
jacent planes of atoms can be computed by inspection
for the simpler cases. For example, from Fig. 1-11, we
see that the distance between adjacent (100) planes is
a and between adjacent (110) planes is a/+/2. For our
hypothetical crystal of a = 5.00 A, these distances are
5.00 A and 3.54 A, respectively.

The atomic density n of a crystal (in units of
atoms/unit volume) is easily obtained by considering
a single unit cell. For our hypothetical crystal, there
is one atom per unit cell, and the volume of the unit
cell is a®. Thus, n = a=3. For a = 5.00 A, we have
n = 8.00 x 10?! atoms/cm?. To obtain the mass den-
sity p (in units of g/cm3, for example), we only need
to know the mass of each atom. We will illustrate this
later for the case of an actual crystal.

1-7 Body-Centered Cubic Lattice

We can form a new lattice which is different from the
sc lattice by placing an additional lattice point at the
center of the unit cell of Fig. 1-7b. The resulting lattice

Fig 1-11. Distances between adjacent planes of atoms
for two cases in a cubic crystal. The adjacent planes
of atoms are shaded.
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is called body-centered cubic (bce) and is shown in
Fig. 1-12. Note that every lattice point is equivalent
to every other lattice point. Each of the original sc
lattice points is also in the body-centered position of
eight of the new lattice points.

The conventional unit cell for the bcc lattice is
a cube of side a as shown in Fig. 1-13. We see that
there are two lattice points in this unit cell: a lattice
point in the center and % lattice point at each of the
eight corners. This is not the smallest possible unit
cell which can be constructed for the bec lattice. The
smallest possible unit cell, called the primitive unit
cell, contains only one lattice point. Its volume is
half the volume of the conventional unit cell shown in
Fig. 1-13.

Fig. 1-13. The conventional unit cell of the bcc lattice.



The choice of primitive unit cell is not unique.
There are an infinite number of possible ways to choose
it. However, in physics, we usually use the primitive
unit cell called the Wigner-Seitz cell. This cell con-
tains one lattice point at its center and contains the
region of space that is closer to that point than to any
other lattice point. This is best explained by example.
The Wigner-Seitz cell for a two-dimensional square lat-
tice is shown in Fig. 1-14. For the two-dimensional
centered-rectangular lattice shown in Fig. 1-15, the
result is more complicated. Note that each line seg-
ment which forms a cell boundary is a perpendicular
bisector of a line joining two lattice points.

In three dimensions, the case of the sc lattice is
simple. The Wigner-Seitz cell is the cube we already
showed in Fig. 1-7a. For the bcc lattice, the Wigner-
Seitz cell is a “truncated octahedron” as shown in
Fig. 1-16. Its volume is %a3. These cells nest together
and fill all space.

The basis vectors of a bce lattice are not those
given in Eq. (1-5) for the sc lattice. No linear combi-
nation of those vectors (using integers) can take us
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Fig. 1-14. The Wigner-Seitz cell for a two-dimensional
square lattice.
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Fig. 1-15. Wigner-Seitz cell for the two-dimensional
centered-rectangular lattice.
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Fig. 1-16. (a) The Wigner-Seitz cell for the bece lattice.
(b) These cells fit together to fill all space.

to any of the body-centered lattice points such as R =
tai+ aj+ Lak. There is no unique way to choose
the basis vectors of a bcc lattice, but a very common
choice is

a; = —%ai—i— %aj—i— %ak,
a, = 1al- }aj+ iak, (1-8)
ag = %al + 50 — %ak

All lattice points can be expressed in the form R =
niaj; + nqas + nzas. For example, %ai + %aj + %ak =
a; + as + a3. Also, as another example, ai = ay + ag3.

Directions and planes in a bce crystal are not la-
beled in reference to these new basis vectors, but are
labeled according to the convention we introduced for
the sc lattice. Thus, directions [n1,m2,n3] and planes
(n1,m2,n3) have the same meaning with respect to the
z, y, and z axes as in the sc lattice shown in Figs. 1-9
and 1-10. In the bee lattice, points along the [111]
direction are nearest neighbors. The distance between
them is the length of the vector R = %ai + %aj + %ak
which is 1av/3 = 0.866a.
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Examples of elements which form bce crystals are
given in Appendix 6. For example, iron (Fe) forms
a bee crystal with a = 2.86 A. The distance between
nearest-neighbor atoms is 0.866a = 2.48 A. One can
think of this as the “diameter” of the Fe atom. The
easiest way to compute the atomic density n of Fe
is to use the conventional unit cell of Fig. 1-13. It
contains two atoms and has a volume of a®. Thus,
n = 2a=% = 8.55 x 10?? atoms/cm3. To obtain the
mass density p, we need to know the mass of a sin-
gle Fe atom. The atomic mass given in Appendix 2
is the mass in units of atomic mass units. From Ap-
pendix 2, we find the mass of one Fe atom is 55.85 u
or 9.27 x 10723 g. Thus, the mass density of Fe is p =
(8.55 x 10%2 atoms/cm’) x (9.27 x 1023 g/atom) =
7.93 g/cm®.

Problem 1-1. Consider a crystal of iron (Fe). Find
the distance between adjacent atoms in the [100] direc-
tion. Repeat for the [110] and [111] directions. Find
the distance between the (100) planes. Repeat for the
(110) planes. Answer: 2.86 A, 4.04 A, 2.48 A, 1.43 A,
2.02 A.

Problem 1-2. Using the data in Appendix 6, find
the atomic diameter of lithium (Li). Repeat for
sodium (Na), potassium (K), rubidium (Rb), and ce-
sium (Cs). (Consider the atoms to be spheres which
touch each other.) Answer: 3.03 A, 3.72 A, 4.50 A,
4.84 A, 5.63 A.

