4 F 1

Cold Neutron Three Axis Spectrometer

Areas are given......Width x height Beam tube.....Left beam of tangential channel 4F, aimed to cold source SF2 Radiant surface: 8 x 15 cm² Output of the channel: 4 x 7 cm² ..Double monochromator set-up Monochromator..... M 1 : Pyrolytic graphite $\eta = 0.4^{\circ}$ 11 x 8.5 cm² allows controlled vertical focussing M2 : Pyrolytic graphite $\eta = 0.8^{\circ}$ 11 x 8.5 cm² Analyzer...... Pyrolytic graphite $\eta = 0.4^{\circ}$ 6 x 6 cm² Horizontally bent pyrolytic graphite 6 x 6 cm² Collimation (horizontal)..... in pile: 50', 30', 15' between monochrom (optional): 50' others: 60', 40', 20', 10' Range of monochromator angle (M2)......31° $< 2\theta < 149$ ° Range of scattering angle......5° $\leq \phi \leq 140^{\circ}$ Range of analyzer angle.....0 < $2\theta_A \le 150^{\circ}$ Range of crystal orientation..... $0 \le \psi \le 360^{\circ}$ ± 20° double goniometer

Detector.....³He Beam size at specimen...... 4 x 8 cm² Background.....~0.5 count/minute

ki (Å ⁻¹)	1.05 1.55 2.66
Best energy resolution (GHz)	3.6 20 120
(FWHM at $\omega = 0$) (microeV)	15 80 500
Best wave-vector resolution (FWHM) (Å-1)	3.10 ⁻³ 5.10 ⁻³ 9.10 ⁻³
Flux at sample (n/cm2 sec)	- 3.5x10 ⁶ 14x10 ⁶

Ancillary equipment

- ★ Be filter (77 K)
- ★ Neutron polarization and polarization analyzis
- ★ "Triple Axis Equipment Pool" (see on front of this chapter)

4F1 and 4F2 are twin 3-axis spectrometers with very similar characteristics which are fed by a liquid-hydrogen cold neutron source

A full description of both spectrometers is given on the 4F2 page.

As an option, 4F1 can be equipped for polarized neutrons with polarization analysis.

The four intensities I^{++} , I^{+-} , I^{+-} , I^{-+} , I^{--} corresponding to neutron spin-flip and non–spin-flip processes can be measured sequentially.

This requires the installation of an additional shielded module between the monochromator and the sample, containing a filter, the polarizing supermirror and a Mezei flipper. The supermirror can be rotated to achieve optimal alignment, yielding a polarization efficiency of 98% with a reflectivity of 55% above $\lambda = 3.5$ Å.

Vertical and horizontal guide fields are available.

The sample can be subjected to in a magnetic field:

- horizontal field up to 0.7 or 1.4 T (electromagnet), depending on the gap
- vertical field up to 0.14 T (Helmoltz coils) or 1.4 T (electromagnet) or 6T (cryomagnet)
- 3D-inclined guiding field of 1mT (cubic die magnet with 3 orthogonal windings).

The second flipper, made of a superconducting foil and a switched magnetic coil, is placed between the sample and the analyzer.

The horizontally curved Heusler analyzer performs both energy and polarization analyzis.

Cold Neutron Three Axis Spectrometer

4 F 1

General layout of the spectrometer 4F1

Responsibles:

M. Hennion JM. Mignot

e-mail: mhennion@llb.saclay.cea.fr e-mail: mignot@llb.saclay.cea.fr