Areas are given Beam tube					
Monochromator	Double monochromator set-up				
	M1 : pyrolytic graphite $h = 0.4^{\circ}$ 11x8.5 cm ² computer controlled vertical focussing M2 : pyrolytic graphite $h = 0.4^{\circ}$ 11x8.5 cm ²				
Analyzer	Flat pyrolytic graphite $h = 0.4 \circ 7.5x5 \text{ cm}^2$				
	Horizontally curved pyrolytic graphite 6x6 cm ² Flat Ge (111)				
Collimations	In pile : 50', 30', 15'				
	between M1-M2 25' (optional)				
	others : 60', 40', 20', 10'				
Range of monochromator angle					
Range of scattering angle $2^{\circ} < \phi < 150^{\circ}$					
Range of analyzer angle $-150^{\circ} < 2\theta_{A} < 150^{\circ}$					
Range of crystal orientation $0 < \psi < 350^{\circ}$					
Beam size at sample 2 x 4 cm ²					
Detector ³ He \emptyset = 5 cm h = 15 cm					
Incident wavelength (wave-vector)	$2 < \lambda_i$ (Å) < 6.3 (3.2 > k_i (Å ⁻¹) > 1)				
$ \begin{array}{ll} Incident wavelength (wave-vector)$					
ki (Å-1)	1.05 1.55 2.66				
Maximum energy creation (THz)	- 0.75 (3 meV) 3.1 (12 meV)				

(דין וא	1.00	1.55	2.00	
Maximum energy creation (THz)	-	0.75 (3 meV)	3.1 (12 meV)	
Best energy resolution (Ghz)	2.3 (9 μeV)	13 (50 μeV)	80 (320 μeV)	
Typical energy resolution (Ghz)	7 (30μeV)	56 (220µeV)	300 (1,2 meV)	
Maximum wave-vector transfer (Å-1)	1.9	3	5.1	
Best wave-vector resolution (Å-1)	3.10 ^{-₃}	5 10 ^{-₃}	.9 10 ^{-₃}	
Flux at sample (n/cm2 sec.)	-	3.5x10 ⁶	14x10 ⁶	

Ancillary equipment

★ Be filter (77 K) ★ "Triple Axis Equipment Pool"

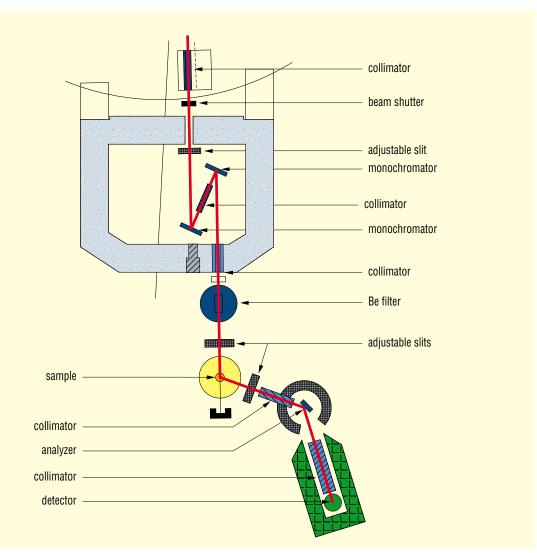
(see on front of this chapter)

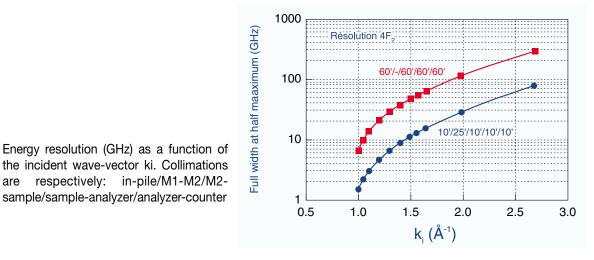
4F1 and 4F2 are twin 3-axis spectrometers with very similar characteristics (see description below), which are fed by a liquid-hydrogen cold neutron source.

Polarized neutrons are only available on 4F1 (see 4F1 page). These spectrometers are designed for measuring dispersive excitations with low energy transfers (w < 4 meV, n < 1THz) with a good resolution and a high flux (see Table).

They are well suited for measuring acoustic phonon dispersions, soft phonons, spin waves, quasi-elastic scattering, as well as for fine studies of modulated structures.

They are equipped with a double pyrolytic graphite monochromator, providing wavelengths between 6 and 2 Å (1.05 < ki < 2.7 Å⁻¹. Available collimators are (60', 30', 15') before and (60', 40', 20', 10') after the monochromators. An optional collimator (25', 15') can be added between the two monochromators. The monochromator has a computercontrolled vertical focusing.


The incident beam can be filtered by a cooled Be or a graphite filter.


The pyrolytic graphite analyzer is normally used in a horizontally focusing geometry. In this mode, the curvature of the analyzer is controlled by the computer, and the collimators (60', 40', 20', 10') are replaced by wedge-shaped tunnels.

The sample table is equipped with two orthogonal nonmagnetic goniometers, allowing tilts of ± 20°. Their upper face (serving as a support for the various sample environments) is located 270 mm below the axis of the beam.

The sample-to-monochromator and sample-to-analyzer distances can be adjusted to accommodate various sample environments.

The spectrometer is controlled by a SUN computer running under Unix/Solaris OS. It allows various data processing softwares, including fit and convolution programs, to be run in real time during the measurements.

Responsibles :

D. Petitgrand

4 F 2

General layout of the diffractometer 4F2

e-mail : petitg@llb.saclay.cea.fr