Problem 1-3. Using data in Appendix 6, find
the volume of a primitive unit cell in a crystal of
chromium (Cr). Answer: 11.8 A3.

1-8 Face-Centered Cubic Lattice

Yet another lattice can be formed from the sc lattice
by placing a lattice point at the center of each face
of the unit cell shown in Fig. 1-7b. The resulting lat-
tice is called face-centered cubic (fcc) and is shown in
Fig. 1-17. As with the bcc lattice, every lattice point
in the fcc lattice is equivalent. The conventional unit
cell for the fcc lattice is a cube of side a as shown in
Fig. 1-18. Let us count the number of lattice points in
this unit cell. There are eight corners (each containing
+ lattice point) and six faces (each containing § lat-
tice point) which gives us a total of four lattice points.
This, of course, is not a primitive unit cell for the fcc
lattice. The Wigner-Seitz primitive unit cell for the
fee lattice is a rhombic dodecahedron and is shown in
Fig. 1-19. It contains one lattice point, and thus its

volume is a?.

Fig. 1-18. The conventional unit cell of the fcc lattice.

A common choice for basis vectors of the fcc lat-
tice is the following:
a; = zaj + %alA{,

a, = zai+ %af{, (1-9)

=N N

~ 1 .
az = al + 3aj.

Lattice points along the [110] direction are nearest
neighbors. The distance between them is the length
of the vector Lai+ Laj which is 1av/2 = 0.707a. Ex-
amples of elements which form fcc crystals are given

in Appendix 6.
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Fig. 1-19. (a) The Wigner-Seitz cell for the fcc lattice.
(b) These cells fit together to fill all space.

Problem 1-4. Consider a crystal of copper (Cu).
Find the distance between adjacent atoms in the [100]
direction. Repeat for the [110] and [111] directions.
Find the distance between the (100) planes. Repeat
for the (110) planes. Answer: 3.61 A, 2.55 A, 6.25 A,
1.81 A, 1.28 A.

Problem 1-5. Using the data in Appendix 6, find
the atomic diameter of copper (Cu). Repeat for sil-
ver (Ag) and gold (Au). (Consider the atoms to be
spheres which touch each other.) Answer: 2.55 A,
2.88 A, 2.88 A.

Problem 1-6. Using data in Appendices 2 and
6, find the density (in g/cm?) of aluminum (Al).
Answer: 2.72 g/cm?.

Problem 1-7. The structure of iron is found to be
bee below 910°C and fecc above 910°C. The density of
iron increases by 1.0% as it goes through the transition
from bcce to fee at 910°C. By what percentage does the
nearest-neighbor distance between iron atoms change?
Answer: 2.5%.
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Problem 1-8. Using data in Appendix 6, find the vol-
ume of a primitive unit cell in a crystal of nickel (Ni).
Answer: 10.9 A3.

Problem 1-9. R = ai is a lattice vector of the fcc
lattice. Write this vector in the form R = nja; +
naas + nsag, using the basis vectors in Eq. (1-9).

Problem 1-10. Consider a box of volume 1.00 m?®
filled with balls of diameter 1.00 mm. (a) If we pack
the balls in an sc lattice, how many can we get into
the box? (b) Repeat for bce lattice. (c) Repeat for
fce lattice. Answer: 1.00 x 10%, 1.30 x 109, 1.41 x 10°.

1-9 Sodium Chloride Structure

Next, let us consider the structure of NaCl (sodium
chloride, common table salt). In Fig. 1-20, we see that
the Na and Cl atoms occupy the lattice points of an
sc lattice. However, since some lattice points are oc-
cupied by Na atoms and others by Cl atoms, not all
lattice points are equivalent. We can tell the difference
between the two kinds of sites because the atoms there
are different.

If we look carefully at Fig. 1-20, we can see that
the Na sites form a set of lattice points which are equiv-
alent. We cannot tell the difference between Na atoms.
They are each in identical surroundings. Such a set
of lattice points which are equivalent to each other is
called a Bravais lattice. The Bravais lattice of NaCl
corresponds to the set of Na sites and is fcc as we can
see in Fig. 1-20. Actually, the absolute location of the
lattice points is arbitrary, and we could just as well

Fig. 1-20. The sodium chloride structure. The small
spheres represent Na atoms, and the large spheres rep-
resent Cl atoms.
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put the lattice points at the Cl sites, which are also
equivalent to each other, or we could put the lattice
points between Na and Cl atoms. The choice of origin
for the lattice is arbitrary. For any given origin Ry for
the lattice, all points Rg + nia; + neas +nzas (where
a;, ap, and a3z are basis vectors for the fcc Bravais
lattice) are at equivalent positions in the crystal.

Associated with each lattice point are two atoms,
Na and Cl. These two atoms are called the basis. (Do
not confuse this usage of the word basis with that in
basis vector.) The lattice is a set of geometric points.
The basis is a set of one or more real atoms associated
with each lattice point. A crystal is a basis combined
with a lattice.

The conventional unit cell for the NaCl structure
is the same as that for its fcc Bravais lattice and is
shown in Fig. 1-21. This unit cell contains four Na
atoms and four Cl atoms. We can obtain this re-
sult by actually counting them as we did for the bcc
and fcc lattices, but the result is more easily obtained
by remembering that the conventional unit cell of the
fce lattice contains four lattice points. Since the ba-
sis for the NaCl structure is one Na atom and one
Cl atom, then the conventional unit cell must contain
four of these bases, or four Na and four Cl atoms. The
Wigner-Seitz primitive unit cell for the NaCl structure
is that of its Bravais fcc lattice, the rhombic dodeca-
hedron in Fig. 1-19, and, of course, contains one Na
atom and one Cl atom. Examples of crystals with the
NaCl structure are given in Appendix 6.

