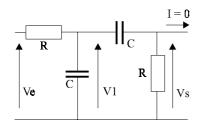

Université du Maine Faculté des Sciences

MIAS2 - SM2

Électronique

1 Électrocinétique.

Calculer le courant qui circule dans la résistance R_C sachant que :

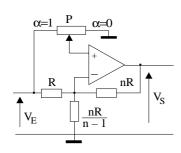

$$E = 24 \text{ V}$$

$$R_1 = R_2 = 5 \text{ k}\Omega$$

$$R_3=6~\text{k}\Omega$$
 ; $R_4=3~\text{k}\Omega$

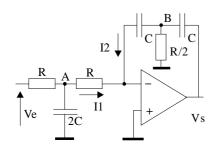
$$R_C = 3.5 \text{ k}\Omega$$

2 Filtre du second ordre.


Le circuit est alimenté par une tension $V_E = A.\cos\omega t$.

Déterminer sa fonction de transfert complexe si le courant prélevé à la sortie est nul.

Au cours du calcul, conserver le plus longtemps possible l'expression de l'impédance du condensateur sous la forme Z_C . On posera $\omega_0=1/RC$ puis $x=\omega/\omega_0$


Tracer grossièrement l'allure de la courbe du gain en tension en fonction de ω.

3 Amplificateur à gain ajustable.

L'amplificateur opérationnel est idéal. La position du curseur du potentiomètre P est repérée par le coefficient α qui varie entre 0 et 1. Calculer la tension de sortie V_S en fonction de n, V_E et de α .

4) Amplificateur opérationnel idéal.

L'amplificateur opérationnel est idéal. Le circuit est alimenté par la tension $V_E = A.\cos\omega t$. En utilisant le théorème de Millman déterminer le potentiel des nœuds A et B.

En déduire la valeur des courants I_1 et I_2 .

Montrer par ailleurs que ces courants sont opposés.

En déduire la fonction de transfert du montage.

Que se passe-t-il si on alimente le montage avec une tension continue ?

A Retour au menu