Fig. 1-21. The conventional unit cell for the sodium
chloride structure. The large and small spheres repre-
sent two different types of atoms.

Problem 1-11. Find the distance between
nearest-neighbor atoms in sodium chloride (NaCl).
Answer: 2.82 A.

Problem 1-12. The density of sodium chlo-
ride (NaCl) is 2.165 g/cm3. Using the atomic masses
in Appendix 2, calculate the lattice parameter a and
compare with the value given in Appendix 6.

Problem 1-13. Using data in Appendix 6, find the
volume of a primitive unit cell in a crystal of potassium
chloride (KC1). Answer: 61.6 A3.

Problem 1-14. Consider the two-dimensional crys-
tal shown in Fig. 1-22. The o and e symbols represent
two different kinds of atoms. Are all o atoms in equiva-
lent positions? Are all e atoms in equivalent positions?
Draw a “conventional” unit cell which is rectangular
in shape and has a o atom on each corner. How many
o atoms are in this unit cell? How many e atoms?
Draw a Wigner-Seitz primitive unit cell centered on a
o atom. Warning: draw carefully!

Problem 1-15. Consider the two-dimensional crystal
in Fig. 1-23. There is only one kind of atom in the
crystal, represented by the symbol e in the figure. Are
all atoms in equivalent positions? Draw a primitive
unit cell. (It does not necessarily need to be a Wigner-
Seitz cell.) How many atoms are in this cell?

O L O L O
[ O o O o
O L O L O
[ O o O o
O L O L O

Fig. 1-22. Two-dimensional crystal for Problem 1-14.

Fig. 1-23. Two-dimensional crystal for Problem 1-15.
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1-10 Cesium Chloride Structure

Another rather common structure is that of CsCl (ce-
sium chloride, see Fig. 1-24). The Cs and Cl atoms
sit at the lattice points of a bcc lattice, but, as with
Na(Cl, since the sites are occupied by different atoms
and are not equivalent, the Bravais lattice is given by
the set of lattice points just occupied by the Cs atoms
and is therefore sc. The basis associated with each
lattice point is one Cs atom and one Cl atom. The
conventional unit cell of CsCl is the same as that of its
sc Bravais lattice (see Fig. 1-25) and contains one Cs
atom and one Cl atom. Examples of crystals with the
CsCl structure are given in Appendix 6.

Problem 1-16. Using data in Appendix 6, find the
volume of a primitive unit cell in a crystal of cesium
chloride (CsCl). Answer: 69.4 A3.

1-11 Zincblende Structure

Next, let us examine the structure of ZnS (zinc sulfide
or “zincblende”). This structure is more difficult to
visualize than those which we already discussed. The
conventional unit cell is shown in Fig. 1-26. The Zn
atoms (large spheres) sit at fcc lattice points. If we
imagine this unit cell to be divided into eight smaller
cubes, then the S atoms (small spheres) sit at the cen-
ters of four of these cubes, as shown in Fig. 1-26. An-
other way of describing the positions of the S atoms is
to say that each S atom is displaced from a Zn atom
by a vector yai+ +aj+ jak. The Bravais lattice of the

z

Fig. 1-24. The cesium chloride structure. The small
spheres represent the Cs atoms and the large spheres
represent the Cl atoms.
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Fig. 1-25. The conventional unit cell of the cesium
chloride structure. The large and small spheres repre-
sent, two different types of atoms.
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Fig. 1-26. The conventional unit cell for the zincblende
structure. The large and small spheres represent two
different types of atoms.

ZnS structure is, of course, fcc. The conventional unit
cell is the same as that of its fcc Bravais lattice and
contains four lattice points (see Fig. 1-26). Thus the
conventional unit cell contains four Zn atoms and four
S atoms. The Wigner-Seitz primitive unit cell is that
of its fcc Bravais lattice, the rhombic dodecahedron in
Fig. 1-19, and, of course, contains one Zn atom and
one S atom. Examples of crystals with the zincblende
structure are given in Appendix 6.
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Problem 1-17. Using data in Appendix 6, find the
volume of a primitive unit cell in a crystal of gallium
arsenide (GaAs). Answer: 44.9 A3.

1-12 Diamond Structure

The structure of diamond (carbon crystal) is almost
identical to that of ZnS. If we change each Zn atom
to a C atom and each S atom to a C atom, we obtain
the diamond structure. The conventional unit cell is
shown in Fig. 1-27. You might expect here that since
all the atoms are of the same type, all atoms are now
at equivalent positions, and we have a new Bravais lat-
tice. Such is not the case. The sites formerly occupied
by Zn and S atoms are not equivalent, even though
they are now both occupied by C atoms. The environ-
ment of each kind of site is not identical. Note that in
the ZnS structure of Fig. 1-26, all “small” atoms have
four nearest neighbors arranged like that of Fig. 1-28a,
while all “large” atoms have four nearest neighbors ar-
ranged like that of Fig. 1-28b. These two arrangements
are different. Thus, even though all atoms in the dia-
mond structure are the same type, we can still tell the
difference between these two kinds of sites by looking
at the arrangement of nearest neighbors. The Bravais
lattice of diamond is therefore fcc, the same as for ZnS.
The conventional unit cell contains eight C atoms, and
the primitive unit cell contains two C atoms. Exam-
ples of crystals with the diamond structure are given
in Appendix 6.

Fig. 1-27. The conventional unit cell of the diamond
structure. All atoms are identical.
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Fig. 1-28. Arrangement of nearest neighbors to (a)
“small” atoms and (b) “large” atoms in the ZnS struc-
ture of Fig. 1-26.

Problem 1-18. Using the data in Appendices 2 and 6,
find the density of diamond (carbon crystal) in g/cm3.
Answer: 3.54 g/cm?.

Problem 1-19. Using data in Appendix 6, find the
volume of a primitive unit cell in a crystal of sili-
con (Si). Answer: 39.8 A3,

Problem 1-20. Using the data in Appendix 6, find
the atomic diameter of carbon (C). Repeat for sili-
con (Si) and germanium (Ge). (Consider the atoms to
be spheres that touch each other.) Answer: 1.54 A,
2.35 A, 2.44 A.

1-13 Point Operators

A symmetry operator of a crystal is something we
can do to the crystal such that the crystal looks iden-
tical to what it looked like before we did it. For exam-
ple, a translation of the crystal by a lattice vector R
is a symmetry operator. There is also another class of
symmetry operators called point operators. Point
operators always leave some point in the crystal fixed.

As an example, let us consider the point opera-
tors which are symmetry operators of a crystal with
the simple-cubic structure, like that shown in Fig. 1-1.
One such point operator is a rotation of the crystal by
180° about the z axis. All of the points on the axis re-
main fixed in this operation. We call the z axis a two-
fold rotation axis, since two successive 180° rotations
bring the crystal back to where it started again. We la-
bel this point operator Cs,. Similarly, the y and z axes
are also two-fold rotation axes in this crystal, and Cs,
and (5, are symmetry operators. In addition, there
are six other two-fold rotation axes, located along the
face-diagonals ([110], [110], [101], etc.). These point
operators are labeled Cs,, C2, Cs., etc. The con-
vention for labeling these point operators is given in
Appendix 3.

Another symmetry operator for the simple-cubic
crystal is a 90° rotation about the z axis. The z axis
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is thus a four-fold rotation axis, as well as a two-fold
rotation axis. The symmetry operator is labeled Czrz.
The superscript “+” in the symbol means that the
rotation is in the “positive” direction. (A positive ro-
tation is in a counter-clockwise direction if the axis of
rotation is pointed towards you.) The symmetry op-
erator which rotates the crystal by —90° about the
z axis is labeled Cy_ . Similarly, the y and z axes are
also four-fold rotation axes in this crystal, and Cj; and
sz are symmetry operators.

The simple-cubic crystal also has a three-fold ro-
tation axis in the [111] direction. The angles of ro-
tation are +120°, and the corresponding symmetry
operators are Cy; and Cj;. Similarly, there are also
three-fold rotation axes along the [111], [111], and [111]
directions, and these symmetry operators are labeled
C3i2, C3i3, and C3i4, respectively.

At this point, we should note the symmetry oper-
ator E, called the identity operator. It does nothing
to the crystal and is thus a symmetry operator for any
crystal. It is added to the list of symmetry operators
for completeness.

Another symmetry operator of the simple-cubic
crystal is the inversion operator I which takes every
point z,y,z into Z,y,2z. This point operator leaves
only the point at the origin fixed.

The (100), (010), and (001) planes in the simple-
cubic crystal are mirror planes. Reflections through
those planes are symmetry operators of that crystal.
They are labeled o, 0y, and o, respectively. The sub-
script x, y, or z refers to the direction perpendicular to
the mirror plane. Similarly, the (110), (110), (101),...
planes are mirror planes. Reflections through those
planes are the symmetry operators o4,, Ogp; Odc - - -
The subscript d refers to the face-diagonal directions
of these planes.

Another symmetry operator of the simple cubic
crystal is a 90° rotation about the [100] direction fol-
lowed by a reflection through the (100) plane. This is
called a 90° rotation-reflection and is labeled Sj,. Sim-
ilarly, there are symmetry operators S, Sﬁ, and S;tz.
Yet another symmetry operator is a 60° rotation about
the [111] direction followed by a reflection through the
(111) plane. This rotation-reflection is labeled Sg;.
Note that a 60° rotation about the [111] direction by
itself is not a symmetry operator of the simple-cubic
crystal, and a reflection through the (111) plane by it-
self is not a symmetry operator. But together they are
indeed a symmetry operator of the crystal. Similarly,
we also have Sg;, S6i2, Sg%, and Sg'i. All together, there
are 48 point operators which are symmetry operators
of the simple-cubic crystal in Fig. 1-1.

Let us now consider the action of a point opera-
tor on some point z,y, 2z in the crystal. For example,
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a 180° rotation about the z axis takes = into —x and
y into —y and leaves z unaffected so that z,y, z be-
comes Z, %, z. We say that Cs, operates on z,y, z and
the result is Z,y,2. As another example, a reflection
through the (001) plane takes z into —z and leaves z
and y unaffected so that z,y, z becomes x, vy, z.

Let us look at a more difficult example, Cj,. In
Fig. 1-29a, we show a point (7,3,2) projected onto the
zy plane. When we rotate the crystal by 90° (counter-
clockwise) about the z axis (out of the page), the point
becomes (—3,7,2), as shown in Fig. 1-29b. The z coor-
dinate of the point is now equal in value to the negative
of its original y coordinate. The y coordinate of the
point is now equal in value to its original  coordinate.
The 2 coordinate remains unaffected. Thus, Cj, takes
z,y,% into 9, x,2. The z,y, z notation for each of the
point operators is given in Appendix 3.

(a) y
_____ hd (77372)
L 2
(b) y
(_37752) T - ]

|

|

|

Fig. 1-29. (a) Projection of the point (7,3,2) onto the
zy plane. (b) After a 90° rotation about the z axis,
the point becomes (—3,7,2).
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1-14 Bravais Lattices

A lattice translation is a symmetry operator on a
crystal. This operator moves every point in the crystal
by a vector R, which is one of the lattice vectors. Al-
together, there are 14 different Bravais lattices. Three
of these are cubic (sc, bec, fec). The conventional unit
cells for each of the 14 Bravais lattices are shown in
Appendix 4. The basis vectors a;, as,az shown in the
figure are called the conventional basis vectors of
the lattice. (These basis vectors are more commonly
labeled a,b,c by other authors.) In the centered lat-
tices, they are not the true basis vectors since they do
not take us to any of the centered points. However, as
we will see, they are more convenient to use for many
purposes.

Positions of points in the conventional unit cell
are usually denoted by three dimensionless numbers
(z,y,2), such that the point is at

r = za; + yas + zas. (1-10)

The values of x,y,z are considered to be inside the
unit cell if

0<z <1, 0<y <1, 0<z<1l. (1-11)

For example, in CsCl (see Fig. 1-25), there are two

atoms in the unit cell. The Cs atom is at (0,0,0), and

the Cl atom is at (3,1, 3).

Problem 1-21. (a) List the z,y, z coordinates for the
atoms in the unit cell of NaCl. Indicate which ones are
Na atoms and which ones are Cl atoms. (b) Repeat
for diamond.

The lattices are grouped into six crystal sys-
tems: triclinic, monoclinic, orthorhombic, tetragonal,
hexagonal, and cubic. The Bravais lattice is denoted
by its crystal system followed by a letter indicating
the type of centering (see Appendix 4). Some Bravais
lattices are also known by other common names. For
example, the cubic P lattice is known as simple cubic
(sc), the cubic F lattice is known as face-centered cubic
(fce), and the cubic I lattice is known as body-centered
cubic (bec). The hexagonal R lattice is also known as
trigonal or rhombohedral.

You may notice that only certain types of center-
ing are listed for each crystal system. For example,
there is only one kind of centered monoclinic lattice:
monoclinic B. A monoclinic A lattice is the same as a
monoclinic B lattice with the labels of a; and ay in-
terchanged. Since changing labels does not produce a
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physically different arrangement of lattice points, the
two lattices are the same, and we only give one of them
in the list of 14 different Bravais lattices.

Similarly, a monoclinic C' lattice becomes a mon-
oclinic P lattice if we define new basis vectors, aj =
ta; + 1a and aj) = —1a; + fa, (see Fig. 1-30). In
this case, we cannot simply interchange the labels of
as and ag, since ag must be perpendicular to both a;
and a, in this crystal system, and the new ag (the old
a) would not be perpendicular to a; .

A A
NERNERNER
NEANERNEA

Fig. 1-30. (a) The zy plane of a monoclinic C lattice
showing the unit cells. (b) The same lattice but with
a rearrangement of unit cells so that the lattice now
appears to be monoclinic P.

Problem 1-22. (a) Consider a monoclinic I lattice.
Is this a monoclinic B or monoclinic P lattice? Find
new basis vectors aj,a},a} in terms of the old basis
vectors aj,as,as such that the lattice will appear as
one of those two types. (Remember that the two-fold
rotation axis along a3 must remain along a%. Also, aj
and a}, must be perpendicular to a§. A drawing of this
lattice projected onto the zy plane may be helpful.)
(b) Repeat for a monoclinic F lattice.

Problem 1-23. Consider a crystal with a monoclinic
lattice such that the angle between a; and as is 7.
Find the volume of the the primitive unit cell if (a) the
lattice is P type and (b) if the lattice is B type. Give
the answer in terms of the magnitudes of a;, a3, a3 and
the angle ~.
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There is a relationship between the crystal system
and the point operators which are symmetry operators
of the crystal. When we apply a symmetry operator to
a lattice vector, it must produce another lattice vec-
tor. Since the crystal appears identical both before
and after the action of the point operator, the lattice
point to which R points must still be a lattice point,
and therefore the new vector R must still be a lattice
vector. This means that the relationships between the
basis vectors in a lattice may restrict which point op-
erators may be symmetry operators of the crystal.

In the triclinic lattice, for example, the basis vec-
tors each have arbitrary lengths and directions, so only
the point operators, E and I, may be symmetry op-
erators of a crystal with this lattice. (The inversion I
changes R to —R, which is always another lattice vec-
tor.) Conversely, if the symmetry operators of a crys-
tal only include the point operators F and I and no
others, then the lattice must be triclinic. Note that a
crystal with a triclinic lattice may possibly not even
have the inversion I as one of its symmetry operators.
Even though I may be a symmetry operator of the lat-
tice, the atoms associated with each lattice point may
be arranged so that I is not a symmetry operator of
the crystal.

Suppose there exists a single two-fold rotation axis
in a crystal. Let us choose the direction of the z axis
to be along that two-fold rotation axis. The point
operator Cs, is a symmetry operator of the crystal.
Let us choose an arbitrary lattice vector R which is
not pointing along the two-fold rotation axis. C2.R is
also a lattice vector since Cy, is a symmetry operator.
A vector sum of any two lattice vectors is also a lattice
vector. Therefore, R — C5,R is a lattice vector. It is
also perpendicular to the two-fold rotation axis. (Draw
a picture to see this.) Let us choose this vector to be
the basis vector a;. In a similar manner, we can start
with another lattice vector R and construct another
vector R—C5, R perpendicular to the two-fold rotation
axis. We choose this vector to be as. Lastly, starting
with a lattice vector R not perpendicular to the two-
fold rotation axis, we can construct a lattice vector
R + C5.R. This vector is in the same direction as the
two-fold rotation axis, and we choose it to be as.

As can be seen, starting only with the fact that the
crystal has a two-fold rotation axis, we can construct
the basis vectors of a monoclinic lattice: a; and as are
both perpendicular to ag. Depending on what lattice
vectors R we used to construct the basis vectors, the
resulting unit cell may or may not be centered in some
way. However, we can always choose the basis vectors
so that we finally have a conventional unit cell of ei-
ther a monoclinic P or monoclinic B lattice. What we
have shown here is that a single two-fold rotation axis
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is a sufficient condition for a crystal to be monoclinic.
Similarly, we could show that a single mirror plane is
also a sufficient condition for a crystal to be mono-
clinic. A monoclinic crystal may also contain both a
two-fold rotation axis and a mirror plane, if the two-
fold rotation axis is perpendicular to the mirror plane.
In that case, the intersection of the two-fold rotation
axis with the mirror plane is a point of inversion, and
I will also be a symmetry operator of the crystal.

If a crystal contains two two-fold rotation axes,
perpendicular to each other, then it can be shown that
a third two-fold rotation axis must also exist, per-
pendicular to the other two. The presence of these
three two-fold rotation axes makes it possible for us to
construct three mutually perpendicular lattice vectors,
and therefore the crystal is orthorhombic. Similarly, if
a crystal contains two mirror planes, perpendicular to
each other, then the intersection of those planes will
be a two-fold rotation axis, and the crystal is likewise
orthorhombic.

There is a strong relationship between the crystal
system and the point operators which are symmetry
operators of the crystal. If a crystal contains more
than one two-fold rotation axis or more than one mir-
ror plane, then it cannot be monoclinic. On the other
hand, if a crystal contains only one two-fold rotation
axis and/or only one mirror plane, it cannot be or-
thorhombic, because the basis vectors aj,as cannot
be chosen to be perpendicular to each other. Even if
a measurement shows that they are perpendicular to
within experimental uncertainty, we know that they
cannot be ezxactly perpendicular to each other because
of the symmetry of the crystal.

We can find the conditions on the other crystal
systems in a similar way. A single four-fold rotation
axis and/or four-fold rotation-reflection axis is a suffi-
cient condition for a tetragonal lattice. A single three-
fold rotation axis and/or a six-fold rotation-reflection
axis is a sufficient condition for a hexagonal lattice.
Note that the hexagonal R lattice does not have a
six-fold rotation axis or a three-fold rotation-reflection
axis, whereas the hexagonal P lattice does. For this
reason, the hexagonal R lattice is often considered to
belong to a separate crystal system, called the trigonal
crystal system.

Two three-fold rotation axes and/or two six-fold
rotation-reflection axes are a sufficient condition for a
cubic lattice. Note that a cubic crystal does not need
to have any four-fold rotation axes. The three-fold ro-
tation axes are sufficient to guarantee that the basis
vectors are the same length and mutually perpendic-
ular to each other. The arrangement of atoms in the
unit cell may in fact not allow the cubic crystal to have
a four-fold rotation axis.
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The different combinations of point operators
which may be symmetry operators of a crystal are
called point groups. All crystals with the same point
group belong to the same crystal class. There are 32
crystal classes in all. They are listed in Appendix 5.
Note that for some crystal classes, two different com-
binations of point operators are listed. Only the num-
ber of each type of point operator (four-fold rotation,
reflection, etc.) and their relationship to each other
distinguishes one crystal class from another.

The action of the different point operators on
z,y,z are given in Appendix 3. This table is divided
into two lists, one for non-hexagonal lattices and one
for hexagonal lattices. The list for non-hexagonal lat-
tices uses cartesian coordinates. For this reason, the
operator Cj, would not produce (9,2, z) in a mono-
clinic lattice if z,y, z are defined by Eq. (1-10), since
a; and as are not perpendicular to each other. How-
ever, this does not matter, since CL is never a sym-
metry operator of a monoclinic crystal. Each of the
x,y, z operations listed in Appendix 3 is correct when-
ever that point operator is a symmetry operator of a
crystal.

The hexagonal lattices require special treatment.
In these lattices, the angle between a; and a, is 120°,
and a hexagonal coordinate system must be used. As
an example, let us consider the point operator C’;r .
We see from Fig. 1-31 that after the rotation, a; is in
direction of the original as, and as is in the direction
of the original —a; —ay. Thus a point (z,y, z) becomes

za; + yas + zaz — zas + y(—a; — az) + zas
= —yai + (z — y)az + zas,
(1-12)
and the operation of C’; on x,y, z results in g,z —y, z,
as shown in Appendix 3.

(a) a2 (b) ai

ai

az

Fig. 1-31. A 120° rotation about the z axis. (a) Before
the rotation. (b) After the rotation.
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1-15 Directions and Planes Revisited

A direction r in a crystal is written in terms of com-
ponents of the conventional basis vectors:
r = nia; + noas + nsas. (1-13)
This direction is denoted by the symbol [ninsnz]. If
a line along this direction passes through at least two
lattice points, then the coefficients ni,n2,n3 can al-
ways be chosen to be integers.
The points (z,y, z) that lie on a plane satisfy the
equation

hr+ky+lz=A4, (1-14)

where A is some constant. [Note that z,y,z are
components of the conventional basis vectors, as in
Eq. (1-10), so the coordinate system in Eq. (1-14) is
not necessarily cartesian.] This plane described by
Eq. (1-14) is denoted by (hkl). The numbers (hkl)
are called Miller indices. If the plane contains at
least three non-collinear lattice points, then the Miller
indices can always be chosen to be integers. Note that
A/h, AJk, A/l are the intercepts of the plane with the
a;, ap, a3 axes, respectively. In cubic crystals, the [hkl]
direction is perpendicular to the (hkl) plane, but this
is not generally true for any of the other crystal sys-
tems. In hexagonal crystals, four Miller indices (hkil)
are often given. In this case, A/i is the intercept of
the plane with the (—a; — ay) axis.
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APPENDIX 3

POINT OPERATORS

Non-Hexagonal Lattices:

Caa

Oda
Odb
Odc
Odd
Ode

Udf

DB N RN BB 8R
8 8 % 8 & 8 8 @e R
8 @ 8 N N o N NN

)

AN

EER R RMRE NE SR ®®E R N NN
W N W NN NN QNS 8 8 8 8

8

27y7
T, 2,y
z7y7':c

'CL.Jsz

a1+a2+a3

a; —az —ag

a; +az + as

a]; —as —as

identity

180° rotation about a;

180° rotation about as

180° rotation about as

180° rotation about a; + as

180° rotation about a; — a»

180° rotation about a; + as

180° rotation about as + a3

180° rotation about a; — ag

180° rotation about as — a3

120° rotation about

120° rotation about —a; — as + ag
120° rotation about

120° rotation about —a; + as — a3
240° rotation about

240° rotation about —a; — as + ag
240° rotation about

240° rotation about —a; + as — ag
90° rotation about a;

90° rotation about as

90° rotation about ag

270° rotation about a;
270° rotation about as
270° rotation about as
inversion

reflection in plane L to
reflection in plane L to
reflection in plane L to
reflection in plane L to
reflection in plane L to
reflection in plane L to
reflection in plane L to
reflection in plane L to
reflection in plane L to

ai +a
a; — ag
a; +3.3
az +as
a; —as

Az — as
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Se1
Sea
Ses
Sea
Se1
Se2
Ses

IR IR I
WE B BB R NN N
B @ @ @ @ 8 8 8 8

MRS T
8 & 8 %
ESTIE ~ B IR ]

60° rotation about

60° rotation about

60° rotation about —a; — as + ag followed by reflection in plane L to that axis

60° rotation about —a; + as — az followed by reflection in plane L to that axis
300° rotation about
300° rotation about —a; — ay + ag followed by reflection in plane L to that axis
300° rotation about
300° rotation about —a; + a; — ag followed by reflection in plane L to that axis
90° rotation about a; followed by reflection in plane L to that axis

90° rotation about as followed by reflection in plane L to that axis

90° rotation about az followed by reflection in plane L to that axis

270° rotation about a; followed by reflection in plane L to that axis
270° rotation about as followed by reflection in plane L to that axis
270° rotation about as followed by reflection in plane L to that axis

Hexagonal Lattices

E
Cs
cf
Cy
ey
Co
Can
Cas
Cas
Ca

"
22

"
C23

T,Y,2
T,y,2
gj,:c—y,z
Yy—x,%,2
r—Y,T,2
Y, Yy —T,2
y_xayaz
T, r—Y,Z
Y, T, 2
r—9Y,Y,%
T, Yy—x,2
Y, X, 2
T,Y,Z
T,Y,Z
g,.’E—y,E

y—l’,i‘,

I

T—Y,T,Z2
yay_mag
m_yhﬂ;z
r,Yy—x,2
Y, z,z

Yy—x,9,2
T, T—Y,z
Y,

S]]

4

identity

180° rotation about ag

120° rotation about ag

240° rotation about as

60° rotation about ag

300° rotation about as

180° rotation about a; + 2as

180° rotation about 2a; + as

180° rotation about a; — a»

180° rotation about a;

180° rotation about as

180° rotation about a; + a»

inversion

reflection in plane L to ag

120° rotation about a3 followed by reflection in plane L to that axis
240° rotation about ag followed by reflection in plane L to that axis
60° rotation about ag followed by reflection in plane L to that axis
300° rotation about ag followed by reflection in plane L to that axis
reflection in plane L to a; + 2a,

reflection in plane L to 2a; + as

reflection in plane L to a; — ay

reflection in plane L to a;

reflection in plane L to as

reflection in plane L to a; + ay

a; + ap + az followed by reflection in plane L to that axis

a; — ay — ag followed by reflection in plane L to that axis

a; + as + ag followed by reflection in plane L to that axis

a; — ap — ag followed by reflection in plane L to that axis
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APPENDIX 4
BRAVAIS LATTICES

Conditions on the Basis Vectors:

a1,a2,a3 are the magnitudes of the basis vectors a;, as, az, respectively.
« is the angle between a, and ag.
B is the angle between ag and a;.

v is the angle between a; and as.

Crystal System Conditions

Triclinic none

Monoclinic a=pf=90°

Orthorhombic a=p3=~v=90°

Tetragonal a1 =as, a=p=~v=90°
Hexagonal a1 =as, a=p3=090° ~=120°
Cubic a1 =ay =az, a=f=~v=090°

Centered Lattices:

Type of Centering Centered Points
Primitive P none
Base-centered A 0,%,3)

B (30,3

C (330
Face-centered F 0,%,3),(3,0,2),(3,1,0)
Body-centered I CRx)
Rhombohedral-centered R (2,4,1),(4,2,2)
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APPENDIX 5
SPACE GROUPS

Space
Groups Class Point Operators
Triclinic
1 1 E
2 1 E I
Monoclinic
3*5 2 E7 CZZ
679 m EJ Uz
10-15 2/m EaCQZaIaUZ
Orthorhombic
16-24 222 E,C5;,C5y, Cs,
25-46 mm?2 E,Cy,, 04, Oy
47-74 mmm E,Csy,Cay,Coz,1,04,04,0,
Tetragonal
75-80 4 E,C{.,C.
81-82 i E,Si;,Co.
83-88 4/m E,CL,C:, 1,88, 0.
89-98 422 E,Cf., Caz, Ca, Cay, Caa, Cap
99-110 4dmm E,Ci,czz,ax,ay,ada,adb
111-122  42m (1) E,SL,Cozy Copy Coyy 0day 0

(2) E, Szzity Csz,Caq, Cop, 0, Oy
123-142 4/mmm Eycfz;CQZ)CQZ'JC2y702(1702b7‘[7 szaamo—mao—y;o—da;adb




APPENDIX 5 SPACE GROUPS

Point Operators

Space
Groups Class
Hexagonal
143-146 3
147-148 3
149-155 32
156-161 3m
162-176  3m
168-173 6
174 6
175-176 6/m
177-182 622

183186 6mm
187-190 6m2

191-194 6/mmm

E,Cf

E,CE, 1,85

E,C?it,Cél,Céz,Cé3

E,Cy,CYy,Csh, C
E,Cf,om,049,0a3

E,Cét,avl,O'vz,O'vg
E,CE,Ch,ChyyCha I,8E 041,049,043
E7C§:a 215 Cd9, é%alasﬁi’avlaav%aﬁ
E,CE,Cf,C

E,SF,Cf,on
E,Cy,C5,Cs,1,57, S5, 0
E7Céc7c3ivc27célvcé2vcé37 éllv 51270513
E,CE,CE,Coy001,042,043,001,002, 003

+ i i 1 +
) EaCS 70217022:023:0h753 3 Ovl, 092, 003

+ " " +
E,C5, C3), 03, Cy3,0h,595, 041,042, 04a3
+ + 1 ! 1 " " "
E,C@ 503 aC2aC2laC22ac23a 215 ~22y ~23»

+ %
I, 53 aS(j sOhy,0d1,0d2,0d3,0v1,0v2,0v3

Cubic
195-199 23
200206 m3

207214 432

215-220 43m

221-230 m3m

+ + + +
E7C3lvc3270337034702$702y702z
E,C%,C5,C5,C8, Coy, Coy, C

» V315,V 32, VY33, Vg, Y22, L2y, L2z,

+ o o g%

1,561, 56255635 561> Tz Oy, 0

+ + + +
E7031703270337034702:07023/;0227

+ + +
C2aac2bac2cac2d7026;C2f;C4mac4yac4z

+ + + +

E7031’03270337034502&023/;0%:

+ +
Oda;0db; Odc, 0dd, Ode, Odf» S4z7 S

+
4y7S4z

+ + + + + + +

E’ CSla 032’ 033’ 034: CZz; C2ya 0227 C4ac: C4y7 C4za
+ o o o=

CZa; Czb; C2c7 Czd; Cze; C2f7 Ia 5617 Seza 5637 5647

+ + +
O0z,0y,02,0da;0dbyOdcy 0dd, Ode> Tdf 5 S4wa S4ya 542
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APPENDIX 6
CRYSTAL STRUCTURES

Listed below are the crystal structures of various elements and compounds. The lattice parameters a in units of
A are also given.

Elements with a bcc lattice Compounds with the sodium chloride structure
Li 3.50 Ba 5.02 Mo 3.14 LiF  4.02 RbI  7.32 BaTe 6.99
Na 4.30 v 3.04 W 3.15 LiCl 5.14 CsF  6.00 MnO 4.43
K 5.20 Nb 3.30 Fe 2.86 LiBr 5.49 MgO 4.20 MnS 5.21
Rb 5.59 Ta 3.32 Eu 4.58 Lil 6.00 MgS 5.19 MnSe 5.45
Cs 6.50 Cr 2.87 NaF 4.61 MgSe 5.45 FeO 4.28
- - NaCl 5.63 CaO0 4.80 CoO 4.25

Elements with an fcc lattice NaBr 5.96 CaS  5.68 NiO  4.17
Ca 5.56 Pd 3.87 Al 4.04 Nal 6.46 CaSe 5.91 AgF 492
Sr 6.08 Pt 3.90 Pb 4.93 KF 5.36 CaTe 6.34 AgCl 5.54
Ac 5.31 Cu 3.61 Ce 5.12 KCl 6.27 SrO  5.15 AgBr 5.76
Rh 3.80 Ag 4.07 Yb 5.48 KBr 6.58 SrS  6.01 CdO 4.70
Ir 3.82 Au 4.07 Th 5.08 KI 7.05 SrSe  6.23 SnTe 6.28
Ni 3.52 RbF 5.63 SrTe 6.65 PbS 5.93

RbCl 6.53 BaO 5.53 PbSe 6.14
Elements with the diamond structure RbBr 6.85 BaSe 6.59 PbTe 6.44
gi gig Ge 5.65 Sn 6.46 Compounds with the zincblende structure

BeS 4.86 ZnTe 6.09 GaP 5.44
Compounds with the cesium chloride structure CuCl 5.41 CdTe 6.46 GaAs 5.64
CsCl 4.11 TH  4.18 CuPd 2.99 CuBr 5.68 AlP  5.45 GaSb 6.09
CsBr 4.28 TISb 3.85 AgZn 3.16 Cul  6.05 AlAs  5.63 InSb  6.45
CsI  4.56 TIBi 3.90 AuZn 3.15 ZnS 542 AlSb  6.10 SnSb 6.13
TICI 3.84 CuZn 2.95 AINi  2.82 ZnSe  5.66

TIBr 3.97




